lemma nat_dedekind_sigma_complete:
∀sg:‡ℕ.∀a:sequence {[sg]}.
a is_increasing →
- ∀x.x is_supremum a → ∃i.∀j.i ≤ j → \fst x = \fst (a j).
-intros 4; cases x (s Hs); clear x; letin X ≝ ≪s,Hs≫;
+ ∀X.X is_supremum a → ∃i.∀j.i ≤ j → \fst X = \fst (a j).
+intros 4; cases X (x Hx); clear X; letin X ≝ ≪x,Hx≫;
fold normalize X; intros; cases H1;
alias symbol "N" = "Natural numbers".
-letin spec ≝ (λi,j:ℕ.(𝕦_sg ≤ i ∧ s = \fst (a j)) ∨ (i < 𝕦_sg ∧ s + i ≤ 𝕦_sg + \fst (a j)));
-(* s - aj <= max 0 (u - i) *)
+letin spec ≝ (λi,j:ℕ.(𝕦_sg ≤ i ∧ x = \fst (a j)) ∨ (i < 𝕦_sg ∧ x + i ≤ 𝕦_sg + \fst (a j)));
+(* x - aj <= max 0 (u - i) *)
letin m ≝ (hide ? (
let rec aux i ≝
match i with
| S m ⇒
let pred ≝ aux m in
let apred ≝ a pred in
- match cmp_nat s (\fst apred) with
+ match cmp_nat x (\fst apred) with
[ cmp_le _ ⇒ pred
| cmp_gt nP ⇒ \fst (H3 apred ?)]]
in aux
:
∀i:nat.∃j:nat.spec i j));[whd; apply nP;] unfold spec in aux ⊢ %;
[3: unfold X in H2; clear H4 n aux spec H3 H1 H X;
- cases (cases_in_segment ??? Hs);
+ cases (cases_in_segment ??? Hx);
elim 𝕦_sg in H1 ⊢ %; intros (a Hs H);
[1: left; split; [apply le_n]
generalize in match H;
- generalize in match Hs;
- rewrite > (?:s = O);
- [2: cases Hs; lapply (os_le_to_nat_le ?? H1);
- apply (symmetric_eq nat O s ?).apply (le_n_O_to_eq s ?).apply (Hletin).
+ generalize in match Hx;
+ rewrite > (?:x = O);
+ [2: cases Hx; lapply (os_le_to_nat_le ?? H1);
+ apply (symmetric_eq nat O x ?).apply (le_n_O_to_eq x ?).apply (Hletin).
|1: intros; unfold Type_of_ordered_set in sg;
- lapply (H2 O) as K; lapply (sl2l ?? (a O) ≪s,Hs≫ K) as P;
+ lapply (H2 O) as K; lapply (sl2l ?? (a O) ≪x,Hx≫ K) as P;
simplify in P:(???%); lapply (le_transitive ??? P H1) as W;
lapply (os_le_to_nat_le ?? W) as R; apply (le_n_O_to_eq (\fst (a O)) R);]
- |2: right; cases Hs; rewrite > (sym_plus s O); split; [apply le_S_S; apply le_O_n];
+ |2: right; cases Hx; rewrite > (sym_plus x O); split; [apply le_S_S; apply le_O_n];
apply (trans_le ??? (os_le_to_nat_le ?? H3));
apply le_plus_n_r;]
-|2: clear H6; cut (s = \fst (a (aux n1))); [2:
+|2: clear H6; cut (x = \fst (a (aux n1))); [2:
cases (le_to_or_lt_eq ?? H5); [2: assumption]
cases (?:False); apply (H2 (aux n1) H6);] clear H5;
generalize in match Hcut; clear Hcut; intro H5;
[1,3: left; split; [1,3: assumption |2: assumption]
cut (𝕦_sg = S n1); [2: apply le_to_le_to_eq; assumption ]
clear H7 H5 H4;rewrite > Hcut in H8:(? ? (? % ?)); clear Hcut;
- cut (s = S (\fst (a w)));
+ cut (x = S (\fst (a w)));
[2: apply le_to_le_to_eq; [2: assumption]
- change in H8 with (s + n1 ≤ S (n1 + \fst (a w)));
+ change in H8 with (x + n1 ≤ S (n1 + \fst (a w)));
rewrite > plus_n_Sm in H8; rewrite > sym_plus in H8;
apply (le_plus_to_le ??? H8);]
cases (H3 (a w) H6);
- change with (s = \fst (a w1));
+ change with (x = \fst (a w1));
change in H4 with (\fst (a w) < \fst (a w1));
apply le_to_le_to_eq; [ rewrite > Hcut; assumption ]
- apply (os_le_to_nat_le (\fst (a w1)) s (H2 w1));
+ apply (os_le_to_nat_le (\fst (a w1)) x (H2 w1));
|*: right; split; try assumption;
[1: rewrite > sym_plus in ⊢ (? ? %);
rewrite < H6; apply le_plus_r; assumption;
|2: cases (H3 (a w) H6);
- change with (s + S n1 ≤ 𝕦_sg + \fst (a w1));rewrite < plus_n_Sm;
+ change with (x + S n1 ≤ 𝕦_sg + \fst (a w1));rewrite < plus_n_Sm;
apply (trans_le ??? (le_S_S ?? H8)); rewrite > plus_n_Sm;
apply (le_plus ???? (le_n ?) H9);]]]]
clearbody m; unfold spec in m; clear spec;
let rec find i u on u : nat ≝
match u with
[ O ⇒ (m i:nat)
- | S w ⇒ match eqb (\fst (a (m i))) s with
+ | S w ⇒ match eqb (\fst (a (m i))) x with
[ true ⇒ (m i:nat)
| false ⇒ find (S i) w]]
in find
:
- ∀i,bound.∃j.i + bound = 𝕦_sg → s = \fst (a j));
-[1: cases (find (S n) n2); intro; change with (s = \fst (a w));
+ ∀i,bound.∃j.i + bound = 𝕦_sg → x = \fst (a j));
+[1: cases (find (S n) n2); intro; change with (x = \fst (a w));
apply H6; rewrite < H7; simplify; apply plus_n_Sm;
|2: intros; rewrite > (eqb_true_to_eq ?? H5); reflexivity
|3: intros; rewrite > sym_plus in H5; rewrite > H5; clear H5 H4 n n1;
cases (m 𝕦_sg); cases H4; clear H4; cases H5; clear H5; [assumption]
cases (not_le_Sn_n ? H4)]
clearbody find; cases (find O 𝕦_sg);
-exists [apply w]; intros; change with (s = \fst (a j));
+exists [apply w]; intros; change with (x = \fst (a j));
rewrite > (H4 ?); [2: reflexivity]
apply le_to_le_to_eq;
[1: apply os_le_to_nat_le;
apply (trans_increasing ? H ? ? (nat_le_to_os_le ?? H5));
-|2: apply (trans_le ? s ?);[apply os_le_to_nat_le; apply (H2 j);]
+|2: apply (trans_le ? x ?);[apply os_le_to_nat_le; apply (H2 j);]
rewrite < (H4 ?); [2: reflexivity] apply le_n;]
qed.