[%1 @(\P H) | %2 @(\Pf H)]
qed.
-(* A simple example of a set with a decidable equality is bool. We first define
+(*
+\ 5h2 class="section"\ 6Unification Hints\ 5/h2\ 6
+A simple example of a set with a decidable equality is bool. We first define
the boolean equality beqb, that is just the xand function, then prove that
beqb b1 b2 is true if and only if b1=b2, and finally build the type DeqBool by
instantiating the DeqSet record with the previous information *)
definition DeqBool ≝ \ 5a href="cic:/matita/tutorial/chapter4/DeqSet.con(0,1,0)"\ 6mk_DeqSet\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.ind(1,0,0)"\ 6bool\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter4/beqb.def(2)"\ 6beqb\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter4/beqb_true.def(4)"\ 6beqb_true\ 5/a\ 6.
-(*
-\ 5h2 class="section"\ 6Unification Hints\ 5/h2\ 6
-At this point, we would expect to be able to prove things like the
+(* At this point, we would expect to be able to prove things like the
following: for any boolean b, if b==false is true then b=false.
Unfortunately, this would not work, unless we declare b of type
DeqBool (change the type in the following statement and see what