theorem pigeonhole:
∀n:nat.∀f:nat→nat.
(∀x,y.x≤n → y≤n → f x = f y → x=y) →
- (∀m. f m ≤ n) →
+ (∀m. m ≤ n → f m ≤ n) →
∀x. x≤n \to ∃y.f y = x ∧ y ≤ n.
intro;
elim n;
[ apply (ex_intro ? ? O);
split;
- rewrite < (le_n_O_to_eq ? H2);
- rewrite < (le_n_O_to_eq ? (H1 O));
- reflexivity
+ [ rewrite < (le_n_O_to_eq ? H2);
+ rewrite < (le_n_O_to_eq ? (H1 O ?));
+ [ reflexivity
+ | apply le_n
+ ]
+ | apply le_n
+ ]
| clear n;
apply (nat_compare_elim (f (S n1)) x);
[ (* TODO: caso complicato, ma simile al terzo *)
| false ⇒ fx
]);
cut (∀x,y. x ≤ n1 → y ≤ n1 → f' x = f' y → x=y);
- [ elim (H f' ? ? x);
- [ simplify in H5;
- clear Hcut;
- clear f';
- elim H5;
- clear H5;
- apply (ex_intro ? ? a);
- split;
- [ generalize in match H4;
- clear H4;
- rewrite < H6;
- clear H6;
- apply (ltb_elim (f (S n1)) (f a));
- [ (* TODO: caso impossibile (uso l'iniettivita') *)
- simplify;
- | simplify;
- intros;
- reflexivity
- ]
- | apply le_S;
+ [ cut (∀x. x ≤ n1 → f' x ≤ n1);
+ [ elim (H f' ? ? x);
+ [ simplify in H5;
+ clear Hcut;
+ clear Hcut1;
+ clear f';
+ elim H5;
+ clear H5;
+ apply (ex_intro ? ? a);
+ split;
+ [ generalize in match H4;
+ clear H4;
+ rewrite < H6;
+ clear H6;
+ apply (ltb_elim (f (S n1)) (f a));
+ [ (* TODO: caso impossibile (uso l'iniettivita') *)
+ simplify;
+ | simplify;
+ intros;
+ reflexivity
+ ]
+ | apply le_S;
+ assumption
+ ]
+ | apply Hcut
+ | apply Hcut1
+ | rewrite > (pred_Sn n1);
+ simplify;
+ generalize in match (H2 (S n1));
+ intro;
+ generalize in match (lt_to_le_to_lt ? ? ? H4 (H5 (le_n ?)));
+ intro;
+ unfold lt in H6;
+ apply le_S_S_to_le;
assumption
]
- | apply Hcut
- | simplify;
- intro;
- apply (ltb_elim (f (S n1)) (f m));
+ | unfold f';
simplify;
intro;
- [ generalize in match (H2 m);
+ apply (ltb_elim (f (S n1)) (f x1));
+ simplify;
+ intros;
+ [ generalize in match (H2 x1);
intro;
change in match n1 with (pred (S n1));
apply le_to_le_pred;
+ apply H7;
+ apply le_S;
assumption
- | generalize in match (H2 (S n1));
+ | generalize in match (H2 (S n1) (le_n ?));
intro;
generalize in match (not_lt_to_le ? ? H5);
intro;
- generalize in match (transitive_le ? ? ? H7 H6);
+ generalize in match (transitive_le ? ? ? H8 H7);
intro;
- (* TODO: qui mi serve dimostrare che f m ≠ f (S n1) (per iniettivita'?) *)
+ cut (f x1 ≠ f (S n1));
+ [ generalize in match (not_eq_to_le_to_lt ? ? Hcut1 H8);
+ intro;
+ unfold lt in H10;
+ generalize in match (transitive_le ? ? ? H10 H7);
+ intro;
+ apply le_S_S_to_le;
+ assumption
+ | unfold Not;
+ intro;
+ generalize in match (H1 ? ? ? ? H10);
+ [ intro;
+ rewrite > H11 in H6;
+ apply (not_le_Sn_n ? H6)
+ | apply le_S;
+ assumption
+ | apply le_n
+ ]
+ ]
]
- | rewrite > (pred_Sn n1);
- simplify;
- generalize in match (H2 (S n1));
- intro;
- generalize in match (lt_to_le_to_lt ? ? ? H4 H5);
- intro;
- unfold lt in H6;
- apply le_S_S_to_le;
- assumption
]
| intros 4;
unfold f';
generalize in match (inj_S ? ? H13);
intro;
generalize in match (H1 ? ? ? ? H14);
- intro;
- rewrite > H15 in H5;
- elim (not_le_Sn_n ? H5)
+ [ intro;
+ rewrite > H15 in H5;
+ elim (not_le_Sn_n ? H5)
+ | apply le_S;
+ assumption
+ | apply le_n
+ ]
| apply (ltn_to_ltO ?? H7)
]
| apply (H1 ? ? ? ? H9);