simplify.
reflexivity
| intros.
- rewrite < H.
+ rewrite < H.
+ apply gcd1
+ [ apply divides_times
+ [ apply divides_n_n
+ | apply divides_gcd_n.
+ ]
+ | apply divides_times
+ [ apply divides_n_n
+ | rewrite > sym_gcd.
+ apply divides_gcd_n
+ ]
+ | intros.
+ apply (divides_d_times_gcd)
+ [ rewrite > H.
+ apply lt_O_S
+ | assumption
+ | assumption
+ ]
+ ]
+]
+qed.
+
+ (*
apply (nat_case1 a)
[ intros.
rewrite > (sym_times c O).
]
]
]
-qed.
+qed.*)
theorem associative_nat_gcd: associative nat gcd.