let counter = ref ~-1 ;;
-let fresh_binder =
- function
- | true ->
- incr counter;
- Cic.Name ("e" ^ string_of_int !counter)
- | _ -> Cic.Anonymous
+let fresh_binder () =
+ incr counter;
+ Cic.Name ("e" ^ string_of_int !counter)
(** verifies if a given inductive type occurs in a term in target position *)
let rec recursive uri typeno = function
(CicSubstitution.lift 1 p) [Cic.Rel 1]
in
let tgt = CicSubstitution.lift 1 tgt in
- Cic.Prod (fresh_binder dependent, src,
+ Cic.Prod (fresh_binder (), src,
Cic.Prod (Cic.Anonymous, phi,
delta (uri, typeno) dependent paramsno consno tgt
(CicSubstitution.lift 2 p) (args @ [Cic.Rel 2])))
else (* non recursive *)
let args = List.map (CicSubstitution.lift 1) args in
- Cic.Prod (fresh_binder dependent, src,
+ Cic.Prod (fresh_binder (), src,
delta (uri, typeno) dependent paramsno consno tgt
(CicSubstitution.lift 1 p) (args @ [Cic.Rel 1]))
| _ -> assert false
else
match ty with
| Cic.Prod (name, src, tgt) ->
+ let name =
+ match name with
+ Cic.Name _ -> name
+ | Cic.Anonymous -> fresh_binder ()
+ in
binder name src (add_params binder (indno - 1) tgt eliminator)
| _ -> assert false
let rec type_of_p sort dependent leftno indty = function
| Cic.Prod (n, src, tgt) when leftno = 0 ->
- Cic.Prod (n, src, type_of_p sort dependent leftno indty tgt)
+ let n =
+ if dependent then
+ match n with
+ Cic.Name _ -> n
+ | Cic.Anonymous -> fresh_binder ()
+ else
+ n
+ in
+ Cic.Prod (n, src, type_of_p sort dependent leftno indty tgt)
| Cic.Prod (_, _, tgt) -> type_of_p sort dependent (leftno - 1) indty tgt
| t ->
if dependent then
let rec add_right_pi dependent strip liftno liftfrom rightno indty = function
| Cic.Prod (_, src, tgt) when strip = 0 ->
- Cic.Prod (fresh_binder true,
+ Cic.Prod (fresh_binder (),
CicSubstitution.lift_from liftfrom liftno src,
add_right_pi dependent strip liftno (liftfrom + 1) rightno indty tgt)
| Cic.Prod (_, _, tgt) ->
add_right_pi dependent (strip - 1) liftno liftfrom rightno indty tgt
| t ->
if dependent then
- Cic.Prod (fresh_binder dependent,
+ Cic.Prod (fresh_binder (),
CicSubstitution.lift_from (rightno + 1) liftno indty,
Cic.Appl (Cic.Rel (1 + liftno + rightno) :: mk_rels 0 (rightno + 1)))
else
let rec add_right_lambda dependent strip liftno liftfrom rightno indty case =
function
| Cic.Prod (_, src, tgt) when strip = 0 ->
- Cic.Lambda (fresh_binder true,
+ Cic.Lambda (fresh_binder (),
CicSubstitution.lift_from liftfrom liftno src,
add_right_lambda dependent strip liftno (liftfrom + 1) rightno indty
case tgt)
| Cic.Prod (_, _, tgt) ->
- add_right_lambda dependent (strip - 1) liftno liftfrom rightno indty
+ add_right_lambda true (strip - 1) liftno liftfrom rightno indty
case tgt
| t ->
- Cic.Lambda (fresh_binder true,
+ Cic.Lambda (fresh_binder (),
CicSubstitution.lift_from (rightno + 1) liftno indty, case)
let rec branch (uri, typeno) insource paramsno t fix head args =
let src = CicSubstitution.lift 1 src in
branch (uri, typeno) true paramsno src fix head [Cic.Rel 1]
in
- Cic.Lambda (fresh_binder true, src,
+ Cic.Lambda (fresh_binder (), src,
branch (uri, typeno) insource paramsno tgt
(CicSubstitution.lift 1 fix) (CicSubstitution.lift 1 head)
(args @ [Cic.Rel 1; phi]))
else (* non recursive *)
let args = List.map (CicSubstitution.lift 1) args in
- Cic.Lambda (fresh_binder true, src,
+ Cic.Lambda (fresh_binder (), src,
branch (uri, typeno) insource paramsno tgt
(CicSubstitution.lift 1 fix) (CicSubstitution.lift 1 head)
(args @ [Cic.Rel 1]))
(fun (_, constructor) acc ->
decr consno;
let p = Cic.Rel !consno in
- Cic.Lambda (fresh_binder true,
+ Cic.Lambda (fresh_binder (),
(delta (uri, typeno) dependent leftno !consno
constructor p [mk_constructor !consno]),
acc))