<varlistentry>
<term>Pre-conditions:</term>
<listitem>
- <para><command>p</command> must have type <command>K<subscript>1</subscript> t<subscript>1</subscript> ... t<subscript>n</subscript> = K'<subscript>1</subscript> t'<subscript>1</subscript> ... t'<subscript>m</subscript></command> where <command>K</command> and <command>K'</command> must be different constructors of the same inductive type and each argument list can be empty if
+ <para><command>p</command> must have type <command>K t<subscript>1</subscript> ... t<subscript>n</subscript> = K' t'<subscript>1</subscript> ... t'<subscript>m</subscript></command> where <command>K</command> and <command>K'</command> must be different constructors of the same inductive type and each argument list can be empty if
its constructor takes no arguments.</para>
</listitem>
</varlistentry>
<sect1 id="tac_generalize">
<title>generalize <pattern> [as <id>]</title>
<titleabbrev>generalize</titleabbrev>
- <para>The tactic <command>generalize</command> </para>
+ <para><userinput>generalize patt as H</userinput></para>
+ <para>
+ <variablelist>
+ <varlistentry>
+ <term>Pre-conditions:</term>
+ <listitem>
+ <para>all the terms matched by <command>patt</command> must be
+ convertible and close in the context of the current sequent.</para>
+ </listitem>
+ </varlistentry>
+ <varlistentry>
+ <term>Action:</term>
+ <listitem>
+ <para>it closes the current sequent by applying a stronger
+ lemma that is proved using the new generated sequent.</para>
+ </listitem>
+ </varlistentry>
+ <varlistentry>
+ <term>New sequents to prove:</term>
+ <listitem>
+ <para>it opens a new sequent where the current sequent conclusion
+ <command>G</command> is generalized to
+ <command>∀x.G{x/t}</command> where <command>{x/t}</command>
+ is a notation for the replacement with <command>x</command> of all
+ the occurrences of the term <command>t</command> matched by
+ <command>patt</command>. If <command>patt</command> matches no
+ subterm then <command>t</command> is defined as the
+ <command>wanted</command> part of the pattern.</para>
+ </listitem>
+ </varlistentry>
+ </variablelist>
+ </para>
</sect1>
<sect1 id="tac_id">
<title>id</title>
<titleabbrev>id</titleabbrev>
- <para>The tactic <command>id</command> </para>
+ <para><userinput>absurd P</userinput></para>
+ <para>
+ <variablelist>
+ <varlistentry>
+ <term>Pre-conditions:</term>
+ <listitem>
+ <para>none.</para>
+ </listitem>
+ </varlistentry>
+ <varlistentry>
+ <term>Action:</term>
+ <listitem>
+ <para>this identity tactic does nothing without failing.</para>
+ </listitem>
+ </varlistentry>
+ <varlistentry>
+ <term>New sequents to prove:</term>
+ <listitem>
+ <para>none.</para>
+ </listitem>
+ </varlistentry>
+ </variablelist>
+ </para>
</sect1>
<sect1 id="tac_injection">
<title>injection <term></title>
<titleabbrev>injection</titleabbrev>
- <para>The tactic <command>injection</command> </para>
+ <para><userinput>injection p</userinput></para>
+ <para>
+ <variablelist>
+ <varlistentry>
+ <term>Pre-conditions:</term>
+ <listitem>
+ <para><command>p</command> must have type <command>K t<subscript>1</subscript> ... t<subscript>n</subscript> = K t'<subscript>1</subscript> ... t'<subscript>n</subscript></command> where both argument lists are empty if
+<command>K</command> takes no arguments.</para>
+ </listitem>
+ </varlistentry>
+ <varlistentry>
+ <term>Action:</term>
+ <listitem>
+ <para>it derives new hypotheses by injectivity of
+ <command>K</command>.</para>
+ </listitem>
+ </varlistentry>
+ <varlistentry>
+ <term>New sequents to prove:</term>
+ <listitem>
+ <para>the new sequent to prove is equal to the current sequent
+ with the additional hypotheses
+ <command>t<subscript>1</subscript>=t'<subscript>1</subscript></command> ... <command>t<subscript>n</subscript>=t'<subscript>n</subscript></command>.</para>
+ </listitem>
+ </varlistentry>
+ </variablelist>
+ </para>
</sect1>
<sect1 id="tac_intro">
<title>intro [<ident>]</title>
<titleabbrev>intro</titleabbrev>
- <para>The tactic <command>intro</command> </para>
+ <para><userinput>intro H</userinput></para>
+ <para>
+ <variablelist>
+ <varlistentry>
+ <term>Pre-conditions:</term>
+ <listitem>
+ <para>the conclusion of the sequent to prove must be an implication
+ or a universal quantification.</para>
+ </listitem>
+ </varlistentry>
+ <varlistentry>
+ <term>Action:</term>
+ <listitem>
+ <para>it applies the right introduction rule for implication,
+ closing the current sequent.</para>
+ </listitem>
+ </varlistentry>
+ <varlistentry>
+ <term>New sequents to prove:</term>
+ <listitem>
+ <para>it opens a new sequent to prove adding to the hypothesis
+ the antecedent of the implication and setting the conclusion
+ to the consequent of the implicaiton. The name of the new
+ hypothesis is <command>H</command> if provided; otherwise it
+ is automatically generated.</para>
+ </listitem>
+ </varlistentry>
+ </variablelist>
+ </para>
</sect1>
<sect1 id="tac_intros">
<title>intros <intros_spec></title>
<titleabbrev>intros</titleabbrev>
- <para>The tactic <command>intros</command> </para>
+ <para><userinput>intros hyps</userinput></para>
+ <para>
+ <variablelist>
+ <varlistentry>
+ <term>Pre-conditions:</term>
+ <listitem>
+ <para>If <command>hyps</command> specifies a number of hypotheses
+ to introduce, then the conclusion of the current sequent must
+ be formed by at least that number of imbricated implications
+ or universal quantifications.</para>
+ </listitem>
+ </varlistentry>
+ <varlistentry>
+ <term>Action:</term>
+ <listitem>
+ <para>it applies several times the right introduction rule for
+ implication, closing the current sequent.</para>
+ </listitem>
+ </varlistentry>
+ <varlistentry>
+ <term>New sequents to prove:</term>
+ <listitem>
+ <para>it opens a new sequent to prove adding a number of new
+ hypotheses equal to the number of new hypotheses requested.
+ If the user does not request a precise number of new hypotheses,
+ it adds as many hypotheses as possible.
+ The name of each new hypothesis is either popped from the
+ user provided list of names, or it is automatically generated when
+ the list is (or becomes) empty.</para>
+ </listitem>
+ </varlistentry>
+ </variablelist>
+ </para>
</sect1>
<sect1 id="tac_inversion">
<title>inversion <term></title>
<titleabbrev>inversion</titleabbrev>
- <para>The tactic <command>inversion</command> </para>
+ <para><userinput>inversion t</userinput></para>
+ <para>
+ <variablelist>
+ <varlistentry>
+ <term>Pre-conditions:</term>
+ <listitem>
+ <para>the type of the term <command>t</command> must be an inductive
+ type or the application of an inductive type.</para>
+ </listitem>
+ </varlistentry>
+ <varlistentry>
+ <term>Action:</term>
+ <listitem>
+ <para>it proceeds by cases on <command>t</command> paying attention
+ to the constraints imposed by the actual "right arguments"
+ of the inductive type.</para>
+ </listitem>
+ </varlistentry>
+ <varlistentry>
+ <term>New sequents to prove:</term>
+ <listitem>
+ <para>it opens one new sequent to prove for each case in the
+ definition of the type of <command>t</command>. With respect to
+ a simple elimination, each new sequent has additional hypotheses
+ that states the equalities of the "right parameters"
+ of the inductive type with terms originally present in the
+ sequent to prove.</para>
+ </listitem>
+ </varlistentry>
+ </variablelist>
+ </para>
</sect1>
<sect1 id="tac_lapply">
<title>lapply [depth=<int>] <term> [to <term list] [using <ident>]</title>
<titleabbrev>lapply</titleabbrev>
- <para>The tactic <command>lapply</command> </para>
+ <para><userinput>lapply ???</userinput></para>
+ <para>
+ <variablelist>
+ <varlistentry>
+ <term>Pre-conditions:</term>
+ <listitem>
+ <para>TODO.</para>
+ </listitem>
+ </varlistentry>
+ <varlistentry>
+ <term>Action:</term>
+ <listitem>
+ <para>TODO.</para>
+ </listitem>
+ </varlistentry>
+ <varlistentry>
+ <term>New sequents to prove:</term>
+ <listitem>
+ <para>TODO.</para>
+ </listitem>
+ </varlistentry>
+ </variablelist>
+ </para>
</sect1>
<sect1 id="tac_left">
<title>left</title>
<titleabbrev>left</titleabbrev>
- <para>The tactic <command>left</command> </para>
+ <para><userinput>left </userinput></para>
+ <para>
+ <variablelist>
+ <varlistentry>
+ <term>Pre-conditions:</term>
+ <listitem>
+ <para>the conclusion of the current sequent must be
+ an inductive type or the application of an inductive type.</para>
+ </listitem>
+ </varlistentry>
+ <varlistentry>
+ <term>Action:</term>
+ <listitem>
+ <para>equivalent to <command>constructor 1</command>.</para>
+ </listitem>
+ </varlistentry>
+ <varlistentry>
+ <term>New sequents to prove:</term>
+ <listitem>
+ <para>it opens a new sequent for each premise of the first
+ constructor of the inductive type that is the conclusion of the
+ current sequent. For more details, see the <command>constructor</command> tactic.</para>
+ </listitem>
+ </varlistentry>
+ </variablelist>
+ </para>
</sect1>
<sect1 id="tac_letin">
<title>letin <ident> ≝ <term></title>
<sect1 id="tac_right">
<title>right</title>
<titleabbrev>right</titleabbrev>
- <para>The tactic <command>right</command> </para>
+ <para><userinput>right </userinput></para>
+ <para>
+ <variablelist>
+ <varlistentry>
+ <term>Pre-conditions:</term>
+ <listitem>
+ <para>the conclusion of the current sequent must be
+ an inductive type or the application of an inductive type with
+ at least two constructors.</para>
+ </listitem>
+ </varlistentry>
+ <varlistentry>
+ <term>Action:</term>
+ <listitem>
+ <para>equivalent to <command>constructor 2</command>.</para>
+ </listitem>
+ </varlistentry>
+ <varlistentry>
+ <term>New sequents to prove:</term>
+ <listitem>
+ <para>it opens a new sequent for each premise of the second
+ constructor of the inductive type that is the conclusion of the
+ current sequent. For more details, see the <command>constructor</command> tactic.</para>
+ </listitem>
+ </varlistentry>
+ </variablelist>
+ </para>
</sect1>
<sect1 id="tac_ring">
<title>ring</title>