x ∈ [l,u] ∧
∀h:x ∈ [l,u].
uniform_converge {[l,u]} (⌊n,≪a n,H n≫⌋) ≪x,h≫.
-intros;
+intros;
generalize in match (order_converges_bigger_lowsegment ???? H1 ? H2);
generalize in match (order_converges_smaller_upsegment ???? H1 ? H2);
cases H2 (xi yi Hx Hy Hxy); clear H2; simplify in ⊢ (% → % → ?); intros;
cut (∀i.yi i ∈ [l,u]) as Hyi; [2:
intros; split; [apply H2] cases (Hxy i) (_ H5); cases H5 (H7 _);
apply (le_transitive ????? (H7 0)); simplify;
- cases (H1 i); assumption;] clear H2;
+ cases (H1 i); assumption;] clear H2;
split;
[1: cases Hx; cases H3; cases Hy; cases H7; split;
[1: apply (le_transitive ???? (H8 0)); cases (Hyi 0); assumption
|2: intros 3 (h);
letin Xi ≝ (⌊n,≪xi n, Hxi n≫⌋);
letin Yi ≝ (⌊n,≪yi n, Hyi n≫⌋);
- letin Ai ≝ (⌊n,≪a n, H1 n≫⌋);
- apply (sandwich {[l,u]} ≪?, h≫ Xi Yi Ai); try assumption;
+ letin Ai ≝ (⌊n,≪a n, H1 n≫⌋);
+ apply (sandwich {[l,u]} ≪?, h≫ Xi Yi Ai); [4: assumption;]
[1: intro j; cases (Hxy j); cases H3; cases H4; split;
[apply (H5 0);|apply (H7 0)]
|2: cases (H l u Xi ≪?,h≫) (Ux Uy); apply Ux; cases Hx; split; [apply H3;]
intros; split; [apply H2] cases (Hxy i) (_ H5); cases H5 (H7 _);
apply (le_transitive ????? (H7 0)); simplify;
cases (H1 i); assumption;] clear H2;
-split;
-[1: cases Hx; cases H3; cases Hy; cases H7; split;
- [1: apply (le_transitive ???? (H8 0)); cases (Hyi 0); assumption
- |2: apply (le_transitive ????? (H4 0)); cases (Hxi 0); assumption]
-|2: intros 3;
- lapply (uparrow_upperlocated ? xi x Hx)as Ux;
- lapply (downarrow_lowerlocated ? yi x Hy)as Uy;
- letin Xi ≝ (⌊n,≪xi n, Hxi n≫⌋);
- letin Yi ≝ (⌊n,≪yi n, Hyi n≫⌋);
- letin Ai ≝ (⌊n,≪a n, H1 n≫⌋);
- apply (sandwich {[l,u]} ≪?, h≫ Xi Yi Ai); try assumption;
- [1: intro j; cases (Hxy j); cases H3; cases H4; split;
- [apply (H5 0);|apply (H7 0)]
- |2: cases (restrict_uniform_convergence_uparrow ? S ?? (H l u) Xi x Hx);
- apply (H4 h);
- |3: cases (restrict_uniform_convergence_downarrow ? S ?? (H l u) Yi x Hy);
- apply (H4 h);]]
+letin Xi ≝ (⌊n,≪xi n, Hxi n≫⌋);
+letin Yi ≝ (⌊n,≪yi n, Hyi n≫⌋);
+cases (restrict_uniform_convergence_uparrow ? S ?? (H l u) Xi x Hx);
+cases (restrict_uniform_convergence_downarrow ? S ?? (H l u) Yi x Hy);
+split; [1: assumption]
+intros 3;
+lapply (uparrow_upperlocated ? xi x Hx)as Ux;
+lapply (downarrow_lowerlocated ? yi x Hy)as Uy;
+letin Ai ≝ (⌊n,≪a n, H1 n≫⌋);
+apply (sandwich {[l,u]} ≪?, h≫ Xi Yi Ai); [4: assumption;|2:apply H3;|3:apply H5]
+intro j; cases (Hxy j); cases H7; cases H8; split; [apply (H9 0);|apply (H11 0)]
qed.
+
+
+