\mathit{status} & = & \xi\times\Gamma\times\tau\times\kappa & \\
\xi & & & \mbox{(metasenv)} \\
\Gamma & = & \GOALSWITCH~\LIST~\STACK & \mbox{(context)} \\
- \GOALSWITCH & = & \OPEN{g} \quad | \quad \CLOSED{g} & \\
+ \GOALSWITCH & = & \OPEN{n} \quad | \quad \CLOSED{n} & \\
\tau & = & \GOAL~\LIST~\STACK & \mbox{(todo)} \\
\kappa & = & \GOAL~\LIST~\STACK & \mbox{(dot continuations)} \\
\end{array}
\[
\begin{array}{rlcc}
- \TSEM{\APPLY{tac}}{\xi}{\OPEN{g}} & =
- & \mathit{apply\_tac}(\mathit{tac},\xi,g) & \\
- \TSEM{\SKIP}{\xi}{\CLOSED{g}} & = & \langle [], [g]\rangle & \\
+ \TSEM{\APPLY{tac}}{\xi}{\OPEN{n}} & =
+ & \mathit{apply\_tac}(\mathit{tac},\xi,n) & \\
+ \TSEM{\SKIP}{\xi}{\CLOSED{n}} & = & \langle [], [n]\rangle & \\
\end{array}
\]
(\FILTEROPEN{G}\cup K)::\kappa\rangle
\\[2ex]
- \SEM{~\DOT~}{\xi}{[]::\Gamma}{\tau}{(g::G)::\kappa}
+ \SEM{~\DOT~}{\xi}{[]::\Gamma}{\tau}{(n::N)::\kappa}
& =
- & \langle\xi, [g]::\Gamma, \tau, G::\kappa\rangle
+ & \langle\xi, [\OPEN{n}]::\Gamma, \tau, N::\kappa\rangle
\\[2ex]
\SEM{~\BRANCH~}{\xi}{[g_1;\dots;g_n]::\Gamma}{\tau}{\kappa}
\kappa\rangle
\\[2ex]
- \SEM{\GOTO{g}{C}}{\xi}{\Gamma}{\tau}{\kappa}
+ \SEM{\GOTO{n}{C}}{\xi}{\Gamma}{\tau}{\kappa}
& =
- & \langle\xi',\Gamma',\tau\setminus[g],\kappa\setminus[g]\rangle
+ & \langle\xi',\Gamma',\tau\setminus[n],\kappa\setminus[n]\rangle
\\[1ex]
& & \mathit{where} ~
\langle \xi', []::\Gamma', []::\tau, []::\kappa\rangle
- = \SEM{C}{\xi}{[g]::\Gamma}{[]::\tau}{[]::\kappa}
+ = \SEM{C}{\xi}{[\OPEN{n}]::\Gamma}{[]::\tau}{[]::\kappa}
\\[2ex]
\end{array}