-definition plus: nat \to nat \to nat \def
- let rec plus (n,m:nat) \def
- match n with
- [ O \Rightarrow m
- | (S x) \Rightarrow S (plus x m) ]
- in
- plus.
+alias id "O" = "cic:/Coq/Init/Datatypes/nat.ind#xpointer(1/1/1)".
+alias id "S" = "cic:/Coq/Init/Datatypes/nat.ind#xpointer(1/1/2)".
+alias id "nat" = "cic:/Coq/Init/Datatypes/nat.ind#xpointer(1/1)".
+let rec plus n m : nat \def
+ match n with
+ [ O \Rightarrow m
+ | (S x) \Rightarrow S (plus x m) ].
definition plus : nat \to nat \to nat \def
-let rec plus (n,m) \def
+let rec plus n m \def
match n with
[ O \Rightarrow m
| (S p) \Rightarrow S (plus p m) ]
qed.
definition times : nat \to nat \to nat \def
-let rec times (n,m) \def
+let rec times n m \def
match n with
[ O \Rightarrow O
| (S p) \Rightarrow (plus m (times p m)) ]
qed.
definition minus : nat \to nat \to nat \def
-let rec minus (n,m) \def
+let rec minus n m \def
[\lambda n:nat.nat] match n with
[ O \Rightarrow O
| (S p) \Rightarrow
qed.
definition leb : nat \to nat \to bool \def
-let rec leb (n,m) \def
+let rec leb n m \def
[\lambda n:nat.bool] match n with
[ O \Rightarrow true
| (S p) \Rightarrow