(* *)
(**************************************************************************)
+(*
+
+Notation for hint declaration
+==============================
+
+The idea is to write a context, with abstraction first, then
+recursive calls (let-in) and finally the two equivalent terms.
+The context can be empty. Note the ; to begin the second part of
+the context (necessary even if the first part is empty).
+
+ unification hint PREC \coloneq
+ ID : TY, ..., ID : TY
+ ; ID \equest T, ..., ID \equest T
+ \vdash T1 \equiv T2
+
+With unidoce and some ASCII art it looks like the following:
+
+ unification hint PREC ≔ ID : TY, ..., ID : TY;
+ ID ≟ T, ..., ID ≟ T
+ (*---------------------*) ⊢
+ T1 ≡ T2
+
+*)
+
+notation > "≔ (list0 ( ident x : T ) sep ,) opt (; (list1 (ident U ≟ term 90 V ) sep ,)) ⊢ term 19 Px ≡ term 19 Py"
+ with precedence 90
+ for @{ ${ fold right
+ @{ ${ default
+ @{ ${ fold right
+ @{ 'hint_decl $Px $Py }
+ rec acc1 @{ let ( ${ident U} : ?) ≝ $V in $acc1} } }
+ @{ 'hint_decl $Px $Py }
+ }
+ }
+ rec acc @{ ∀${ident x}:$T.$acc } } }.
+
include "logic/pts.ma".
+
ndefinition hint_declaration_Type0 ≝ λA:Type[0] .λa,b:A.Prop.
ndefinition hint_declaration_Type1 ≝ λA:Type[1].λa,b:A.Prop.
ndefinition hint_declaration_Type2 ≝ λa,b:Type[1].Prop.
ndefinition hint_declaration_CProp1 ≝ λA:CProp[1].λa,b:A.Prop.
ndefinition hint_declaration_CProp2 ≝ λa,b:CProp[1].Prop.
-notation > "≔ (list0 (ident x : T ) sep ,) ⊢ term 19 Px ≡ term 19 Py"
- with precedence 90
- for @{ ${ fold right @{'hint_decl $Px $Py} rec acc @{ ∀${ident x}:$T.$acc } } }.
-
interpretation "hint_decl_Type2" 'hint_decl a b = (hint_declaration_Type2 a b).
interpretation "hint_decl_CProp2" 'hint_decl a b = (hint_declaration_CProp2 a b).
interpretation "hint_decl_Type1" 'hint_decl a b = (hint_declaration_Type1 ? a b).
interpretation "hint_decl_CProp1" 'hint_decl a b = (hint_declaration_CProp1 ? a b).
interpretation "hint_decl_CProp0" 'hint_decl a b = (hint_declaration_CProp0 ? a b).
interpretation "hint_decl_Type0" 'hint_decl a b = (hint_declaration_Type0 ? a b).
+
+(* little test
+naxiom A : Type[0].
+naxiom C : A → A → Type[0].
+ndefinition D ≝ C.
+alias symbol "hint_decl" = "hint_decl_Type1".
+unification hint 0 ≔
+ X : A, Y : A ; Z ≟ X, W ≟ Y ⊢ C X Y ≡ D Z W.
+
+*)