definition copy ≝ whileTM ? copy_step (inr … (inl … (inr … 0))).
definition R_copy ≝ λt1,t2.
- ∀ls,c,rs.t1 = midtape ? ls 〈c,true〉 rs →
- (∀l1,d,l2,l3,l4.
- 〈c,false〉::rs = l1@〈d,false〉::l2 → only_bits l1 → is_bit d = false →
- ls = l3@l4@〈c0,true〉::l5 → |l4| = |l1@[〈d,false〉]|
-
-
-
-axiom no_grids_in_table: ∀n.∀l.table_TM n l → no_grids l.
-(*
-l0 x* a l1 x0* a0 l2 ------> l0 x a* l1 x0 a0* l2
- ^ ^
-
-if current (* x *) = #
- then
- else if x = 0
- then move_right; ----
- adv_to_mark_r;
- if current (* x0 *) = 0
- then advance_mark ----
- adv_to_mark_l;
- advance_mark
- else STOP
- else x = 1 (* analogo *)
-
-*)
-
-
-(*
- MARK NEXT TUPLE machine
- (partially axiomatized)
-
- marks the first character after the first bar (rightwards)
- *)
-
-definition bar_or_grid ≝ λc:STape.is_bar (\fst c) ∨ is_grid (\fst c).
-
-definition mark_next_tuple ≝
- seq ? (adv_to_mark_r ? bar_or_grid)
- (ifTM ? (test_char ? (λc:STape.is_bar (\fst c)))
- (move_right_and_mark ?) (nop ?) 1).
-
-definition R_mark_next_tuple ≝
- λt1,t2.
- ∀ls,c,rs1,rs2.
- (* c non può essere un separatore ... speriamo *)
- t1 = midtape STape ls c (rs1@〈grid,false〉::rs2) →
- no_marks rs1 → no_grids rs1 → bar_or_grid c = false →
- (∃rs3,rs4,d,b.rs1 = rs3 @ 〈bar,false〉 :: rs4 ∧
- no_bars rs3 ∧
- Some ? 〈d,b〉 = option_hd ? (rs4@〈grid,false〉::rs2) ∧
- t2 = midtape STape (〈bar,false〉::reverse ? rs3@c::ls) 〈d,true〉 (tail ? (rs4@〈grid,false〉::rs2)))
- ∨
- (no_bars rs1 ∧ t2 = midtape ? (reverse ? rs1@c::ls) 〈grid,false〉 rs2).
-
-axiom tech_split :
- ∀A:DeqSet.∀f,l.
- (∀x.memb A x l = true → f x = false) ∨
- (∃l1,c,l2.f c = true ∧ l = l1@c::l2 ∧ ∀x.memb ? x l1 = true → f x = false).
-(*#A #f #l elim l
-[ % #x normalize #Hfalse *)
-
-theorem sem_mark_next_tuple :
- Realize ? mark_next_tuple R_mark_next_tuple.
-#intape
-lapply (sem_seq ? (adv_to_mark_r ? bar_or_grid)
- (ifTM ? (test_char ? (λc:STape.is_bar (\fst c))) (move_right_and_mark ?) (nop ?) 1) ????)
-[@sem_if [5: // |6: @sem_move_right_and_mark |7: // |*:skip]
-| //
-|||#Hif cases (Hif intape) -Hif
- #j * #outc * #Hloop * #ta * #Hleft #Hright
- @(ex_intro ?? j) @ex_intro [|% [@Hloop] ]
- -Hloop
- #ls #c #rs1 #rs2 #Hrs #Hrs1 #Hrs1' #Hc
- cases (Hleft … Hrs)
- [ * #Hfalse >Hfalse in Hc; #Htf destruct (Htf)
- | * #_ #Hta cases (tech_split STape (λc.is_bar (\fst c)) rs1)
- [ #H1 lapply (Hta rs1 〈grid,false〉 rs2 (refl ??) ? ?)
- [ * #x #b #Hx whd in ⊢ (??%?); >(Hrs1' … Hx) >(H1 … Hx) %
- | %
- | -Hta #Hta cases Hright
- [ * #tb * whd in ⊢ (%→?); #Hcurrent
- @False_ind cases (Hcurrent 〈grid,false〉 ?)
- [ normalize #Hfalse destruct (Hfalse)
- | >Hta % ]
- | * #tb * whd in ⊢ (%→?); #Hcurrent
- cases (Hcurrent 〈grid,false〉 ?)
- [ #_ #Htb whd in ⊢ (%→?); #Houtc
- %2 %
- [ @H1
- | >Houtc >Htb >Hta % ]
- | >Hta % ]
- ]
- ]
- | * #rs3 * #c0 * #rs4 * * #Hc0 #Hsplit #Hrs3
- % @(ex_intro ?? rs3) @(ex_intro ?? rs4)
- lapply (Hta rs3 c0 (rs4@〈grid,false〉::rs2) ???)
- [ #x #Hrs3' whd in ⊢ (??%?); >Hsplit in Hrs1;>Hsplit in Hrs3;
- #Hrs3 #Hrs1 >(Hrs1 …) [| @memb_append_l1 @Hrs3'|]
- >(Hrs3 … Hrs3') @Hrs1' >Hsplit @memb_append_l1 //
- | whd in ⊢ (??%?); >Hc0 %
- | >Hsplit >associative_append % ] -Hta #Hta
- cases Hright
- [ * #tb * whd in ⊢ (%→?); #Hta'
- whd in ⊢ (%→?); #Htb
- cases (Hta' c0 ?)
- [ #_ #Htb' >Htb' in Htb; #Htb
- generalize in match Hsplit; -Hsplit
- cases rs4 in Hta;
- [ #Hta #Hsplit >(Htb … Hta)
- >(?:c0 = 〈bar,false〉)
- [ @(ex_intro ?? grid) @(ex_intro ?? false)
- % [ % [ %
- [(* Hsplit *) @daemon |(*Hrs3*) @daemon ] | % ] | % ]
- | (* Hc0 *) @daemon ]
- | #r5 #rs5 >(eq_pair_fst_snd … r5)
- #Hta #Hsplit >(Htb … Hta)
- >(?:c0 = 〈bar,false〉)
- [ @(ex_intro ?? (\fst r5)) @(ex_intro ?? (\snd r5))
- % [ % [ % [ (* Hc0, Hsplit *) @daemon | (*Hrs3*) @daemon ] | % ]
- | % ] | (* Hc0 *) @daemon ] ] | >Hta % ]
- | * #tb * whd in ⊢ (%→?); #Hta'
- whd in ⊢ (%→?); #Htb
- cases (Hta' c0 ?)
- [ #Hfalse @False_ind >Hfalse in Hc0;
- #Hc0 destruct (Hc0)
- | >Hta % ]
-]]]]
-qed.
-
-definition init_current ≝
- seq ? (adv_to_mark_l ? (is_marked ?))
- (seq ? (clear_mark ?)
- (seq ? (adv_to_mark_l ? (λc:STape.is_grid (\fst c)))
- (seq ? (move_r ?) (mark ?)))).
-
-definition R_init_current ≝ λt1,t2.
- ∀l1,c,l2,b,l3,c1,rs,c0,b0. no_marks l1 → no_grids l2 → is_grid c = false →
- Some ? 〈c0,b0〉 = option_hd ? (reverse ? (〈c,true〉::l2)) →
- t1 = midtape STape (l1@〈c,true〉::l2@〈grid,b〉::l3) 〈c1,false〉 rs →
- t2 = midtape STape (〈grid,b〉::l3) 〈c0,true〉
- ((tail ? (reverse ? (l1@〈c,false〉::l2))@〈c1,false〉::rs)).
-
-lemma sem_init_current : Realize ? init_current R_init_current.
-#intape
-cases (sem_seq ????? (sem_adv_to_mark_l ? (is_marked ?))
- (sem_seq ????? (sem_clear_mark ?)
- (sem_seq ????? (sem_adv_to_mark_l ? (λc:STape.is_grid (\fst c)))
- (sem_seq ????? (sem_move_r ?) (sem_mark ?)))) intape)
-#k * #outc * #Hloop #HR
-@(ex_intro ?? k) @(ex_intro ?? outc) % [@Hloop]
-cases HR -HR #ta * whd in ⊢ (%→?); #Hta
-* #tb * whd in ⊢ (%→?); #Htb
-* #tc * whd in ⊢ (%→?); #Htc
-* #td * whd in ⊢ (%→%→?); #Htd #Houtc
-#l1 #c #l2 #b #l3 #c1 #rs #c0 #b0 #Hl1 #Hl2 #Hc #Hc0 #Hintape
-cases (Hta … Hintape) [ * #Hfalse normalize in Hfalse; destruct (Hfalse) ]
--Hta * #_ #Hta lapply (Hta l1 〈c,true〉 ? (refl ??) ??) [@Hl1|%]
--Hta #Hta lapply (Htb … Hta) -Htb #Htb cases (Htc … Htb) [ >Hc -Hc * #Hc destruct (Hc) ]
--Htc * #_ #Htc lapply (Htc … (refl ??) (refl ??) ?) [@Hl2]
--Htc #Htc lapply (Htd … Htc) -Htd
->reverse_append >reverse_cons
->reverse_cons in Hc0; cases (reverse … l2)
-[ normalize in ⊢ (%→?); #Hc0 destruct (Hc0)
- #Htd >(Houtc … Htd) %
-| * #c2 #b2 #tl2 normalize in ⊢ (%→?);
- #Hc0 #Htd >(Houtc … Htd)
- whd in ⊢ (???%); destruct (Hc0)
- >associative_append >associative_append %
-]
-qed.
-
-definition match_tuple_step ≝
- ifTM ? (test_char ? (λc:STape.¬ is_grid (\fst c)))
- (single_finalTM ?
- (seq ? compare
- (ifTM ? (test_char ? (λc:STape.is_grid (\fst c)))
- (nop ?)
- (seq ? mark_next_tuple
- (ifTM ? (test_char ? (λc:STape.is_grid (\fst c)))
- (mark ?) (seq ? (move_l ?) init_current) tc_true)) tc_true)))
- (nop ?) tc_true.
-
-definition R_match_tuple_step_true ≝ λt1,t2.
- ∀ls,c,l1,l2,c1,l3,l4,rs,n.
- is_bit c = true → only_bits l1 → no_grids l2 → is_bit c1 = true →
- only_bits l3 → n = |l1| → |l1| = |l3| →
- table_TM (S n) (〈c1,true〉::l3@〈comma,false〉::l4) →
- t1 = midtape STape (〈grid,false〉::ls) 〈c,true〉
- (l1@〈grid,false〉::l2@〈bar,false〉::〈c1,true〉::l3@〈comma,false〉::l4@〈grid,false〉::rs) →
- (* facciamo match *)
- (〈c,false〉::l1 = 〈c1,false〉::l3 ∧
- t2 = midtape ? (reverse ? l1@〈c,false〉::〈grid,false〉::ls) 〈grid,false〉
- (l2@〈bar,false〉::〈c1,false〉::l3@〈comma,true〉::l4@〈grid,false〉::rs))
- ∨
- (* non facciamo match e marchiamo la prossima tupla *)
- ((〈c,false〉::l1 ≠ 〈c1,false〉::l3 ∧
- ∃c2,l5,l6,l7.l4 = l5@〈bar,false〉::〈c2,false〉::l6@〈comma,false〉::l7 ∧
- (* condizioni su l5 l6 l7 *)
- t2 = midtape STape (〈grid,false〉::ls) 〈c,true〉
- (l1@〈grid,false〉::l2@〈bar,false〉::〈c1,true〉::l3@〈comma,false〉::
- l5@〈bar,false〉::〈c2,true〉::l6@〈comma,false〉::l7))
- ∨
- (* non facciamo match e non c'è una prossima tupla:
- non specifichiamo condizioni sul nastro di output, perché
- non eseguiremo altre operazioni, quindi il suo formato non ci interessa *)
- (〈c,false〉::l1 ≠ 〈c1,false〉::l3 ∧ no_bars l4 ∧ current ? t2 = Some ? 〈grid,true〉)).
-
-definition R_match_tuple_step_false ≝ λt1,t2.
- ∀ls,c,rs.t1 = midtape STape ls c rs → is_grid (\fst c) = true ∧ t2 = t1.
-
-include alias "basics/logic.ma".
-
-(*
-lemma eq_f4: ∀A1,A2,A3,A4,B.∀f:A1 → A2 →A3 →A4 →B.
- ∀x1,x2,x3,x4,y1,y2,y3,y4. x1 = y1 → x2 = y2 →x3=y3 →x4 = y4 →
- f x1 x2 x3 x4 = f y1 y2 y3 y4.
-//
-qed-. *)
-
-lemma some_option_hd: ∀A.∀l:list A.∀a.∃b.
- Some ? b = option_hd ? (l@[a]) .
-#A #l #a cases l normalize /2/
-qed.
-
-lemma bit_not_grid: ∀d. is_bit d = true → is_grid d = false.
-* // normalize #H destruct
-qed.
-
-lemma bit_not_bar: ∀d. is_bit d = true → is_bar d = false.
-* // normalize #H destruct
-qed.
-
-axiom sem_match_tuple_step:
- accRealize ? match_tuple_step (inr … (inl … (inr … 0)))
- R_match_tuple_step_true R_match_tuple_step_false.
-(* @(acc_sem_if_app … (sem_test_char ? (λc:STape.¬ is_grid (\fst c))) …
- (sem_seq … sem_compare
- (sem_if … (sem_test_char ? (λc:STape.is_grid (\fst c)))
- (sem_nop …)
- (sem_seq … sem_mark_next_tuple
- (sem_if … (sem_test_char ? (λc:STape.is_grid (\fst c)))
- (sem_mark ?) (sem_seq … (sem_move_l …) (sem_init_current …))))))
- (sem_nop ?) …)
-[(* is_grid: termination case *)
- 2:#t1 #t2 #t3 whd in ⊢ (%→?); #H #H1 whd #ls #c #rs #Ht1
- cases (H c ?) [2: >Ht1 %] #Hgrid #Heq %
- [@injective_notb @Hgrid | <Heq @H1]
-|#tapea #tapeout #tapeb whd in ⊢ (%→?); #Htapea
- * #tapec * #Hcompare #Hor
- #ls #c #l1 #l2 #c1 #l3 #l4 #rs #n #Hc #Hl1 #Hl2 #Hc1 #Hl3 #eqn
- #eqlen #Htable #Htapea1 cases (Htapea 〈c,true〉 ?) >Htapea1 [2:%]
- #notgridc -Htapea -Htapea1 -tapea #Htapeb
- cases (Hcompare … Htapeb) -Hcompare -Htapeb * #_ #_ #Hcompare
- cases (Hcompare c c1 l1 l3 (l2@[〈bar,false〉]) (l4@〈grid,false〉::rs) eqlen … (refl …) Hc ?)
- -Hcompare
- [* #Htemp destruct (Htemp) #Htapec %1 % [%]
- >Htapec in Hor; -Htapec *
- [2: * #t3 * whd in ⊢ (%→?); #H @False_ind
- cases (H … (refl …)) whd in ⊢ ((??%?)→?); #H destruct (H)
- |* #taped * whd in ⊢ (%→?); #Htaped cases (Htaped ? (refl …)) -Htaped *
- #Htaped whd in ⊢ (%→?); #Htapeout >Htapeout >Htaped >associative_append
- %
- ]
- |* #la * #c' * #d' * #lb * #lc * * * #H1 #H2 #H3 #Htapec
- cut (〈c,false〉::l1 ≠ 〈c1,false〉::l3)
- [>H2 >H3 elim la
- [@(not_to_not …H1) normalize #H destruct %
- |#x #tl @not_to_not normalize #H destruct //
- ]
- ] #Hnoteq %2
- cut (is_bit d' = true)
- [cases la in H3;
- [normalize in ⊢ (%→?); #H destruct //
- |#x #tl #H @(Hl3 〈d',false〉)
- normalize in H; destruct @memb_append_l2 @memb_hd
- ]
- ] #Hd'
- >Htapec in Hor; -Htapec *
- [* #taped * whd in ⊢ (%→?); #H @False_ind
- cases (H … (refl …)) >Hd' #Htemp destruct (Htemp)
- |* #taped * whd in ⊢ (%→?); #H cases (H … (refl …)) -H #_
- #Htaped * #tapee * whd in ⊢ (%→?); #Htapee
- <(associative_append ? lc (〈comma,false〉::l4)) in Htaped; #Htaped
- lapply (Htapee … Htaped ???) -Htaped -Htapee
- [whd in ⊢ (??%?); >(bit_not_grid … Hd') >(bit_not_bar … Hd') %
- |#x #Hx cases (memb_append … Hx)
- [-Hx #Hx @bit_not_grid @Hl3 cases la in H3; normalize
- [#H3 destruct (H3) @Hx | #y #tl #H3 destruct (H3)
- @memb_append_l2 @memb_cons @Hx ]
- |-Hx #Hx @(no_grids_in_table … Htable)
- @memb_cons @memb_append_l2 @Hx
- ]
- |@daemon (* TODO *)
- |*
- [* #rs3 * * (* we proceed by cases on rs4 *)
- [* #d * #b * * * #Heq1 #Hnobars
- whd in ⊢ ((???%)→?); #Htemp destruct (Htemp)
- #Htapee *
- [* #tapef * whd in ⊢ (%→?); >Htapee -Htapee #Htapef
- cases (Htapef … (refl …)) -Htapef #_ #Htapef >Htapef -Htapef
- whd in ⊢ (%→?); #H lapply (H … ???? (refl …)) #Htapeout
- %1 %
- [ //| @daemon]
- | >Htapeout %
- ]
- |* #tapef * whd in ⊢ (%→?); >Htapee -Htapee #Htapef
- cases (Htapef … (refl …)) whd in ⊢ ((??%?)→?); #Htemp destruct (Htemp)
- ]
- |* #d2 #b2 #rs3' * #d * #b * * * #Heq1 #Hnobars
- cut (is_grid d2 = false) [@daemon (* ??? *)] #Hd2
- whd in ⊢ ((???%)→?); #Htemp destruct (Htemp) #Htapee >Htapee -Htapee *
- [* #tapef * whd in ⊢ (%→?); #Htapef
- cases (Htapef … (refl …)) >Hd2 #Htemp destruct (Htemp)
- |* #tapef * whd in ⊢ (%→?); #Htapef
- cases (Htapef … (refl …)) #_ -Htapef #Htapef
- * #tapeg >Htapef -Htapef * whd in ⊢ (%→?);
- #H lapply (H … (refl …)) whd in ⊢ (???%→?); -H #Htapeg
- >Htapeg -Htapeg whd in ⊢ (%→?); #Htapeout
- %1 cases (some_option_hd ? (reverse ? (reverse ? la)) 〈c',true〉)
- * #c00 #b00 #Hoption
- lapply
- (Htapeout (reverse ? rs3 @〈d',false〉::reverse ? la@reverse ? (l2@[〈bar,false〉])@(〈grid,false〉::reverse ? lb))
- c' (reverse ? la) false ls bar (〈d2,true〉::rs3'@〈grid,false〉::rs) c00 b00 ?????) -Htapeout
- [whd in ⊢ (??(??%??)?); @eq_f3 [2:%|3: %]
- >associative_append
- generalize in match (〈c',true〉::reverse ? la@〈grid,false〉::ls); #l
- whd in ⊢ (???(???%)); >associative_append >associative_append
- %
- |@daemon
- |@daemon
- |@daemon
- |@daemon
- |@daemon
- ]
- ]
- ]
- |* #Hnobars #Htapee >Htapee -Htapee *
- [whd in ⊢ (%→?); * #tapef * whd in ⊢ (%→?); #Htapef
- cases (Htapef … (refl …)) -Htapef #_ #Htapef >Htapef -Htapef
- whd in ⊢ (%→?); #Htapeout %2
- >(Htapeout … (refl …)) %
- [ %
- [ @daemon
- | @daemon
- ]
- | %
- ]
- |whd in ⊢ (%→?); * #tapef * whd in ⊢ (%→?); #Htapef
- cases (Htapef … (refl …)) -Htapef
- whd in ⊢ ((??%?)→?); #Htemp destruct (Htemp)
- ]
- |
-
-
-
-
-
-
- ????? (refl …) Hc ?) -Hcompare
- #Hcompare
- is_bit c = true → only_bits l1 → no_grids l2 → is_bit c1 = true →
- only_bits l3 → n = |l2| → |l2| = |l3| →
- table_TM (S n) (〈c1,true〉::l3@〈comma,false〉::l4) →#x
-
- #intape
-cases
- (acc_sem_if … (sem_test_char ? (λc:STape.¬ is_grid (\fst c)))
- (sem_seq … sem_compare
- (sem_if … (sem_test_char ? (λc:STape.is_grid (\fst c)))
- (sem_nop …)
- (sem_seq … sem_mark_next_tuple
- (sem_if … (sem_test_char ? (λc:STape.is_grid (\fst c)))
- (sem_mark ?) (sem_seq … (sem_move_l …) (sem_init_current …))))))
- (sem_nop ?) intape)
-#k * #outc * * #Hloop #H1 #H2
-@(ex_intro ?? k) @(ex_intro ?? outc) %
-[ % [@Hloop ] ] -Hloop
- *)
-
-(*
- MATCH TUPLE
-
- scrolls through the tuples in the transition table until one matching the
- current configuration is found
-*)
-
-definition match_tuple ≝ whileTM ? match_tuple_step (inr … (inl … (inr … 0))).
-
-definition R_match_tuple ≝ λt1,t2.
- ∀ls,c,l1,c1,l2,rs,n.
- is_bit c = true → only_bits l1 → is_bit c1 = true → n = |l1| →
- table_TM (S n) (〈c1,true〉::l2) →
- t1 = midtape STape (〈grid,false〉::ls) 〈c,true〉
- (l1@〈grid,false〉::〈c1,true〉::l2@〈grid,false〉::rs) →
- (* facciamo match *)
- (∃l3,newc,mv,l4.
- 〈c1,false〉::l2 = l3@〈c,false〉::l1@〈comma,false〉::newc@〈comma,false〉::mv@l4 ∧
- t2 = midtape ? (reverse ? l1@〈c,false〉::〈grid,false〉::ls) 〈grid,false〉
- (l3@〈c,false〉::l1@〈comma,true〉::newc@〈comma,false〉::mv@l4@〈grid,false〉::rs))
- ∨
- (* non facciamo match su nessuna tupla;
- non specifichiamo condizioni sul nastro di output, perché
- non eseguiremo altre operazioni, quindi il suo formato non ci interessa *)
- (current ? t2 = Some ? 〈grid,true〉 ∧
- ∀l3,newc,mv,l4.
- 〈c1,false〉::l2 ≠ l3@〈c,false〉::l1@〈comma,false〉::newc@〈comma,false〉::mv@l4).
+ ∀ls,c,rs. ∀l1,d,l2,l3,l4,l5,c0.
+ t1 = midtape ? ls 〈c,true〉 rs →
+ (* l1 è la stringa sorgente da copiare, l4@〈c0,true〉 è la sua destinazione *)
+ 〈c,false〉::rs = l1@〈d,false〉::l2 → only_bits l1 → is_bit d = false →
+ ls = l3@l4@〈c0,true〉::l5 → |l4@[〈c0,true〉]| = |l1| →
+ no_marks (l3@l4) →
+ (∀l4',d'.l4@[〈c0,false〉] = 〈d',false〉::l4' →
+ t2 = midtape STape (reverse ? l1@l3@〈d',true〉::l4'@l5) 〈d,true〉 l2).
\ No newline at end of file