try assumption; apply I]
qed.
-definition setoid_OF_SET: objs1 SET → setoid.
- intros; apply o; qed.
-
-coercion setoid_OF_SET.
-
lemma IF_THEN_ELSE_p :
∀S:setoid.∀a,b:S.∀x,y:BOOL.x = y →
(λm.match m with [ true ⇒ a | false ⇒ b ]) x =
| apply ((comp_assoc1 ????? H* G* F* ));]
| intros; split; unfold ORelation_composition; simplify; apply id_neutral_left1;
| intros; split; unfold ORelation_composition; simplify; apply id_neutral_right1;]
-qed.
\ No newline at end of file
+qed.
coercion rp''.
-definition prop_1_SET :
- ∀A,B:SET.∀w:arrows1 SET A B.∀a,b:A.eq1 ? a b→eq1 ? (w a) (w b).
-intros; apply (prop_1 A B w a b H);
-qed.
-
-interpretation "SET dagger" 'prop1 h = (prop_1_SET _ _ _ _ _ h).
-
definition convergent_relation_space_composition:
∀o1,o2,o3: concrete_space.
binary_morphism1
| intros; simplify;
change with (id1 ? o2 ∘ a = a);
apply (id_neutral_left1 : ?);]
-qed.
\ No newline at end of file
+qed.
| intros; simplify; whd; intros; simplify; apply refl;
| intros; simplify; whd; intros; simplify; apply refl;
]
-qed.
\ No newline at end of file
+qed.
+
+definition setoid_OF_SET: objs1 SET → setoid.
+ intros; apply o; qed.
+
+coercion setoid_OF_SET.
+
+
+definition prop_1_SET :
+ ∀A,B:SET.∀w:arrows1 SET A B.∀a,b:A.eq1 ? a b→eq1 ? (w a) (w b).
+intros; apply (prop_1 A B w a b H);
+qed.
+
+interpretation "SET dagger" 'prop1 h = (prop_1_SET _ _ _ _ _ h).