default "false" cic:/matita/basics/connectives/False.ind.
+(*
ndefinition Not: Prop → Prop ≝
-λA. A → False.
+λA. A → False. *)
+
+ninductive Not (A:Prop): Prop ≝
+nmk: (A → False) → Not A.
+
+ncheck Not_ind.
interpretation "logical not" 'not x = (Not x).
+ntheorem absurd : ∀ A:Prop. A → ¬A → False.
+#A; #H; #Hn; nelim Hn;/2/; nqed.
+
+(*
ntheorem absurd : ∀ A,C:Prop. A → ¬A → C.
#A; #C; #H; #Hn; nelim (Hn H).
-nqed.
+nqed. *)
ntheorem not_to_not : ∀A,B:Prop. (A → B) → ¬B →¬A.
-/3/.
-nqed.
+/4/; nqed.
ninductive And (A,B:Prop) : Prop ≝
conj : A → B → And A B.