| or4_intro2: P2 \to (or4 P0 P1 P2 P3)
| or4_intro3: P3 \to (or4 P0 P1 P2 P3).
+inductive or5 (P0: Prop) (P1: Prop) (P2: Prop) (P3: Prop) (P4: Prop): Prop
+\def
+| or5_intro0: P0 \to (or5 P0 P1 P2 P3 P4)
+| or5_intro1: P1 \to (or5 P0 P1 P2 P3 P4)
+| or5_intro2: P2 \to (or5 P0 P1 P2 P3 P4)
+| or5_intro3: P3 \to (or5 P0 P1 P2 P3 P4)
+| or5_intro4: P4 \to (or5 P0 P1 P2 P3 P4).
+
inductive ex3 (A0: Set) (P0: A0 \to Prop) (P1: A0 \to Prop) (P2: A0 \to
Prop): Prop \def
| ex3_intro: \forall (x0: A0).((P0 x0) \to ((P1 x0) \to ((P2 x0) \to (ex3 A0
Abst \Rightarrow False | Void \Rightarrow True])) I Abst H) in (False_ind
False H0)).
+theorem not_abbr_void:
+ not (eq B Abbr Void)
+\def
+ \lambda (H: (eq B Abbr Void)).(let H0 \def (eq_ind B Abbr (\lambda (ee:
+B).(match ee in B return (\lambda (_: B).Prop) with [Abbr \Rightarrow True |
+Abst \Rightarrow False | Void \Rightarrow False])) I Void H) in (False_ind
+False H0)).
+
+theorem not_abst_void:
+ not (eq B Abst Void)
+\def
+ \lambda (H: (eq B Abst Void)).(let H0 \def (eq_ind B Abst (\lambda (ee:
+B).(match ee in B return (\lambda (_: B).Prop) with [Abbr \Rightarrow False |
+Abst \Rightarrow True | Void \Rightarrow False])) I Void H) in (False_ind
+False H0)).
+
theorem thead_x_y_y:
\forall (k: K).(\forall (v: T).(\forall (t: T).((eq T (THead k v t) t) \to
(\forall (P: Prop).P))))
\Rightarrow a])) (AHead a0 a3) (AHead a1 a2) H3) in ((let H5 \def (f_equal A
A (\lambda (e: A).(match e in A return (\lambda (_: A).A) with [(ASort _ _)
\Rightarrow a3 | (AHead _ a) \Rightarrow a])) (AHead a0 a3) (AHead a1 a2) H3)
-in (\lambda (H6: (eq A a0 a1)).(eq_ind_r A a1 (\lambda (a: A).(eq A a a1))
-(refl_equal A a1) a0 H6))) H4)))))) (\lambda (a0: A).(\lambda (a: A).(\lambda
-(i: nat).(\lambda (H2: (aprem i a0 a)).(\lambda (H3: (((eq nat i O) \to ((eq
-A a0 (AHead a1 a2)) \to (eq A a a1))))).(\lambda (a3: A).(\lambda (H4: (eq
-nat (S i) O)).(\lambda (H5: (eq A (AHead a3 a0) (AHead a1 a2))).(let H6 \def
-(f_equal A A (\lambda (e: A).(match e in A return (\lambda (_: A).A) with
-[(ASort _ _) \Rightarrow a3 | (AHead a4 _) \Rightarrow a4])) (AHead a3 a0)
-(AHead a1 a2) H5) in ((let H7 \def (f_equal A A (\lambda (e: A).(match e in A
-return (\lambda (_: A).A) with [(ASort _ _) \Rightarrow a0 | (AHead _ a4)
-\Rightarrow a4])) (AHead a3 a0) (AHead a1 a2) H5) in (\lambda (_: (eq A a3
-a1)).(let H9 \def (eq_ind A a0 (\lambda (a4: A).((eq nat i O) \to ((eq A a4
-(AHead a1 a2)) \to (eq A a a1)))) H3 a2 H7) in (let H10 \def (eq_ind A a0
+in (\lambda (H6: (eq A a0 a1)).H6)) H4)))))) (\lambda (a0: A).(\lambda (a:
+A).(\lambda (i: nat).(\lambda (H2: (aprem i a0 a)).(\lambda (H3: (((eq nat i
+O) \to ((eq A a0 (AHead a1 a2)) \to (eq A a a1))))).(\lambda (a3: A).(\lambda
+(H4: (eq nat (S i) O)).(\lambda (H5: (eq A (AHead a3 a0) (AHead a1 a2))).(let
+H6 \def (f_equal A A (\lambda (e: A).(match e in A return (\lambda (_: A).A)
+with [(ASort _ _) \Rightarrow a3 | (AHead a4 _) \Rightarrow a4])) (AHead a3
+a0) (AHead a1 a2) H5) in ((let H7 \def (f_equal A A (\lambda (e: A).(match e
+in A return (\lambda (_: A).A) with [(ASort _ _) \Rightarrow a0 | (AHead _
+a4) \Rightarrow a4])) (AHead a3 a0) (AHead a1 a2) H5) in (\lambda (_: (eq A
+a3 a1)).(let H9 \def (eq_ind A a0 (\lambda (a4: A).((eq nat i O) \to ((eq A
+a4 (AHead a1 a2)) \to (eq A a a1)))) H3 a2 H7) in (let H10 \def (eq_ind A a0
(\lambda (a4: A).(aprem i a4 a)) H2 a2 H7) in (let H11 \def (eq_ind nat (S i)
(\lambda (ee: nat).(match ee in nat return (\lambda (_: nat).Prop) with [O
\Rightarrow False | (S _) \Rightarrow True])) I O H4) in (False_ind (eq A a
include "LambdaDelta-1/csubst0/getl.ma".
-include "LambdaDelta-1/csubst0/props.ma".
-
include "LambdaDelta-1/subst0/dec.ma".
include "LambdaDelta-1/subst0/fwd.ma".
include "LambdaDelta-1/arity/props.ma".
-include "LambdaDelta-1/T/props.ma".
+include "LambdaDelta-1/csubv/getl.ma".
theorem csuba_arity:
\forall (g: G).(\forall (c1: C).(\forall (t: T).(\forall (a: A).((arity g c1
theorem csuba_arity_rev:
\forall (g: G).(\forall (c1: C).(\forall (t: T).(\forall (a: A).((arity g c1
-t a) \to (\forall (c2: C).((csuba g c2 c1) \to (arity g c2 t a)))))))
+t a) \to (\forall (c2: C).((csuba g c2 c1) \to ((csubv c2 c1) \to (arity g c2
+t a))))))))
\def
\lambda (g: G).(\lambda (c1: C).(\lambda (t: T).(\lambda (a: A).(\lambda (H:
(arity g c1 t a)).(arity_ind g (\lambda (c: C).(\lambda (t0: T).(\lambda (a0:
-A).(\forall (c2: C).((csuba g c2 c) \to (arity g c2 t0 a0)))))) (\lambda (c:
-C).(\lambda (n: nat).(\lambda (c2: C).(\lambda (_: (csuba g c2
-c)).(arity_sort g c2 n))))) (\lambda (c: C).(\lambda (d: C).(\lambda (u:
-T).(\lambda (i: nat).(\lambda (H0: (getl i c (CHead d (Bind Abbr)
-u))).(\lambda (a0: A).(\lambda (H1: (arity g d u a0)).(\lambda (H2: ((\forall
-(c2: C).((csuba g c2 d) \to (arity g c2 u a0))))).(\lambda (c2: C).(\lambda
-(H3: (csuba g c2 c)).(let H4 \def (csuba_getl_abbr_rev g c d u i H0 c2 H3) in
-(or_ind (ex2 C (\lambda (d2: C).(getl i c2 (CHead d2 (Bind Abbr) u)))
-(\lambda (d2: C).(csuba g d2 d))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2:
-T).(\lambda (_: A).(getl i c2 (CHead d2 (Bind Abst) u2))))) (\lambda (d2:
-C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d)))) (\lambda (d2:
-C).(\lambda (u2: T).(\lambda (a1: A).(arity g d2 u2 (asucc g a1))))) (\lambda
-(_: C).(\lambda (_: T).(\lambda (a1: A).(arity g d u a1))))) (arity g c2
-(TLRef i) a0) (\lambda (H5: (ex2 C (\lambda (d2: C).(getl i c2 (CHead d2
+A).(\forall (c2: C).((csuba g c2 c) \to ((csubv c2 c) \to (arity g c2 t0
+a0))))))) (\lambda (c: C).(\lambda (n: nat).(\lambda (c2: C).(\lambda (_:
+(csuba g c2 c)).(\lambda (_: (csubv c2 c)).(arity_sort g c2 n)))))) (\lambda
+(c: C).(\lambda (d: C).(\lambda (u: T).(\lambda (i: nat).(\lambda (H0: (getl
+i c (CHead d (Bind Abbr) u))).(\lambda (a0: A).(\lambda (H1: (arity g d u
+a0)).(\lambda (H2: ((\forall (c2: C).((csuba g c2 d) \to ((csubv c2 d) \to
+(arity g c2 u a0)))))).(\lambda (c2: C).(\lambda (H3: (csuba g c2
+c)).(\lambda (H4: (csubv c2 c)).(let H_x \def (csuba_getl_abbr_rev g c d u i
+H0 c2 H3) in (let H5 \def H_x in (or3_ind (ex2 C (\lambda (d2: C).(getl i c2
+(CHead d2 (Bind Abbr) u))) (\lambda (d2: C).(csuba g d2 d))) (ex4_3 C T A
+(\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(getl i c2 (CHead d2 (Bind
+Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2
+d)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a1: A).(arity g d2 u2
+(asucc g a1))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a1: A).(arity g d
+u a1))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(getl i c2 (CHead d2
+(Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d)))) (arity
+g c2 (TLRef i) a0) (\lambda (H6: (ex2 C (\lambda (d2: C).(getl i c2 (CHead d2
(Bind Abbr) u))) (\lambda (d2: C).(csuba g d2 d)))).(ex2_ind C (\lambda (d2:
C).(getl i c2 (CHead d2 (Bind Abbr) u))) (\lambda (d2: C).(csuba g d2 d))
-(arity g c2 (TLRef i) a0) (\lambda (x: C).(\lambda (H6: (getl i c2 (CHead x
-(Bind Abbr) u))).(\lambda (H7: (csuba g x d)).(arity_abbr g c2 x u i H6 a0
-(H2 x H7))))) H5)) (\lambda (H5: (ex4_3 C T A (\lambda (d2: C).(\lambda (u2:
+(arity g c2 (TLRef i) a0) (\lambda (x: C).(\lambda (H7: (getl i c2 (CHead x
+(Bind Abbr) u))).(\lambda (H8: (csuba g x d)).(let H_x0 \def (csubv_getl_conf
+c2 c H4 Abbr x u i H7) in (let H9 \def H_x0 in (ex2_3_ind B C T (\lambda (_:
+B).(\lambda (d2: C).(\lambda (_: T).(csubv x d2)))) (\lambda (b2: B).(\lambda
+(d2: C).(\lambda (v2: T).(getl i c (CHead d2 (Bind b2) v2))))) (arity g c2
+(TLRef i) a0) (\lambda (x0: B).(\lambda (x1: C).(\lambda (x2: T).(\lambda
+(H10: (csubv x x1)).(\lambda (H11: (getl i c (CHead x1 (Bind x0) x2))).(let
+H12 \def (eq_ind C (CHead d (Bind Abbr) u) (\lambda (c0: C).(getl i c c0)) H0
+(CHead x1 (Bind x0) x2) (getl_mono c (CHead d (Bind Abbr) u) i H0 (CHead x1
+(Bind x0) x2) H11)) in (let H13 \def (f_equal C C (\lambda (e: C).(match e in
+C return (\lambda (_: C).C) with [(CSort _) \Rightarrow d | (CHead c0 _ _)
+\Rightarrow c0])) (CHead d (Bind Abbr) u) (CHead x1 (Bind x0) x2) (getl_mono
+c (CHead d (Bind Abbr) u) i H0 (CHead x1 (Bind x0) x2) H11)) in ((let H14
+\def (f_equal C B (\lambda (e: C).(match e in C return (\lambda (_: C).B)
+with [(CSort _) \Rightarrow Abbr | (CHead _ k _) \Rightarrow (match k in K
+return (\lambda (_: K).B) with [(Bind b) \Rightarrow b | (Flat _) \Rightarrow
+Abbr])])) (CHead d (Bind Abbr) u) (CHead x1 (Bind x0) x2) (getl_mono c (CHead
+d (Bind Abbr) u) i H0 (CHead x1 (Bind x0) x2) H11)) in ((let H15 \def
+(f_equal C T (\lambda (e: C).(match e in C return (\lambda (_: C).T) with
+[(CSort _) \Rightarrow u | (CHead _ _ t0) \Rightarrow t0])) (CHead d (Bind
+Abbr) u) (CHead x1 (Bind x0) x2) (getl_mono c (CHead d (Bind Abbr) u) i H0
+(CHead x1 (Bind x0) x2) H11)) in (\lambda (H16: (eq B Abbr x0)).(\lambda
+(H17: (eq C d x1)).(let H18 \def (eq_ind_r T x2 (\lambda (t0: T).(getl i c
+(CHead x1 (Bind x0) t0))) H12 u H15) in (let H19 \def (eq_ind_r C x1 (\lambda
+(c0: C).(getl i c (CHead c0 (Bind x0) u))) H18 d H17) in (let H20 \def
+(eq_ind_r C x1 (\lambda (c0: C).(csubv x c0)) H10 d H17) in (let H21 \def
+(eq_ind_r B x0 (\lambda (b: B).(getl i c (CHead d (Bind b) u))) H19 Abbr H16)
+in (arity_abbr g c2 x u i H7 a0 (H2 x H8 H20))))))))) H14)) H13))))))))
+H9)))))) H6)) (\lambda (H6: (ex4_3 C T A (\lambda (d2: C).(\lambda (u2:
T).(\lambda (_: A).(getl i c2 (CHead d2 (Bind Abst) u2))))) (\lambda (d2:
C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d)))) (\lambda (d2:
C).(\lambda (u2: T).(\lambda (a1: A).(arity g d2 u2 (asucc g a1))))) (\lambda
d2 d)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a1: A).(arity g d2 u2
(asucc g a1))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a1: A).(arity g d
u a1)))) (arity g c2 (TLRef i) a0) (\lambda (x0: C).(\lambda (x1: T).(\lambda
-(x2: A).(\lambda (H6: (getl i c2 (CHead x0 (Bind Abst) x1))).(\lambda (_:
-(csuba g x0 d)).(\lambda (H8: (arity g x0 x1 (asucc g x2))).(\lambda (H9:
-(arity g d u x2)).(arity_repl g c2 (TLRef i) x2 (arity_abst g c2 x0 x1 i H6
-x2 H8) a0 (arity_mono g d u x2 H9 a0 H1))))))))) H5)) H4)))))))))))) (\lambda
-(c: C).(\lambda (d: C).(\lambda (u: T).(\lambda (i: nat).(\lambda (H0: (getl
-i c (CHead d (Bind Abst) u))).(\lambda (a0: A).(\lambda (_: (arity g d u
-(asucc g a0))).(\lambda (H2: ((\forall (c2: C).((csuba g c2 d) \to (arity g
-c2 u (asucc g a0)))))).(\lambda (c2: C).(\lambda (H3: (csuba g c2 c)).(let H4
-\def (csuba_getl_abst_rev g c d u i H0 c2 H3) in (ex2_ind C (\lambda (d2:
-C).(getl i c2 (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d))
-(arity g c2 (TLRef i) a0) (\lambda (x: C).(\lambda (H5: (getl i c2 (CHead x
-(Bind Abst) u))).(\lambda (H6: (csuba g x d)).(arity_abst g c2 x u i H5 a0
-(H2 x H6))))) H4)))))))))))) (\lambda (b: B).(\lambda (H0: (not (eq B b
-Abst))).(\lambda (c: C).(\lambda (u: T).(\lambda (a1: A).(\lambda (_: (arity
-g c u a1)).(\lambda (H2: ((\forall (c2: C).((csuba g c2 c) \to (arity g c2 u
-a1))))).(\lambda (t0: T).(\lambda (a2: A).(\lambda (_: (arity g (CHead c
-(Bind b) u) t0 a2)).(\lambda (H4: ((\forall (c2: C).((csuba g c2 (CHead c
-(Bind b) u)) \to (arity g c2 t0 a2))))).(\lambda (c2: C).(\lambda (H5: (csuba
-g c2 c)).(arity_bind g b H0 c2 u a1 (H2 c2 H5) t0 a2 (H4 (CHead c2 (Bind b)
-u) (csuba_head g c2 c H5 (Bind b) u)))))))))))))))) (\lambda (c: C).(\lambda
-(u: T).(\lambda (a1: A).(\lambda (_: (arity g c u (asucc g a1))).(\lambda
-(H1: ((\forall (c2: C).((csuba g c2 c) \to (arity g c2 u (asucc g
-a1)))))).(\lambda (t0: T).(\lambda (a2: A).(\lambda (_: (arity g (CHead c
-(Bind Abst) u) t0 a2)).(\lambda (H3: ((\forall (c2: C).((csuba g c2 (CHead c
-(Bind Abst) u)) \to (arity g c2 t0 a2))))).(\lambda (c2: C).(\lambda (H4:
-(csuba g c2 c)).(arity_head g c2 u a1 (H1 c2 H4) t0 a2 (H3 (CHead c2 (Bind
-Abst) u) (csuba_head g c2 c H4 (Bind Abst) u)))))))))))))) (\lambda (c:
-C).(\lambda (u: T).(\lambda (a1: A).(\lambda (_: (arity g c u a1)).(\lambda
-(H1: ((\forall (c2: C).((csuba g c2 c) \to (arity g c2 u a1))))).(\lambda
+(x2: A).(\lambda (H7: (getl i c2 (CHead x0 (Bind Abst) x1))).(\lambda (_:
+(csuba g x0 d)).(\lambda (H9: (arity g x0 x1 (asucc g x2))).(\lambda (H10:
+(arity g d u x2)).(arity_repl g c2 (TLRef i) x2 (arity_abst g c2 x0 x1 i H7
+x2 H9) a0 (arity_mono g d u x2 H10 a0 H1))))))))) H6)) (\lambda (H6: (ex2_2 C
+T (\lambda (d2: C).(\lambda (u2: T).(getl i c2 (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d))))).(ex2_2_ind C T (\lambda
+(d2: C).(\lambda (u2: T).(getl i c2 (CHead d2 (Bind Void) u2)))) (\lambda
+(d2: C).(\lambda (_: T).(csuba g d2 d))) (arity g c2 (TLRef i) a0) (\lambda
+(x0: C).(\lambda (x1: T).(\lambda (H7: (getl i c2 (CHead x0 (Bind Void)
+x1))).(\lambda (_: (csuba g x0 d)).(let H_x0 \def (csubv_getl_conf_void c2 c
+H4 x0 x1 i H7) in (let H9 \def H_x0 in (ex2_2_ind C T (\lambda (d2:
+C).(\lambda (_: T).(csubv x0 d2))) (\lambda (d2: C).(\lambda (v2: T).(getl i
+c (CHead d2 (Bind Void) v2)))) (arity g c2 (TLRef i) a0) (\lambda (x2:
+C).(\lambda (x3: T).(\lambda (_: (csubv x0 x2)).(\lambda (H11: (getl i c
+(CHead x2 (Bind Void) x3))).(let H12 \def (eq_ind C (CHead d (Bind Abbr) u)
+(\lambda (c0: C).(getl i c c0)) H0 (CHead x2 (Bind Void) x3) (getl_mono c
+(CHead d (Bind Abbr) u) i H0 (CHead x2 (Bind Void) x3) H11)) in (let H13 \def
+(eq_ind C (CHead d (Bind Abbr) u) (\lambda (ee: C).(match ee in C return
+(\lambda (_: C).Prop) with [(CSort _) \Rightarrow False | (CHead _ k _)
+\Rightarrow (match k in K return (\lambda (_: K).Prop) with [(Bind b)
+\Rightarrow (match b in B return (\lambda (_: B).Prop) with [Abbr \Rightarrow
+True | Abst \Rightarrow False | Void \Rightarrow False]) | (Flat _)
+\Rightarrow False])])) I (CHead x2 (Bind Void) x3) (getl_mono c (CHead d
+(Bind Abbr) u) i H0 (CHead x2 (Bind Void) x3) H11)) in (False_ind (arity g c2
+(TLRef i) a0) H13))))))) H9))))))) H6)) H5)))))))))))))) (\lambda (c:
+C).(\lambda (d: C).(\lambda (u: T).(\lambda (i: nat).(\lambda (H0: (getl i c
+(CHead d (Bind Abst) u))).(\lambda (a0: A).(\lambda (_: (arity g d u (asucc g
+a0))).(\lambda (H2: ((\forall (c2: C).((csuba g c2 d) \to ((csubv c2 d) \to
+(arity g c2 u (asucc g a0))))))).(\lambda (c2: C).(\lambda (H3: (csuba g c2
+c)).(\lambda (H4: (csubv c2 c)).(let H_x \def (csuba_getl_abst_rev g c d u i
+H0 c2 H3) in (let H5 \def H_x in (or_ind (ex2 C (\lambda (d2: C).(getl i c2
+(CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d))) (ex2_2 C T
+(\lambda (d2: C).(\lambda (u2: T).(getl i c2 (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d)))) (arity g c2 (TLRef i) a0)
+(\lambda (H6: (ex2 C (\lambda (d2: C).(getl i c2 (CHead d2 (Bind Abst) u)))
+(\lambda (d2: C).(csuba g d2 d)))).(ex2_ind C (\lambda (d2: C).(getl i c2
+(CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d)) (arity g c2
+(TLRef i) a0) (\lambda (x: C).(\lambda (H7: (getl i c2 (CHead x (Bind Abst)
+u))).(\lambda (H8: (csuba g x d)).(let H_x0 \def (csubv_getl_conf c2 c H4
+Abst x u i H7) in (let H9 \def H_x0 in (ex2_3_ind B C T (\lambda (_:
+B).(\lambda (d2: C).(\lambda (_: T).(csubv x d2)))) (\lambda (b2: B).(\lambda
+(d2: C).(\lambda (v2: T).(getl i c (CHead d2 (Bind b2) v2))))) (arity g c2
+(TLRef i) a0) (\lambda (x0: B).(\lambda (x1: C).(\lambda (x2: T).(\lambda
+(H10: (csubv x x1)).(\lambda (H11: (getl i c (CHead x1 (Bind x0) x2))).(let
+H12 \def (eq_ind C (CHead d (Bind Abst) u) (\lambda (c0: C).(getl i c c0)) H0
+(CHead x1 (Bind x0) x2) (getl_mono c (CHead d (Bind Abst) u) i H0 (CHead x1
+(Bind x0) x2) H11)) in (let H13 \def (f_equal C C (\lambda (e: C).(match e in
+C return (\lambda (_: C).C) with [(CSort _) \Rightarrow d | (CHead c0 _ _)
+\Rightarrow c0])) (CHead d (Bind Abst) u) (CHead x1 (Bind x0) x2) (getl_mono
+c (CHead d (Bind Abst) u) i H0 (CHead x1 (Bind x0) x2) H11)) in ((let H14
+\def (f_equal C B (\lambda (e: C).(match e in C return (\lambda (_: C).B)
+with [(CSort _) \Rightarrow Abst | (CHead _ k _) \Rightarrow (match k in K
+return (\lambda (_: K).B) with [(Bind b) \Rightarrow b | (Flat _) \Rightarrow
+Abst])])) (CHead d (Bind Abst) u) (CHead x1 (Bind x0) x2) (getl_mono c (CHead
+d (Bind Abst) u) i H0 (CHead x1 (Bind x0) x2) H11)) in ((let H15 \def
+(f_equal C T (\lambda (e: C).(match e in C return (\lambda (_: C).T) with
+[(CSort _) \Rightarrow u | (CHead _ _ t0) \Rightarrow t0])) (CHead d (Bind
+Abst) u) (CHead x1 (Bind x0) x2) (getl_mono c (CHead d (Bind Abst) u) i H0
+(CHead x1 (Bind x0) x2) H11)) in (\lambda (H16: (eq B Abst x0)).(\lambda
+(H17: (eq C d x1)).(let H18 \def (eq_ind_r T x2 (\lambda (t0: T).(getl i c
+(CHead x1 (Bind x0) t0))) H12 u H15) in (let H19 \def (eq_ind_r C x1 (\lambda
+(c0: C).(getl i c (CHead c0 (Bind x0) u))) H18 d H17) in (let H20 \def
+(eq_ind_r C x1 (\lambda (c0: C).(csubv x c0)) H10 d H17) in (let H21 \def
+(eq_ind_r B x0 (\lambda (b: B).(getl i c (CHead d (Bind b) u))) H19 Abst H16)
+in (arity_abst g c2 x u i H7 a0 (H2 x H8 H20))))))))) H14)) H13))))))))
+H9)))))) H6)) (\lambda (H6: (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(getl i c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_:
+T).(csuba g d2 d))))).(ex2_2_ind C T (\lambda (d2: C).(\lambda (u2: T).(getl
+i c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g
+d2 d))) (arity g c2 (TLRef i) a0) (\lambda (x0: C).(\lambda (x1: T).(\lambda
+(H7: (getl i c2 (CHead x0 (Bind Void) x1))).(\lambda (_: (csuba g x0 d)).(let
+H_x0 \def (csubv_getl_conf_void c2 c H4 x0 x1 i H7) in (let H9 \def H_x0 in
+(ex2_2_ind C T (\lambda (d2: C).(\lambda (_: T).(csubv x0 d2))) (\lambda (d2:
+C).(\lambda (v2: T).(getl i c (CHead d2 (Bind Void) v2)))) (arity g c2 (TLRef
+i) a0) (\lambda (x2: C).(\lambda (x3: T).(\lambda (_: (csubv x0 x2)).(\lambda
+(H11: (getl i c (CHead x2 (Bind Void) x3))).(let H12 \def (eq_ind C (CHead d
+(Bind Abst) u) (\lambda (c0: C).(getl i c c0)) H0 (CHead x2 (Bind Void) x3)
+(getl_mono c (CHead d (Bind Abst) u) i H0 (CHead x2 (Bind Void) x3) H11)) in
+(let H13 \def (eq_ind C (CHead d (Bind Abst) u) (\lambda (ee: C).(match ee in
+C return (\lambda (_: C).Prop) with [(CSort _) \Rightarrow False | (CHead _ k
+_) \Rightarrow (match k in K return (\lambda (_: K).Prop) with [(Bind b)
+\Rightarrow (match b in B return (\lambda (_: B).Prop) with [Abbr \Rightarrow
+False | Abst \Rightarrow True | Void \Rightarrow False]) | (Flat _)
+\Rightarrow False])])) I (CHead x2 (Bind Void) x3) (getl_mono c (CHead d
+(Bind Abst) u) i H0 (CHead x2 (Bind Void) x3) H11)) in (False_ind (arity g c2
+(TLRef i) a0) H13))))))) H9))))))) H6)) H5)))))))))))))) (\lambda (b:
+B).(\lambda (H0: (not (eq B b Abst))).(\lambda (c: C).(\lambda (u:
+T).(\lambda (a1: A).(\lambda (_: (arity g c u a1)).(\lambda (H2: ((\forall
+(c2: C).((csuba g c2 c) \to ((csubv c2 c) \to (arity g c2 u a1)))))).(\lambda
+(t0: T).(\lambda (a2: A).(\lambda (_: (arity g (CHead c (Bind b) u) t0
+a2)).(\lambda (H4: ((\forall (c2: C).((csuba g c2 (CHead c (Bind b) u)) \to
+((csubv c2 (CHead c (Bind b) u)) \to (arity g c2 t0 a2)))))).(\lambda (c2:
+C).(\lambda (H5: (csuba g c2 c)).(\lambda (H6: (csubv c2 c)).(arity_bind g b
+H0 c2 u a1 (H2 c2 H5 H6) t0 a2 (H4 (CHead c2 (Bind b) u) (csuba_head g c2 c
+H5 (Bind b) u) (csubv_bind_same c2 c H6 b u u))))))))))))))))) (\lambda (c:
+C).(\lambda (u: T).(\lambda (a1: A).(\lambda (_: (arity g c u (asucc g
+a1))).(\lambda (H1: ((\forall (c2: C).((csuba g c2 c) \to ((csubv c2 c) \to
+(arity g c2 u (asucc g a1))))))).(\lambda (t0: T).(\lambda (a2: A).(\lambda
+(_: (arity g (CHead c (Bind Abst) u) t0 a2)).(\lambda (H3: ((\forall (c2:
+C).((csuba g c2 (CHead c (Bind Abst) u)) \to ((csubv c2 (CHead c (Bind Abst)
+u)) \to (arity g c2 t0 a2)))))).(\lambda (c2: C).(\lambda (H4: (csuba g c2
+c)).(\lambda (H5: (csubv c2 c)).(arity_head g c2 u a1 (H1 c2 H4 H5) t0 a2 (H3
+(CHead c2 (Bind Abst) u) (csuba_head g c2 c H4 (Bind Abst) u)
+(csubv_bind_same c2 c H5 Abst u u))))))))))))))) (\lambda (c: C).(\lambda (u:
+T).(\lambda (a1: A).(\lambda (_: (arity g c u a1)).(\lambda (H1: ((\forall
+(c2: C).((csuba g c2 c) \to ((csubv c2 c) \to (arity g c2 u a1)))))).(\lambda
(t0: T).(\lambda (a2: A).(\lambda (_: (arity g c t0 (AHead a1 a2))).(\lambda
-(H3: ((\forall (c2: C).((csuba g c2 c) \to (arity g c2 t0 (AHead a1
-a2)))))).(\lambda (c2: C).(\lambda (H4: (csuba g c2 c)).(arity_appl g c2 u a1
-(H1 c2 H4) t0 a2 (H3 c2 H4))))))))))))) (\lambda (c: C).(\lambda (u:
-T).(\lambda (a0: A).(\lambda (_: (arity g c u (asucc g a0))).(\lambda (H1:
-((\forall (c2: C).((csuba g c2 c) \to (arity g c2 u (asucc g
-a0)))))).(\lambda (t0: T).(\lambda (_: (arity g c t0 a0)).(\lambda (H3:
-((\forall (c2: C).((csuba g c2 c) \to (arity g c2 t0 a0))))).(\lambda (c2:
-C).(\lambda (H4: (csuba g c2 c)).(arity_cast g c2 u a0 (H1 c2 H4) t0 (H3 c2
-H4)))))))))))) (\lambda (c: C).(\lambda (t0: T).(\lambda (a1: A).(\lambda (_:
-(arity g c t0 a1)).(\lambda (H1: ((\forall (c2: C).((csuba g c2 c) \to (arity
-g c2 t0 a1))))).(\lambda (a2: A).(\lambda (H2: (leq g a1 a2)).(\lambda (c2:
-C).(\lambda (H3: (csuba g c2 c)).(arity_repl g c2 t0 a1 (H1 c2 H3) a2
-H2)))))))))) c1 t a H))))).
+(H3: ((\forall (c2: C).((csuba g c2 c) \to ((csubv c2 c) \to (arity g c2 t0
+(AHead a1 a2))))))).(\lambda (c2: C).(\lambda (H4: (csuba g c2 c)).(\lambda
+(H5: (csubv c2 c)).(arity_appl g c2 u a1 (H1 c2 H4 H5) t0 a2 (H3 c2 H4
+H5)))))))))))))) (\lambda (c: C).(\lambda (u: T).(\lambda (a0: A).(\lambda
+(_: (arity g c u (asucc g a0))).(\lambda (H1: ((\forall (c2: C).((csuba g c2
+c) \to ((csubv c2 c) \to (arity g c2 u (asucc g a0))))))).(\lambda (t0:
+T).(\lambda (_: (arity g c t0 a0)).(\lambda (H3: ((\forall (c2: C).((csuba g
+c2 c) \to ((csubv c2 c) \to (arity g c2 t0 a0)))))).(\lambda (c2: C).(\lambda
+(H4: (csuba g c2 c)).(\lambda (H5: (csubv c2 c)).(arity_cast g c2 u a0 (H1 c2
+H4 H5) t0 (H3 c2 H4 H5))))))))))))) (\lambda (c: C).(\lambda (t0: T).(\lambda
+(a1: A).(\lambda (_: (arity g c t0 a1)).(\lambda (H1: ((\forall (c2:
+C).((csuba g c2 c) \to ((csubv c2 c) \to (arity g c2 t0 a1)))))).(\lambda
+(a2: A).(\lambda (H2: (leq g a1 a2)).(\lambda (c2: C).(\lambda (H3: (csuba g
+c2 c)).(\lambda (H4: (csubv c2 c)).(arity_repl g c2 t0 a1 (H1 c2 H3 H4) a2
+H2))))))))))) c1 t a H))))).
theorem arity_appls_appl:
\forall (g: G).(\forall (c: C).(\forall (v: T).(\forall (a1: A).((arity g c
t)) a2) (\lambda (x: A).(\lambda (_: (arity g c v x)).(\lambda (H4: (arity g
(CHead c (Bind Abbr) v) t a2)).(arity_appl g c v a1 H (THead (Bind Abst) u t)
a2 (arity_head g c u a1 H0 t a2 (csuba_arity_rev g (CHead c (Bind Abbr) v) t
-a2 H4 (CHead c (Bind Abst) u) (csuba_abst g c c (csuba_refl g c) u a1 H0 v
-H))))))) H2))))) (\lambda (t0: T).(\lambda (t1: TList).(\lambda (H1:
+a2 H4 (CHead c (Bind Abst) u) (csuba_abst g c c (csuba_refl g c) u a1 H0 v H)
+(csubv_bind c c (csubv_refl c) Abst (sym_not_eq B Void Abst not_void_abst)
+Abbr u v))))))) H2))))) (\lambda (t0: T).(\lambda (t1: TList).(\lambda (H1:
((\forall (a2: A).((arity g c (THeads (Flat Appl) t1 (THead (Bind Abbr) v t))
a2) \to (arity g c (THeads (Flat Appl) t1 (THead (Flat Appl) v (THead (Bind
Abst) u t))) a2))))).(\lambda (a2: A).(\lambda (H2: (arity g c (THead (Flat
u) e2)) x H5 (clear_flat c4 x H6 f u))))) H4)))) k H2))))))))) (\lambda (c3:
C).(\lambda (c4: C).(\lambda (H0: (csuba g c3 c4)).(\lambda (_: ((\forall
(e1: C).((clear c3 e1) \to (ex2 C (\lambda (e2: C).(csuba g e1 e2)) (\lambda
-(e2: C).(clear c4 e2))))))).(\lambda (t: T).(\lambda (a: A).(\lambda (H2:
-(arity g c3 t (asucc g a))).(\lambda (u: T).(\lambda (H3: (arity g c4 u
+(e2: C).(clear c4 e2))))))).(\lambda (b: B).(\lambda (H2: (not (eq B b
+Void))).(\lambda (u1: T).(\lambda (u2: T).(\lambda (e1: C).(\lambda (H3:
+(clear (CHead c3 (Bind Void) u1) e1)).(eq_ind_r C (CHead c3 (Bind Void) u1)
+(\lambda (c: C).(ex2 C (\lambda (e2: C).(csuba g c e2)) (\lambda (e2:
+C).(clear (CHead c4 (Bind b) u2) e2)))) (ex_intro2 C (\lambda (e2: C).(csuba
+g (CHead c3 (Bind Void) u1) e2)) (\lambda (e2: C).(clear (CHead c4 (Bind b)
+u2) e2)) (CHead c4 (Bind b) u2) (csuba_void g c3 c4 H0 b H2 u1 u2)
+(clear_bind b c4 u2)) e1 (clear_gen_bind Void c3 e1 u1 H3))))))))))))
+(\lambda (c3: C).(\lambda (c4: C).(\lambda (H0: (csuba g c3 c4)).(\lambda (_:
+((\forall (e1: C).((clear c3 e1) \to (ex2 C (\lambda (e2: C).(csuba g e1 e2))
+(\lambda (e2: C).(clear c4 e2))))))).(\lambda (t: T).(\lambda (a: A).(\lambda
+(H2: (arity g c3 t (asucc g a))).(\lambda (u: T).(\lambda (H3: (arity g c4 u
a)).(\lambda (e1: C).(\lambda (H4: (clear (CHead c3 (Bind Abst) t)
e1)).(eq_ind_r C (CHead c3 (Bind Abst) t) (\lambda (c: C).(ex2 C (\lambda
(e2: C).(csuba g c e2)) (\lambda (e2: C).(clear (CHead c4 (Bind Abbr) u)
u) e2)) x H5 (clear_flat c3 x H6 f u))))) H4)))) k H2))))))))) (\lambda (c3:
C).(\lambda (c4: C).(\lambda (H0: (csuba g c3 c4)).(\lambda (_: ((\forall
(e1: C).((clear c4 e1) \to (ex2 C (\lambda (e2: C).(csuba g e2 e1)) (\lambda
-(e2: C).(clear c3 e2))))))).(\lambda (t: T).(\lambda (a: A).(\lambda (H2:
-(arity g c3 t (asucc g a))).(\lambda (u: T).(\lambda (H3: (arity g c4 u
+(e2: C).(clear c3 e2))))))).(\lambda (b: B).(\lambda (H2: (not (eq B b
+Void))).(\lambda (u1: T).(\lambda (u2: T).(\lambda (e1: C).(\lambda (H3:
+(clear (CHead c4 (Bind b) u2) e1)).(eq_ind_r C (CHead c4 (Bind b) u2)
+(\lambda (c: C).(ex2 C (\lambda (e2: C).(csuba g e2 c)) (\lambda (e2:
+C).(clear (CHead c3 (Bind Void) u1) e2)))) (ex_intro2 C (\lambda (e2:
+C).(csuba g e2 (CHead c4 (Bind b) u2))) (\lambda (e2: C).(clear (CHead c3
+(Bind Void) u1) e2)) (CHead c3 (Bind Void) u1) (csuba_void g c3 c4 H0 b H2 u1
+u2) (clear_bind Void c3 u1)) e1 (clear_gen_bind b c4 e1 u2 H3))))))))))))
+(\lambda (c3: C).(\lambda (c4: C).(\lambda (H0: (csuba g c3 c4)).(\lambda (_:
+((\forall (e1: C).((clear c4 e1) \to (ex2 C (\lambda (e2: C).(csuba g e2 e1))
+(\lambda (e2: C).(clear c3 e2))))))).(\lambda (t: T).(\lambda (a: A).(\lambda
+(H2: (arity g c3 t (asucc g a))).(\lambda (u: T).(\lambda (H3: (arity g c4 u
a)).(\lambda (e1: C).(\lambda (H4: (clear (CHead c4 (Bind Abbr) u)
e1)).(eq_ind_r C (CHead c4 (Bind Abbr) u) (\lambda (c: C).(ex2 C (\lambda
(e2: C).(csuba g e2 c)) (\lambda (e2: C).(clear (CHead c3 (Bind Abst) t)
| csuba_sort: \forall (n: nat).(csuba g (CSort n) (CSort n))
| csuba_head: \forall (c1: C).(\forall (c2: C).((csuba g c1 c2) \to (\forall
(k: K).(\forall (u: T).(csuba g (CHead c1 k u) (CHead c2 k u))))))
+| csuba_void: \forall (c1: C).(\forall (c2: C).((csuba g c1 c2) \to (\forall
+(b: B).((not (eq B b Void)) \to (\forall (u1: T).(\forall (u2: T).(csuba g
+(CHead c1 (Bind Void) u1) (CHead c2 (Bind b) u2))))))))
| csuba_abst: \forall (c1: C).(\forall (c2: C).((csuba g c1 c2) \to (\forall
(t: T).(\forall (a: A).((arity g c1 t (asucc g a)) \to (\forall (u:
T).((arity g c2 u a) \to (csuba g (CHead c1 (Bind Abst) t) (CHead c2 (Bind
(CHead x (Bind Abbr) u) H17 x1) H15)))))) H13)) c2 H9)))))))) H8)) H7)))))
(\lambda (H5: (csuba g (CHead c (Bind Void) t) c2)).(\lambda (H6: (drop (r
(Bind Void) n) O c (CHead d1 (Bind Abbr) u))).(let H_x \def (csuba_gen_void g
-c c2 t H5) in (let H7 \def H_x in (ex2_ind C (\lambda (d2: C).(eq C c2 (CHead
-d2 (Bind Void) t))) (\lambda (d2: C).(csuba g c d2)) (ex2 C (\lambda (d2:
+c c2 t H5) in (let H7 \def H_x in (ex2_3_ind B C T (\lambda (b0: B).(\lambda
+(d2: C).(\lambda (u2: T).(eq C c2 (CHead d2 (Bind b0) u2))))) (\lambda (_:
+B).(\lambda (d2: C).(\lambda (_: T).(csuba g c d2)))) (ex2 C (\lambda (d2:
C).(drop (S n) O c2 (CHead d2 (Bind Abbr) u))) (\lambda (d2: C).(csuba g d1
-d2))) (\lambda (x: C).(\lambda (H8: (eq C c2 (CHead x (Bind Void)
-t))).(\lambda (H9: (csuba g c x)).(eq_ind_r C (CHead x (Bind Void) t)
+d2))) (\lambda (x0: B).(\lambda (x1: C).(\lambda (x2: T).(\lambda (H8: (eq C
+c2 (CHead x1 (Bind x0) x2))).(\lambda (H9: (csuba g c x1)).(eq_ind_r C (CHead
+x1 (Bind x0) x2) (\lambda (c0: C).(ex2 C (\lambda (d2: C).(drop (S n) O c0
+(CHead d2 (Bind Abbr) u))) (\lambda (d2: C).(csuba g d1 d2)))) (let H10 \def
+(H c d1 u H6 g x1 H9) in (ex2_ind C (\lambda (d2: C).(drop n O x1 (CHead d2
+(Bind Abbr) u))) (\lambda (d2: C).(csuba g d1 d2)) (ex2 C (\lambda (d2:
+C).(drop (S n) O (CHead x1 (Bind x0) x2) (CHead d2 (Bind Abbr) u))) (\lambda
+(d2: C).(csuba g d1 d2))) (\lambda (x: C).(\lambda (H11: (drop n O x1 (CHead
+x (Bind Abbr) u))).(\lambda (H12: (csuba g d1 x)).(let H13 \def (refl_equal
+nat (r (Bind Abbr) n)) in (let H14 \def (eq_ind nat n (\lambda (n0:
+nat).(drop n0 O x1 (CHead x (Bind Abbr) u))) H11 (r (Bind Abbr) n) H13) in
+(ex_intro2 C (\lambda (d2: C).(drop (S n) O (CHead x1 (Bind x0) x2) (CHead d2
+(Bind Abbr) u))) (\lambda (d2: C).(csuba g d1 d2)) x (drop_drop (Bind x0) n
+x1 (CHead x (Bind Abbr) u) H14 x2) H12)))))) H10)) c2 H8)))))) H7))))) b H3
+H4)))) (\lambda (f: F).(\lambda (H3: (csuba g (CHead c (Flat f) t)
+c2)).(\lambda (H4: (drop (r (Flat f) n) O c (CHead d1 (Bind Abbr) u))).(let
+H_x \def (csuba_gen_flat g c c2 t f H3) in (let H5 \def H_x in (ex2_2_ind C T
+(\lambda (d2: C).(\lambda (u2: T).(eq C c2 (CHead d2 (Flat f) u2)))) (\lambda
+(d2: C).(\lambda (_: T).(csuba g c d2))) (ex2 C (\lambda (d2: C).(drop (S n)
+O c2 (CHead d2 (Bind Abbr) u))) (\lambda (d2: C).(csuba g d1 d2))) (\lambda
+(x0: C).(\lambda (x1: T).(\lambda (H6: (eq C c2 (CHead x0 (Flat f)
+x1))).(\lambda (H7: (csuba g c x0)).(eq_ind_r C (CHead x0 (Flat f) x1)
(\lambda (c0: C).(ex2 C (\lambda (d2: C).(drop (S n) O c0 (CHead d2 (Bind
-Abbr) u))) (\lambda (d2: C).(csuba g d1 d2)))) (let H10 \def (H c d1 u H6 g x
-H9) in (ex2_ind C (\lambda (d2: C).(drop n O x (CHead d2 (Bind Abbr) u)))
-(\lambda (d2: C).(csuba g d1 d2)) (ex2 C (\lambda (d2: C).(drop (S n) O
-(CHead x (Bind Void) t) (CHead d2 (Bind Abbr) u))) (\lambda (d2: C).(csuba g
-d1 d2))) (\lambda (x0: C).(\lambda (H11: (drop n O x (CHead x0 (Bind Abbr)
-u))).(\lambda (H12: (csuba g d1 x0)).(let H13 \def (refl_equal nat (r (Bind
-Abbr) n)) in (let H14 \def (eq_ind nat n (\lambda (n0: nat).(drop n0 O x
-(CHead x0 (Bind Abbr) u))) H11 (r (Bind Abbr) n) H13) in (ex_intro2 C
-(\lambda (d2: C).(drop (S n) O (CHead x (Bind Void) t) (CHead d2 (Bind Abbr)
-u))) (\lambda (d2: C).(csuba g d1 d2)) x0 (drop_drop (Bind Void) n x (CHead
-x0 (Bind Abbr) u) H14 t) H12)))))) H10)) c2 H8)))) H7))))) b H3 H4))))
-(\lambda (f: F).(\lambda (H3: (csuba g (CHead c (Flat f) t) c2)).(\lambda
-(H4: (drop (r (Flat f) n) O c (CHead d1 (Bind Abbr) u))).(let H_x \def
-(csuba_gen_flat g c c2 t f H3) in (let H5 \def H_x in (ex2_2_ind C T (\lambda
-(d2: C).(\lambda (u2: T).(eq C c2 (CHead d2 (Flat f) u2)))) (\lambda (d2:
-C).(\lambda (_: T).(csuba g c d2))) (ex2 C (\lambda (d2: C).(drop (S n) O c2
-(CHead d2 (Bind Abbr) u))) (\lambda (d2: C).(csuba g d1 d2))) (\lambda (x0:
-C).(\lambda (x1: T).(\lambda (H6: (eq C c2 (CHead x0 (Flat f) x1))).(\lambda
-(H7: (csuba g c x0)).(eq_ind_r C (CHead x0 (Flat f) x1) (\lambda (c0: C).(ex2
-C (\lambda (d2: C).(drop (S n) O c0 (CHead d2 (Bind Abbr) u))) (\lambda (d2:
-C).(csuba g d1 d2)))) (let H8 \def (H0 d1 u H4 g x0 H7) in (ex2_ind C
-(\lambda (d2: C).(drop (S n) O x0 (CHead d2 (Bind Abbr) u))) (\lambda (d2:
-C).(csuba g d1 d2)) (ex2 C (\lambda (d2: C).(drop (S n) O (CHead x0 (Flat f)
-x1) (CHead d2 (Bind Abbr) u))) (\lambda (d2: C).(csuba g d1 d2))) (\lambda
-(x: C).(\lambda (H9: (drop (S n) O x0 (CHead x (Bind Abbr) u))).(\lambda
-(H10: (csuba g d1 x)).(ex_intro2 C (\lambda (d2: C).(drop (S n) O (CHead x0
-(Flat f) x1) (CHead d2 (Bind Abbr) u))) (\lambda (d2: C).(csuba g d1 d2)) x
-(drop_drop (Flat f) n x0 (CHead x (Bind Abbr) u) H9 x1) H10)))) H8)) c2
-H6))))) H5)))))) k H2 (drop_gen_drop k c (CHead d1 (Bind Abbr) u) t n
+Abbr) u))) (\lambda (d2: C).(csuba g d1 d2)))) (let H8 \def (H0 d1 u H4 g x0
+H7) in (ex2_ind C (\lambda (d2: C).(drop (S n) O x0 (CHead d2 (Bind Abbr)
+u))) (\lambda (d2: C).(csuba g d1 d2)) (ex2 C (\lambda (d2: C).(drop (S n) O
+(CHead x0 (Flat f) x1) (CHead d2 (Bind Abbr) u))) (\lambda (d2: C).(csuba g
+d1 d2))) (\lambda (x: C).(\lambda (H9: (drop (S n) O x0 (CHead x (Bind Abbr)
+u))).(\lambda (H10: (csuba g d1 x)).(ex_intro2 C (\lambda (d2: C).(drop (S n)
+O (CHead x0 (Flat f) x1) (CHead d2 (Bind Abbr) u))) (\lambda (d2: C).(csuba g
+d1 d2)) x (drop_drop (Flat f) n x0 (CHead x (Bind Abbr) u) H9 x1) H10))))
+H8)) c2 H6))))) H5)))))) k H2 (drop_gen_drop k c (CHead d1 (Bind Abbr) u) t n
H1)))))))))))) c1)))) i).
theorem csuba_drop_abst:
H18))))))))))) H14)) H13)) c2 H9)))))))) H8)) H7))))) (\lambda (H5: (csuba g
(CHead c (Bind Void) t) c2)).(\lambda (H6: (drop (r (Bind Void) n) O c (CHead
d1 (Bind Abst) u1))).(let H_x \def (csuba_gen_void g c c2 t H5) in (let H7
-\def H_x in (ex2_ind C (\lambda (d2: C).(eq C c2 (CHead d2 (Bind Void) t)))
-(\lambda (d2: C).(csuba g c d2)) (or (ex2 C (\lambda (d2: C).(drop (S n) O c2
-(CHead d2 (Bind Abst) u1))) (\lambda (d2: C).(csuba g d1 d2))) (ex4_3 C T A
-(\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O c2 (CHead d2
-(Bind Abbr) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g
-d1 d2)))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1
-(asucc g a))))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2
-u2 a)))))) (\lambda (x: C).(\lambda (H8: (eq C c2 (CHead x (Bind Void)
-t))).(\lambda (H9: (csuba g c x)).(eq_ind_r C (CHead x (Bind Void) t)
-(\lambda (c0: C).(or (ex2 C (\lambda (d2: C).(drop (S n) O c0 (CHead d2 (Bind
-Abst) u1))) (\lambda (d2: C).(csuba g d1 d2))) (ex4_3 C T A (\lambda (d2:
-C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O c0 (CHead d2 (Bind Abbr)
-u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d1 d2))))
-(\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 (asucc g
-a))))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2
-a))))))) (let H10 \def (H c d1 u1 H6 g x H9) in (or_ind (ex2 C (\lambda (d2:
-C).(drop n O x (CHead d2 (Bind Abst) u1))) (\lambda (d2: C).(csuba g d1 d2)))
-(ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop n O x
-(CHead d2 (Bind Abbr) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_:
+\def H_x in (ex2_3_ind B C T (\lambda (b0: B).(\lambda (d2: C).(\lambda (u2:
+T).(eq C c2 (CHead d2 (Bind b0) u2))))) (\lambda (_: B).(\lambda (d2:
+C).(\lambda (_: T).(csuba g c d2)))) (or (ex2 C (\lambda (d2: C).(drop (S n)
+O c2 (CHead d2 (Bind Abst) u1))) (\lambda (d2: C).(csuba g d1 d2))) (ex4_3 C
+T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O c2 (CHead
+d2 (Bind Abbr) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_:
A).(csuba g d1 d2)))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity
g d1 u1 (asucc g a))))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
-A).(arity g d2 u2 a))))) (or (ex2 C (\lambda (d2: C).(drop (S n) O (CHead x
-(Bind Void) t) (CHead d2 (Bind Abst) u1))) (\lambda (d2: C).(csuba g d1 d2)))
-(ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O
-(CHead x (Bind Void) t) (CHead d2 (Bind Abbr) u2))))) (\lambda (d2:
-C).(\lambda (_: T).(\lambda (_: A).(csuba g d1 d2)))) (\lambda (_:
-C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 (asucc g a))))) (\lambda
-(d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 a)))))) (\lambda
-(H11: (ex2 C (\lambda (d2: C).(drop n O x (CHead d2 (Bind Abst) u1)))
-(\lambda (d2: C).(csuba g d1 d2)))).(ex2_ind C (\lambda (d2: C).(drop n O x
-(CHead d2 (Bind Abst) u1))) (\lambda (d2: C).(csuba g d1 d2)) (or (ex2 C
-(\lambda (d2: C).(drop (S n) O (CHead x (Bind Void) t) (CHead d2 (Bind Abst)
+A).(arity g d2 u2 a)))))) (\lambda (x0: B).(\lambda (x1: C).(\lambda (x2:
+T).(\lambda (H8: (eq C c2 (CHead x1 (Bind x0) x2))).(\lambda (H9: (csuba g c
+x1)).(eq_ind_r C (CHead x1 (Bind x0) x2) (\lambda (c0: C).(or (ex2 C (\lambda
+(d2: C).(drop (S n) O c0 (CHead d2 (Bind Abst) u1))) (\lambda (d2: C).(csuba
+g d1 d2))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_:
+A).(drop (S n) O c0 (CHead d2 (Bind Abbr) u2))))) (\lambda (d2: C).(\lambda
+(_: T).(\lambda (_: A).(csuba g d1 d2)))) (\lambda (_: C).(\lambda (_:
+T).(\lambda (a: A).(arity g d1 u1 (asucc g a))))) (\lambda (d2: C).(\lambda
+(u2: T).(\lambda (a: A).(arity g d2 u2 a))))))) (let H10 \def (H c d1 u1 H6 g
+x1 H9) in (or_ind (ex2 C (\lambda (d2: C).(drop n O x1 (CHead d2 (Bind Abst)
u1))) (\lambda (d2: C).(csuba g d1 d2))) (ex4_3 C T A (\lambda (d2:
-C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O (CHead x (Bind Void) t)
-(CHead d2 (Bind Abbr) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_:
-A).(csuba g d1 d2)))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity
-g d1 u1 (asucc g a))))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
-A).(arity g d2 u2 a)))))) (\lambda (x0: C).(\lambda (H12: (drop n O x (CHead
-x0 (Bind Abst) u1))).(\lambda (H13: (csuba g d1 x0)).(let H14 \def
-(refl_equal nat (r (Bind Abbr) n)) in (let H15 \def (eq_ind nat n (\lambda
-(n0: nat).(drop n0 O x (CHead x0 (Bind Abst) u1))) H12 (r (Bind Abbr) n) H14)
-in (or_introl (ex2 C (\lambda (d2: C).(drop (S n) O (CHead x (Bind Void) t)
+C).(\lambda (u2: T).(\lambda (_: A).(drop n O x1 (CHead d2 (Bind Abbr)
+u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d1 d2))))
+(\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 (asucc g
+a))))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2
+a))))) (or (ex2 C (\lambda (d2: C).(drop (S n) O (CHead x1 (Bind x0) x2)
(CHead d2 (Bind Abst) u1))) (\lambda (d2: C).(csuba g d1 d2))) (ex4_3 C T A
-(\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O (CHead x
-(Bind Void) t) (CHead d2 (Bind Abbr) u2))))) (\lambda (d2: C).(\lambda (_:
+(\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O (CHead x1
+(Bind x0) x2) (CHead d2 (Bind Abbr) u2))))) (\lambda (d2: C).(\lambda (_:
T).(\lambda (_: A).(csuba g d1 d2)))) (\lambda (_: C).(\lambda (_:
T).(\lambda (a: A).(arity g d1 u1 (asucc g a))))) (\lambda (d2: C).(\lambda
-(u2: T).(\lambda (a: A).(arity g d2 u2 a))))) (ex_intro2 C (\lambda (d2:
-C).(drop (S n) O (CHead x (Bind Void) t) (CHead d2 (Bind Abst) u1))) (\lambda
-(d2: C).(csuba g d1 d2)) x0 (drop_drop (Bind Void) n x (CHead x0 (Bind Abst)
-u1) H15 t) H13))))))) H11)) (\lambda (H11: (ex4_3 C T A (\lambda (d2:
-C).(\lambda (u2: T).(\lambda (_: A).(drop n O x (CHead d2 (Bind Abbr) u2)))))
+(u2: T).(\lambda (a: A).(arity g d2 u2 a)))))) (\lambda (H11: (ex2 C (\lambda
+(d2: C).(drop n O x1 (CHead d2 (Bind Abst) u1))) (\lambda (d2: C).(csuba g d1
+d2)))).(ex2_ind C (\lambda (d2: C).(drop n O x1 (CHead d2 (Bind Abst) u1)))
+(\lambda (d2: C).(csuba g d1 d2)) (or (ex2 C (\lambda (d2: C).(drop (S n) O
+(CHead x1 (Bind x0) x2) (CHead d2 (Bind Abst) u1))) (\lambda (d2: C).(csuba g
+d1 d2))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop
+(S n) O (CHead x1 (Bind x0) x2) (CHead d2 (Bind Abbr) u2))))) (\lambda (d2:
+C).(\lambda (_: T).(\lambda (_: A).(csuba g d1 d2)))) (\lambda (_:
+C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 (asucc g a))))) (\lambda
+(d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 a)))))) (\lambda (x:
+C).(\lambda (H12: (drop n O x1 (CHead x (Bind Abst) u1))).(\lambda (H13:
+(csuba g d1 x)).(let H14 \def (refl_equal nat (r (Bind Abbr) n)) in (let H15
+\def (eq_ind nat n (\lambda (n0: nat).(drop n0 O x1 (CHead x (Bind Abst)
+u1))) H12 (r (Bind Abbr) n) H14) in (or_introl (ex2 C (\lambda (d2: C).(drop
+(S n) O (CHead x1 (Bind x0) x2) (CHead d2 (Bind Abst) u1))) (\lambda (d2:
+C).(csuba g d1 d2))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda
+(_: A).(drop (S n) O (CHead x1 (Bind x0) x2) (CHead d2 (Bind Abbr) u2)))))
(\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d1 d2)))) (\lambda
(_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 (asucc g a)))))
-(\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2
-a)))))).(ex4_3_ind C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_:
-A).(drop n O x (CHead d2 (Bind Abbr) u2))))) (\lambda (d2: C).(\lambda (_:
+(\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 a)))))
+(ex_intro2 C (\lambda (d2: C).(drop (S n) O (CHead x1 (Bind x0) x2) (CHead d2
+(Bind Abst) u1))) (\lambda (d2: C).(csuba g d1 d2)) x (drop_drop (Bind x0) n
+x1 (CHead x (Bind Abst) u1) H15 x2) H13))))))) H11)) (\lambda (H11: (ex4_3 C
+T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop n O x1 (CHead d2
+(Bind Abbr) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g
+d1 d2)))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1
+(asucc g a))))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2
+u2 a)))))).(ex4_3_ind C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_:
+A).(drop n O x1 (CHead d2 (Bind Abbr) u2))))) (\lambda (d2: C).(\lambda (_:
T).(\lambda (_: A).(csuba g d1 d2)))) (\lambda (_: C).(\lambda (_:
T).(\lambda (a: A).(arity g d1 u1 (asucc g a))))) (\lambda (d2: C).(\lambda
(u2: T).(\lambda (a: A).(arity g d2 u2 a)))) (or (ex2 C (\lambda (d2:
-C).(drop (S n) O (CHead x (Bind Void) t) (CHead d2 (Bind Abst) u1))) (\lambda
+C).(drop (S n) O (CHead x1 (Bind x0) x2) (CHead d2 (Bind Abst) u1))) (\lambda
(d2: C).(csuba g d1 d2))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2:
-T).(\lambda (_: A).(drop (S n) O (CHead x (Bind Void) t) (CHead d2 (Bind
+T).(\lambda (_: A).(drop (S n) O (CHead x1 (Bind x0) x2) (CHead d2 (Bind
Abbr) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d1
d2)))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 (asucc
g a))))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2
-a)))))) (\lambda (x0: C).(\lambda (x1: T).(\lambda (x2: A).(\lambda (H12:
-(drop n O x (CHead x0 (Bind Abbr) x1))).(\lambda (H13: (csuba g d1
-x0)).(\lambda (H14: (arity g d1 u1 (asucc g x2))).(\lambda (H15: (arity g x0
-x1 x2)).(let H16 \def (refl_equal nat (r (Bind Abbr) n)) in (let H17 \def
-(eq_ind nat n (\lambda (n0: nat).(drop n0 O x (CHead x0 (Bind Abbr) x1))) H12
-(r (Bind Abbr) n) H16) in (or_intror (ex2 C (\lambda (d2: C).(drop (S n) O
-(CHead x (Bind Void) t) (CHead d2 (Bind Abst) u1))) (\lambda (d2: C).(csuba g
-d1 d2))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop
-(S n) O (CHead x (Bind Void) t) (CHead d2 (Bind Abbr) u2))))) (\lambda (d2:
+a)))))) (\lambda (x3: C).(\lambda (x4: T).(\lambda (x5: A).(\lambda (H12:
+(drop n O x1 (CHead x3 (Bind Abbr) x4))).(\lambda (H13: (csuba g d1
+x3)).(\lambda (H14: (arity g d1 u1 (asucc g x5))).(\lambda (H15: (arity g x3
+x4 x5)).(let H16 \def (refl_equal nat (r (Bind Abbr) n)) in (let H17 \def
+(eq_ind nat n (\lambda (n0: nat).(drop n0 O x1 (CHead x3 (Bind Abbr) x4)))
+H12 (r (Bind Abbr) n) H16) in (or_intror (ex2 C (\lambda (d2: C).(drop (S n)
+O (CHead x1 (Bind x0) x2) (CHead d2 (Bind Abst) u1))) (\lambda (d2: C).(csuba
+g d1 d2))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_:
+A).(drop (S n) O (CHead x1 (Bind x0) x2) (CHead d2 (Bind Abbr) u2)))))
+(\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d1 d2)))) (\lambda
+(_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 (asucc g a)))))
+(\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 a)))))
+(ex4_3_intro C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S
+n) O (CHead x1 (Bind x0) x2) (CHead d2 (Bind Abbr) u2))))) (\lambda (d2:
C).(\lambda (_: T).(\lambda (_: A).(csuba g d1 d2)))) (\lambda (_:
C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 (asucc g a))))) (\lambda
-(d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 a))))) (ex4_3_intro C
-T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O (CHead x
-(Bind Void) t) (CHead d2 (Bind Abbr) u2))))) (\lambda (d2: C).(\lambda (_:
+(d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 a)))) x3 x4 x5
+(drop_drop (Bind x0) n x1 (CHead x3 (Bind Abbr) x4) H17 x2) H13 H14
+H15))))))))))) H11)) H10)) c2 H8)))))) H7))))) b H3 H4)))) (\lambda (f:
+F).(\lambda (H3: (csuba g (CHead c (Flat f) t) c2)).(\lambda (H4: (drop (r
+(Flat f) n) O c (CHead d1 (Bind Abst) u1))).(let H_x \def (csuba_gen_flat g c
+c2 t f H3) in (let H5 \def H_x in (ex2_2_ind C T (\lambda (d2: C).(\lambda
+(u2: T).(eq C c2 (CHead d2 (Flat f) u2)))) (\lambda (d2: C).(\lambda (_:
+T).(csuba g c d2))) (or (ex2 C (\lambda (d2: C).(drop (S n) O c2 (CHead d2
+(Bind Abst) u1))) (\lambda (d2: C).(csuba g d1 d2))) (ex4_3 C T A (\lambda
+(d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O c2 (CHead d2 (Bind
+Abbr) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d1
+d2)))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 (asucc
+g a))))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2
+a)))))) (\lambda (x0: C).(\lambda (x1: T).(\lambda (H6: (eq C c2 (CHead x0
+(Flat f) x1))).(\lambda (H7: (csuba g c x0)).(eq_ind_r C (CHead x0 (Flat f)
+x1) (\lambda (c0: C).(or (ex2 C (\lambda (d2: C).(drop (S n) O c0 (CHead d2
+(Bind Abst) u1))) (\lambda (d2: C).(csuba g d1 d2))) (ex4_3 C T A (\lambda
+(d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O c0 (CHead d2 (Bind
+Abbr) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d1
+d2)))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 (asucc
+g a))))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2
+a))))))) (let H8 \def (H0 d1 u1 H4 g x0 H7) in (or_ind (ex2 C (\lambda (d2:
+C).(drop (S n) O x0 (CHead d2 (Bind Abst) u1))) (\lambda (d2: C).(csuba g d1
+d2))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S
+n) O x0 (CHead d2 (Bind Abbr) u2))))) (\lambda (d2: C).(\lambda (_:
T).(\lambda (_: A).(csuba g d1 d2)))) (\lambda (_: C).(\lambda (_:
T).(\lambda (a: A).(arity g d1 u1 (asucc g a))))) (\lambda (d2: C).(\lambda
-(u2: T).(\lambda (a: A).(arity g d2 u2 a)))) x0 x1 x2 (drop_drop (Bind Void)
-n x (CHead x0 (Bind Abbr) x1) H17 t) H13 H14 H15))))))))))) H11)) H10)) c2
-H8)))) H7))))) b H3 H4)))) (\lambda (f: F).(\lambda (H3: (csuba g (CHead c
-(Flat f) t) c2)).(\lambda (H4: (drop (r (Flat f) n) O c (CHead d1 (Bind Abst)
-u1))).(let H_x \def (csuba_gen_flat g c c2 t f H3) in (let H5 \def H_x in
-(ex2_2_ind C T (\lambda (d2: C).(\lambda (u2: T).(eq C c2 (CHead d2 (Flat f)
-u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g c d2))) (or (ex2 C (\lambda
-(d2: C).(drop (S n) O c2 (CHead d2 (Bind Abst) u1))) (\lambda (d2: C).(csuba
-g d1 d2))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_:
-A).(drop (S n) O c2 (CHead d2 (Bind Abbr) u2))))) (\lambda (d2: C).(\lambda
-(_: T).(\lambda (_: A).(csuba g d1 d2)))) (\lambda (_: C).(\lambda (_:
-T).(\lambda (a: A).(arity g d1 u1 (asucc g a))))) (\lambda (d2: C).(\lambda
-(u2: T).(\lambda (a: A).(arity g d2 u2 a)))))) (\lambda (x0: C).(\lambda (x1:
-T).(\lambda (H6: (eq C c2 (CHead x0 (Flat f) x1))).(\lambda (H7: (csuba g c
-x0)).(eq_ind_r C (CHead x0 (Flat f) x1) (\lambda (c0: C).(or (ex2 C (\lambda
-(d2: C).(drop (S n) O c0 (CHead d2 (Bind Abst) u1))) (\lambda (d2: C).(csuba
-g d1 d2))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_:
-A).(drop (S n) O c0 (CHead d2 (Bind Abbr) u2))))) (\lambda (d2: C).(\lambda
-(_: T).(\lambda (_: A).(csuba g d1 d2)))) (\lambda (_: C).(\lambda (_:
-T).(\lambda (a: A).(arity g d1 u1 (asucc g a))))) (\lambda (d2: C).(\lambda
-(u2: T).(\lambda (a: A).(arity g d2 u2 a))))))) (let H8 \def (H0 d1 u1 H4 g
-x0 H7) in (or_ind (ex2 C (\lambda (d2: C).(drop (S n) O x0 (CHead d2 (Bind
-Abst) u1))) (\lambda (d2: C).(csuba g d1 d2))) (ex4_3 C T A (\lambda (d2:
-C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O x0 (CHead d2 (Bind Abbr)
+(u2: T).(\lambda (a: A).(arity g d2 u2 a))))) (or (ex2 C (\lambda (d2:
+C).(drop (S n) O (CHead x0 (Flat f) x1) (CHead d2 (Bind Abst) u1))) (\lambda
+(d2: C).(csuba g d1 d2))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2:
+T).(\lambda (_: A).(drop (S n) O (CHead x0 (Flat f) x1) (CHead d2 (Bind Abbr)
u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d1 d2))))
(\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 (asucc g
a))))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2
-a))))) (or (ex2 C (\lambda (d2: C).(drop (S n) O (CHead x0 (Flat f) x1)
+a)))))) (\lambda (H9: (ex2 C (\lambda (d2: C).(drop (S n) O x0 (CHead d2
+(Bind Abst) u1))) (\lambda (d2: C).(csuba g d1 d2)))).(ex2_ind C (\lambda
+(d2: C).(drop (S n) O x0 (CHead d2 (Bind Abst) u1))) (\lambda (d2: C).(csuba
+g d1 d2)) (or (ex2 C (\lambda (d2: C).(drop (S n) O (CHead x0 (Flat f) x1)
(CHead d2 (Bind Abst) u1))) (\lambda (d2: C).(csuba g d1 d2))) (ex4_3 C T A
(\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O (CHead x0
(Flat f) x1) (CHead d2 (Bind Abbr) u2))))) (\lambda (d2: C).(\lambda (_:
T).(\lambda (_: A).(csuba g d1 d2)))) (\lambda (_: C).(\lambda (_:
T).(\lambda (a: A).(arity g d1 u1 (asucc g a))))) (\lambda (d2: C).(\lambda
-(u2: T).(\lambda (a: A).(arity g d2 u2 a)))))) (\lambda (H9: (ex2 C (\lambda
-(d2: C).(drop (S n) O x0 (CHead d2 (Bind Abst) u1))) (\lambda (d2: C).(csuba
-g d1 d2)))).(ex2_ind C (\lambda (d2: C).(drop (S n) O x0 (CHead d2 (Bind
-Abst) u1))) (\lambda (d2: C).(csuba g d1 d2)) (or (ex2 C (\lambda (d2:
+(u2: T).(\lambda (a: A).(arity g d2 u2 a)))))) (\lambda (x: C).(\lambda (H10:
+(drop (S n) O x0 (CHead x (Bind Abst) u1))).(\lambda (H11: (csuba g d1
+x)).(or_introl (ex2 C (\lambda (d2: C).(drop (S n) O (CHead x0 (Flat f) x1)
+(CHead d2 (Bind Abst) u1))) (\lambda (d2: C).(csuba g d1 d2))) (ex4_3 C T A
+(\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O (CHead x0
+(Flat f) x1) (CHead d2 (Bind Abbr) u2))))) (\lambda (d2: C).(\lambda (_:
+T).(\lambda (_: A).(csuba g d1 d2)))) (\lambda (_: C).(\lambda (_:
+T).(\lambda (a: A).(arity g d1 u1 (asucc g a))))) (\lambda (d2: C).(\lambda
+(u2: T).(\lambda (a: A).(arity g d2 u2 a))))) (ex_intro2 C (\lambda (d2:
C).(drop (S n) O (CHead x0 (Flat f) x1) (CHead d2 (Bind Abst) u1))) (\lambda
-(d2: C).(csuba g d1 d2))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2:
-T).(\lambda (_: A).(drop (S n) O (CHead x0 (Flat f) x1) (CHead d2 (Bind Abbr)
-u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d1 d2))))
-(\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 (asucc g
-a))))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2
-a)))))) (\lambda (x: C).(\lambda (H10: (drop (S n) O x0 (CHead x (Bind Abst)
-u1))).(\lambda (H11: (csuba g d1 x)).(or_introl (ex2 C (\lambda (d2: C).(drop
-(S n) O (CHead x0 (Flat f) x1) (CHead d2 (Bind Abst) u1))) (\lambda (d2:
-C).(csuba g d1 d2))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda
-(_: A).(drop (S n) O (CHead x0 (Flat f) x1) (CHead d2 (Bind Abbr) u2)))))
+(d2: C).(csuba g d1 d2)) x (drop_drop (Flat f) n x0 (CHead x (Bind Abst) u1)
+H10 x1) H11))))) H9)) (\lambda (H9: (ex4_3 C T A (\lambda (d2: C).(\lambda
+(u2: T).(\lambda (_: A).(drop (S n) O x0 (CHead d2 (Bind Abbr) u2)))))
(\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d1 d2)))) (\lambda
(_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 (asucc g a)))))
-(\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 a)))))
-(ex_intro2 C (\lambda (d2: C).(drop (S n) O (CHead x0 (Flat f) x1) (CHead d2
-(Bind Abst) u1))) (\lambda (d2: C).(csuba g d1 d2)) x (drop_drop (Flat f) n
-x0 (CHead x (Bind Abst) u1) H10 x1) H11))))) H9)) (\lambda (H9: (ex4_3 C T A
-(\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O x0 (CHead d2
-(Bind Abbr) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g
-d1 d2)))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1
-(asucc g a))))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2
-u2 a)))))).(ex4_3_ind C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_:
+(\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2
+a)))))).(ex4_3_ind C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_:
A).(drop (S n) O x0 (CHead d2 (Bind Abbr) u2))))) (\lambda (d2: C).(\lambda
(_: T).(\lambda (_: A).(csuba g d1 d2)))) (\lambda (_: C).(\lambda (_:
T).(\lambda (a: A).(arity g d1 u1 (asucc g a))))) (\lambda (d2: C).(\lambda
theorem csuba_drop_abst_rev:
\forall (i: nat).(\forall (c1: C).(\forall (d1: C).(\forall (u: T).((drop i
O c1 (CHead d1 (Bind Abst) u)) \to (\forall (g: G).(\forall (c2: C).((csuba g
-c2 c1) \to (ex2 C (\lambda (d2: C).(drop i O c2 (CHead d2 (Bind Abst) u)))
-(\lambda (d2: C).(csuba g d2 d1))))))))))
+c2 c1) \to (or (ex2 C (\lambda (d2: C).(drop i O c2 (CHead d2 (Bind Abst)
+u))) (\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda
+(u2: T).(drop i O c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda
+(_: T).(csuba g d2 d1))))))))))))
\def
\lambda (i: nat).(nat_ind (\lambda (n: nat).(\forall (c1: C).(\forall (d1:
C).(\forall (u: T).((drop n O c1 (CHead d1 (Bind Abst) u)) \to (\forall (g:
-G).(\forall (c2: C).((csuba g c2 c1) \to (ex2 C (\lambda (d2: C).(drop n O c2
-(CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1)))))))))))
-(\lambda (c1: C).(\lambda (d1: C).(\lambda (u: T).(\lambda (H: (drop O O c1
-(CHead d1 (Bind Abst) u))).(\lambda (g: G).(\lambda (c2: C).(\lambda (H0:
-(csuba g c2 c1)).(let H1 \def (eq_ind C c1 (\lambda (c: C).(csuba g c2 c)) H0
-(CHead d1 (Bind Abst) u) (drop_gen_refl c1 (CHead d1 (Bind Abst) u) H)) in
-(let H_x \def (csuba_gen_abst_rev g d1 c2 u H1) in (let H2 \def H_x in
-(ex2_ind C (\lambda (d2: C).(eq C c2 (CHead d2 (Bind Abst) u))) (\lambda (d2:
-C).(csuba g d2 d1)) (ex2 C (\lambda (d2: C).(drop O O c2 (CHead d2 (Bind
-Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (\lambda (x: C).(\lambda (H3:
-(eq C c2 (CHead x (Bind Abst) u))).(\lambda (H4: (csuba g x d1)).(eq_ind_r C
-(CHead x (Bind Abst) u) (\lambda (c: C).(ex2 C (\lambda (d2: C).(drop O O c
-(CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1)))) (ex_intro2 C
-(\lambda (d2: C).(drop O O (CHead x (Bind Abst) u) (CHead d2 (Bind Abst) u)))
-(\lambda (d2: C).(csuba g d2 d1)) x (drop_refl (CHead x (Bind Abst) u)) H4)
-c2 H3)))) H2))))))))))) (\lambda (n: nat).(\lambda (H: ((\forall (c1:
-C).(\forall (d1: C).(\forall (u: T).((drop n O c1 (CHead d1 (Bind Abst) u))
-\to (\forall (g: G).(\forall (c2: C).((csuba g c2 c1) \to (ex2 C (\lambda
-(d2: C).(drop n O c2 (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2
-d1)))))))))))).(\lambda (c1: C).(C_ind (\lambda (c: C).(\forall (d1:
+G).(\forall (c2: C).((csuba g c2 c1) \to (or (ex2 C (\lambda (d2: C).(drop n
+O c2 (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T
+(\lambda (d2: C).(\lambda (u2: T).(drop n O c2 (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))))))))))) (\lambda (c1:
+C).(\lambda (d1: C).(\lambda (u: T).(\lambda (H: (drop O O c1 (CHead d1 (Bind
+Abst) u))).(\lambda (g: G).(\lambda (c2: C).(\lambda (H0: (csuba g c2
+c1)).(let H1 \def (eq_ind C c1 (\lambda (c: C).(csuba g c2 c)) H0 (CHead d1
+(Bind Abst) u) (drop_gen_refl c1 (CHead d1 (Bind Abst) u) H)) in (let H_x
+\def (csuba_gen_abst_rev g d1 c2 u H1) in (let H2 \def H_x in (or_ind (ex2 C
+(\lambda (d2: C).(eq C c2 (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba
+g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(eq C c2 (CHead d2
+(Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1)))) (or
+(ex2 C (\lambda (d2: C).(drop O O c2 (CHead d2 (Bind Abst) u))) (\lambda (d2:
+C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop O O
+c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+d1))))) (\lambda (H3: (ex2 C (\lambda (d2: C).(eq C c2 (CHead d2 (Bind Abst)
+u))) (\lambda (d2: C).(csuba g d2 d1)))).(ex2_ind C (\lambda (d2: C).(eq C c2
+(CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1)) (or (ex2 C
+(\lambda (d2: C).(drop O O c2 (CHead d2 (Bind Abst) u))) (\lambda (d2:
+C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop O O
+c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+d1))))) (\lambda (x: C).(\lambda (H4: (eq C c2 (CHead x (Bind Abst)
+u))).(\lambda (H5: (csuba g x d1)).(eq_ind_r C (CHead x (Bind Abst) u)
+(\lambda (c: C).(or (ex2 C (\lambda (d2: C).(drop O O c (CHead d2 (Bind Abst)
+u))) (\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda
+(u2: T).(drop O O c (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda
+(_: T).(csuba g d2 d1)))))) (or_introl (ex2 C (\lambda (d2: C).(drop O O
+(CHead x (Bind Abst) u) (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g
+d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop O O (CHead x
+(Bind Abst) u) (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_:
+T).(csuba g d2 d1)))) (ex_intro2 C (\lambda (d2: C).(drop O O (CHead x (Bind
+Abst) u) (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1)) x
+(drop_refl (CHead x (Bind Abst) u)) H5)) c2 H4)))) H3)) (\lambda (H3: (ex2_2
+C T (\lambda (d2: C).(\lambda (u2: T).(eq C c2 (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))).(ex2_2_ind C T (\lambda
+(d2: C).(\lambda (u2: T).(eq C c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2:
+C).(\lambda (_: T).(csuba g d2 d1))) (or (ex2 C (\lambda (d2: C).(drop O O c2
+(CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T
+(\lambda (d2: C).(\lambda (u2: T).(drop O O c2 (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda (x0:
+C).(\lambda (x1: T).(\lambda (H4: (eq C c2 (CHead x0 (Bind Void)
+x1))).(\lambda (H5: (csuba g x0 d1)).(eq_ind_r C (CHead x0 (Bind Void) x1)
+(\lambda (c: C).(or (ex2 C (\lambda (d2: C).(drop O O c (CHead d2 (Bind Abst)
+u))) (\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda
+(u2: T).(drop O O c (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda
+(_: T).(csuba g d2 d1)))))) (or_intror (ex2 C (\lambda (d2: C).(drop O O
+(CHead x0 (Bind Void) x1) (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba
+g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop O O (CHead x0
+(Bind Void) x1) (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_:
+T).(csuba g d2 d1)))) (ex2_2_intro C T (\lambda (d2: C).(\lambda (u2:
+T).(drop O O (CHead x0 (Bind Void) x1) (CHead d2 (Bind Void) u2)))) (\lambda
+(d2: C).(\lambda (_: T).(csuba g d2 d1))) x0 x1 (drop_refl (CHead x0 (Bind
+Void) x1)) H5)) c2 H4))))) H3)) H2))))))))))) (\lambda (n: nat).(\lambda (H:
+((\forall (c1: C).(\forall (d1: C).(\forall (u: T).((drop n O c1 (CHead d1
+(Bind Abst) u)) \to (\forall (g: G).(\forall (c2: C).((csuba g c2 c1) \to (or
+(ex2 C (\lambda (d2: C).(drop n O c2 (CHead d2 (Bind Abst) u))) (\lambda (d2:
+C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop n O
+c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+d1)))))))))))))).(\lambda (c1: C).(C_ind (\lambda (c: C).(\forall (d1:
C).(\forall (u: T).((drop (S n) O c (CHead d1 (Bind Abst) u)) \to (\forall
-(g: G).(\forall (c2: C).((csuba g c2 c) \to (ex2 C (\lambda (d2: C).(drop (S
-n) O c2 (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1))))))))))
+(g: G).(\forall (c2: C).((csuba g c2 c) \to (or (ex2 C (\lambda (d2: C).(drop
+(S n) O c2 (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1)))
+(ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop (S n) O c2 (CHead d2 (Bind
+Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))))))))))
(\lambda (n0: nat).(\lambda (d1: C).(\lambda (u: T).(\lambda (H0: (drop (S n)
O (CSort n0) (CHead d1 (Bind Abst) u))).(\lambda (g: G).(\lambda (c2:
C).(\lambda (_: (csuba g c2 (CSort n0))).(and3_ind (eq C (CHead d1 (Bind
-Abst) u) (CSort n0)) (eq nat (S n) O) (eq nat O O) (ex2 C (\lambda (d2:
+Abst) u) (CSort n0)) (eq nat (S n) O) (eq nat O O) (or (ex2 C (\lambda (d2:
C).(drop (S n) O c2 (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2
-d1))) (\lambda (_: (eq C (CHead d1 (Bind Abst) u) (CSort n0))).(\lambda (H3:
-(eq nat (S n) O)).(\lambda (_: (eq nat O O)).(let H5 \def (eq_ind nat (S n)
+d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop (S n) O c2 (CHead d2
+(Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1)))))
+(\lambda (_: (eq C (CHead d1 (Bind Abst) u) (CSort n0))).(\lambda (H3: (eq
+nat (S n) O)).(\lambda (_: (eq nat O O)).(let H5 \def (eq_ind nat (S n)
(\lambda (ee: nat).(match ee in nat return (\lambda (_: nat).Prop) with [O
-\Rightarrow False | (S _) \Rightarrow True])) I O H3) in (False_ind (ex2 C
-(\lambda (d2: C).(drop (S n) O c2 (CHead d2 (Bind Abst) u))) (\lambda (d2:
-C).(csuba g d2 d1))) H5))))) (drop_gen_sort n0 (S n) O (CHead d1 (Bind Abst)
-u) H0))))))))) (\lambda (c: C).(\lambda (H0: ((\forall (d1: C).(\forall (u:
+\Rightarrow False | (S _) \Rightarrow True])) I O H3) in (False_ind (or (ex2
+C (\lambda (d2: C).(drop (S n) O c2 (CHead d2 (Bind Abst) u))) (\lambda (d2:
+C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop (S n)
+O c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g
+d2 d1))))) H5))))) (drop_gen_sort n0 (S n) O (CHead d1 (Bind Abst) u)
+H0))))))))) (\lambda (c: C).(\lambda (H0: ((\forall (d1: C).(\forall (u:
T).((drop (S n) O c (CHead d1 (Bind Abst) u)) \to (\forall (g: G).(\forall
-(c2: C).((csuba g c2 c) \to (ex2 C (\lambda (d2: C).(drop (S n) O c2 (CHead
-d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1))))))))))).(\lambda (k:
-K).(\lambda (t: T).(\lambda (d1: C).(\lambda (u: T).(\lambda (H1: (drop (S n)
-O (CHead c k t) (CHead d1 (Bind Abst) u))).(\lambda (g: G).(\lambda (c2:
-C).(\lambda (H2: (csuba g c2 (CHead c k t))).(K_ind (\lambda (k0: K).((csuba
-g c2 (CHead c k0 t)) \to ((drop (r k0 n) O c (CHead d1 (Bind Abst) u)) \to
-(ex2 C (\lambda (d2: C).(drop (S n) O c2 (CHead d2 (Bind Abst) u))) (\lambda
-(d2: C).(csuba g d2 d1)))))) (\lambda (b: B).(\lambda (H3: (csuba g c2 (CHead
-c (Bind b) t))).(\lambda (H4: (drop (r (Bind b) n) O c (CHead d1 (Bind Abst)
-u))).(B_ind (\lambda (b0: B).((csuba g c2 (CHead c (Bind b0) t)) \to ((drop
-(r (Bind b0) n) O c (CHead d1 (Bind Abst) u)) \to (ex2 C (\lambda (d2:
+(c2: C).((csuba g c2 c) \to (or (ex2 C (\lambda (d2: C).(drop (S n) O c2
+(CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T
+(\lambda (d2: C).(\lambda (u2: T).(drop (S n) O c2 (CHead d2 (Bind Void)
+u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))))))))))).(\lambda
+(k: K).(\lambda (t: T).(\lambda (d1: C).(\lambda (u: T).(\lambda (H1: (drop
+(S n) O (CHead c k t) (CHead d1 (Bind Abst) u))).(\lambda (g: G).(\lambda
+(c2: C).(\lambda (H2: (csuba g c2 (CHead c k t))).(K_ind (\lambda (k0:
+K).((csuba g c2 (CHead c k0 t)) \to ((drop (r k0 n) O c (CHead d1 (Bind Abst)
+u)) \to (or (ex2 C (\lambda (d2: C).(drop (S n) O c2 (CHead d2 (Bind Abst)
+u))) (\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda
+(u2: T).(drop (S n) O c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2:
+C).(\lambda (_: T).(csuba g d2 d1)))))))) (\lambda (b: B).(\lambda (H3:
+(csuba g c2 (CHead c (Bind b) t))).(\lambda (H4: (drop (r (Bind b) n) O c
+(CHead d1 (Bind Abst) u))).(B_ind (\lambda (b0: B).((csuba g c2 (CHead c
+(Bind b0) t)) \to ((drop (r (Bind b0) n) O c (CHead d1 (Bind Abst) u)) \to
+(or (ex2 C (\lambda (d2: C).(drop (S n) O c2 (CHead d2 (Bind Abst) u)))
+(\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(drop (S n) O c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda
+(_: T).(csuba g d2 d1)))))))) (\lambda (H5: (csuba g c2 (CHead c (Bind Abbr)
+t))).(\lambda (H6: (drop (r (Bind Abbr) n) O c (CHead d1 (Bind Abst)
+u))).(let H_x \def (csuba_gen_abbr_rev g c c2 t H5) in (let H7 \def H_x in
+(or3_ind (ex2 C (\lambda (d2: C).(eq C c2 (CHead d2 (Bind Abbr) t))) (\lambda
+(d2: C).(csuba g d2 c))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2:
+T).(\lambda (_: A).(eq C c2 (CHead d2 (Bind Abst) u2))))) (\lambda (d2:
+C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 c)))) (\lambda (d2:
+C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda
+(_: C).(\lambda (_: T).(\lambda (a: A).(arity g c t a))))) (ex2_2 C T
+(\lambda (d2: C).(\lambda (u2: T).(eq C c2 (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 c)))) (or (ex2 C (\lambda (d2:
C).(drop (S n) O c2 (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2
-d1)))))) (\lambda (H5: (csuba g c2 (CHead c (Bind Abbr) t))).(\lambda (H6:
-(drop (r (Bind Abbr) n) O c (CHead d1 (Bind Abst) u))).(let H_x \def
-(csuba_gen_abbr_rev g c c2 t H5) in (let H7 \def H_x in (or_ind (ex2 C
-(\lambda (d2: C).(eq C c2 (CHead d2 (Bind Abbr) t))) (\lambda (d2: C).(csuba
-g d2 c))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(eq
-C c2 (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda
-(_: A).(csuba g d2 c)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
-A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda
-(a: A).(arity g c t a))))) (ex2 C (\lambda (d2: C).(drop (S n) O c2 (CHead d2
-(Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (\lambda (H8: (ex2 C
-(\lambda (d2: C).(eq C c2 (CHead d2 (Bind Abbr) t))) (\lambda (d2: C).(csuba
-g d2 c)))).(ex2_ind C (\lambda (d2: C).(eq C c2 (CHead d2 (Bind Abbr) t)))
-(\lambda (d2: C).(csuba g d2 c)) (ex2 C (\lambda (d2: C).(drop (S n) O c2
-(CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (\lambda (x:
-C).(\lambda (H9: (eq C c2 (CHead x (Bind Abbr) t))).(\lambda (H10: (csuba g x
-c)).(eq_ind_r C (CHead x (Bind Abbr) t) (\lambda (c0: C).(ex2 C (\lambda (d2:
-C).(drop (S n) O c0 (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2
-d1)))) (let H11 \def (H c d1 u H6 g x H10) in (ex2_ind C (\lambda (d2:
+d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop (S n) O c2 (CHead d2
+(Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1)))))
+(\lambda (H8: (ex2 C (\lambda (d2: C).(eq C c2 (CHead d2 (Bind Abbr) t)))
+(\lambda (d2: C).(csuba g d2 c)))).(ex2_ind C (\lambda (d2: C).(eq C c2
+(CHead d2 (Bind Abbr) t))) (\lambda (d2: C).(csuba g d2 c)) (or (ex2 C
+(\lambda (d2: C).(drop (S n) O c2 (CHead d2 (Bind Abst) u))) (\lambda (d2:
+C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop (S n)
+O c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g
+d2 d1))))) (\lambda (x: C).(\lambda (H9: (eq C c2 (CHead x (Bind Abbr)
+t))).(\lambda (H10: (csuba g x c)).(eq_ind_r C (CHead x (Bind Abbr) t)
+(\lambda (c0: C).(or (ex2 C (\lambda (d2: C).(drop (S n) O c0 (CHead d2 (Bind
+Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2:
+C).(\lambda (u2: T).(drop (S n) O c0 (CHead d2 (Bind Void) u2)))) (\lambda
+(d2: C).(\lambda (_: T).(csuba g d2 d1)))))) (let H11 \def (H c d1 u H6 g x
+H10) in (or_ind (ex2 C (\lambda (d2: C).(drop n O x (CHead d2 (Bind Abst)
+u))) (\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda
+(u2: T).(drop n O x (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda
+(_: T).(csuba g d2 d1)))) (or (ex2 C (\lambda (d2: C).(drop (S n) O (CHead x
+(Bind Abbr) t) (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1)))
+(ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop (S n) O (CHead x (Bind
+Abbr) t) (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba
+g d2 d1))))) (\lambda (H12: (ex2 C (\lambda (d2: C).(drop n O x (CHead d2
+(Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1)))).(ex2_ind C (\lambda (d2:
C).(drop n O x (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1))
-(ex2 C (\lambda (d2: C).(drop (S n) O (CHead x (Bind Abbr) t) (CHead d2 (Bind
-Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (\lambda (x0: C).(\lambda (H12:
-(drop n O x (CHead x0 (Bind Abst) u))).(\lambda (H13: (csuba g x0 d1)).(let
-H14 \def (refl_equal nat (r (Bind Abst) n)) in (let H15 \def (eq_ind nat n
-(\lambda (n0: nat).(drop n0 O x (CHead x0 (Bind Abst) u))) H12 (r (Bind Abst)
-n) H14) in (ex_intro2 C (\lambda (d2: C).(drop (S n) O (CHead x (Bind Abbr)
+(or (ex2 C (\lambda (d2: C).(drop (S n) O (CHead x (Bind Abbr) t) (CHead d2
+(Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2:
+C).(\lambda (u2: T).(drop (S n) O (CHead x (Bind Abbr) t) (CHead d2 (Bind
+Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda
+(x0: C).(\lambda (H13: (drop n O x (CHead x0 (Bind Abst) u))).(\lambda (H14:
+(csuba g x0 d1)).(or_introl (ex2 C (\lambda (d2: C).(drop (S n) O (CHead x
+(Bind Abbr) t) (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1)))
+(ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop (S n) O (CHead x (Bind
+Abbr) t) (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba
+g d2 d1)))) (ex_intro2 C (\lambda (d2: C).(drop (S n) O (CHead x (Bind Abbr)
t) (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1)) x0 (drop_drop
-(Bind Abbr) n x (CHead x0 (Bind Abst) u) H15 t) H13)))))) H11)) c2 H9))))
-H8)) (\lambda (H8: (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda
-(_: A).(eq C c2 (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_:
-T).(\lambda (_: A).(csuba g d2 c)))) (\lambda (d2: C).(\lambda (u2:
-T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda
-(_: T).(\lambda (a: A).(arity g c t a)))))).(ex4_3_ind C T A (\lambda (d2:
-C).(\lambda (u2: T).(\lambda (_: A).(eq C c2 (CHead d2 (Bind Abst) u2)))))
-(\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 c)))) (\lambda
-(d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a)))))
-(\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g c t a)))) (ex2 C
-(\lambda (d2: C).(drop (S n) O c2 (CHead d2 (Bind Abst) u))) (\lambda (d2:
-C).(csuba g d2 d1))) (\lambda (x0: C).(\lambda (x1: T).(\lambda (x2:
+(Bind Abbr) n x (CHead x0 (Bind Abst) u) H13 t) H14))))) H12)) (\lambda (H12:
+(ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop n O x (CHead d2 (Bind
+Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))).(ex2_2_ind
+C T (\lambda (d2: C).(\lambda (u2: T).(drop n O x (CHead d2 (Bind Void)
+u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))) (or (ex2 C (\lambda
+(d2: C).(drop (S n) O (CHead x (Bind Abbr) t) (CHead d2 (Bind Abst) u)))
+(\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(drop (S n) O (CHead x (Bind Abbr) t) (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda (x0:
+C).(\lambda (x1: T).(\lambda (H13: (drop n O x (CHead x0 (Bind Void)
+x1))).(\lambda (H14: (csuba g x0 d1)).(or_intror (ex2 C (\lambda (d2:
+C).(drop (S n) O (CHead x (Bind Abbr) t) (CHead d2 (Bind Abst) u))) (\lambda
+(d2: C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop
+(S n) O (CHead x (Bind Abbr) t) (CHead d2 (Bind Void) u2)))) (\lambda (d2:
+C).(\lambda (_: T).(csuba g d2 d1)))) (ex2_2_intro C T (\lambda (d2:
+C).(\lambda (u2: T).(drop (S n) O (CHead x (Bind Abbr) t) (CHead d2 (Bind
+Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))) x0 x1
+(drop_drop (Bind Abbr) n x (CHead x0 (Bind Void) x1) H13 t) H14)))))) H12))
+H11)) c2 H9)))) H8)) (\lambda (H8: (ex4_3 C T A (\lambda (d2: C).(\lambda
+(u2: T).(\lambda (_: A).(eq C c2 (CHead d2 (Bind Abst) u2))))) (\lambda (d2:
+C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 c)))) (\lambda (d2:
+C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda
+(_: C).(\lambda (_: T).(\lambda (a: A).(arity g c t a)))))).(ex4_3_ind C T A
+(\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(eq C c2 (CHead d2 (Bind
+Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2
+c)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc
+g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g c t a))))
+(or (ex2 C (\lambda (d2: C).(drop (S n) O c2 (CHead d2 (Bind Abst) u)))
+(\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(drop (S n) O c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda
+(_: T).(csuba g d2 d1))))) (\lambda (x0: C).(\lambda (x1: T).(\lambda (x2:
A).(\lambda (H9: (eq C c2 (CHead x0 (Bind Abst) x1))).(\lambda (H10: (csuba g
x0 c)).(\lambda (_: (arity g x0 x1 (asucc g x2))).(\lambda (_: (arity g c t
-x2)).(eq_ind_r C (CHead x0 (Bind Abst) x1) (\lambda (c0: C).(ex2 C (\lambda
-(d2: C).(drop (S n) O c0 (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g
-d2 d1)))) (let H13 \def (H c d1 u H6 g x0 H10) in (ex2_ind C (\lambda (d2:
-C).(drop n O x0 (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1))
+x2)).(eq_ind_r C (CHead x0 (Bind Abst) x1) (\lambda (c0: C).(or (ex2 C
+(\lambda (d2: C).(drop (S n) O c0 (CHead d2 (Bind Abst) u))) (\lambda (d2:
+C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop (S n)
+O c0 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g
+d2 d1)))))) (let H13 \def (H c d1 u H6 g x0 H10) in (or_ind (ex2 C (\lambda
+(d2: C).(drop n O x0 (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2
+d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop n O x0 (CHead d2
+(Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1)))) (or
+(ex2 C (\lambda (d2: C).(drop (S n) O (CHead x0 (Bind Abst) x1) (CHead d2
+(Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2:
+C).(\lambda (u2: T).(drop (S n) O (CHead x0 (Bind Abst) x1) (CHead d2 (Bind
+Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda
+(H14: (ex2 C (\lambda (d2: C).(drop n O x0 (CHead d2 (Bind Abst) u)))
+(\lambda (d2: C).(csuba g d2 d1)))).(ex2_ind C (\lambda (d2: C).(drop n O x0
+(CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1)) (or (ex2 C
+(\lambda (d2: C).(drop (S n) O (CHead x0 (Bind Abst) x1) (CHead d2 (Bind
+Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2:
+C).(\lambda (u2: T).(drop (S n) O (CHead x0 (Bind Abst) x1) (CHead d2 (Bind
+Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda
+(x: C).(\lambda (H15: (drop n O x0 (CHead x (Bind Abst) u))).(\lambda (H16:
+(csuba g x d1)).(or_introl (ex2 C (\lambda (d2: C).(drop (S n) O (CHead x0
+(Bind Abst) x1) (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1)))
+(ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop (S n) O (CHead x0 (Bind
+Abst) x1) (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_:
+T).(csuba g d2 d1)))) (ex_intro2 C (\lambda (d2: C).(drop (S n) O (CHead x0
+(Bind Abst) x1) (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1))
+x (drop_drop (Bind Abst) n x0 (CHead x (Bind Abst) u) H15 x1) H16))))) H14))
+(\lambda (H14: (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop n O x0
+(CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+d1))))).(ex2_2_ind C T (\lambda (d2: C).(\lambda (u2: T).(drop n O x0 (CHead
+d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))) (or
(ex2 C (\lambda (d2: C).(drop (S n) O (CHead x0 (Bind Abst) x1) (CHead d2
-(Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (\lambda (x: C).(\lambda
-(H14: (drop n O x0 (CHead x (Bind Abst) u))).(\lambda (H15: (csuba g x
-d1)).(let H16 \def (refl_equal nat (r (Bind Abst) n)) in (let H17 \def
-(eq_ind nat n (\lambda (n0: nat).(drop n0 O x0 (CHead x (Bind Abst) u))) H14
-(r (Bind Abst) n) H16) in (ex_intro2 C (\lambda (d2: C).(drop (S n) O (CHead
-x0 (Bind Abst) x1) (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2
-d1)) x (drop_drop (Bind Abst) n x0 (CHead x (Bind Abst) u) H17 x1) H15))))))
-H13)) c2 H9)))))))) H8)) H7))))) (\lambda (H5: (csuba g c2 (CHead c (Bind
-Abst) t))).(\lambda (H6: (drop (r (Bind Abst) n) O c (CHead d1 (Bind Abst)
+(Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2:
+C).(\lambda (u2: T).(drop (S n) O (CHead x0 (Bind Abst) x1) (CHead d2 (Bind
+Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda
+(x3: C).(\lambda (x4: T).(\lambda (H15: (drop n O x0 (CHead x3 (Bind Void)
+x4))).(\lambda (H16: (csuba g x3 d1)).(or_intror (ex2 C (\lambda (d2:
+C).(drop (S n) O (CHead x0 (Bind Abst) x1) (CHead d2 (Bind Abst) u)))
+(\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(drop (S n) O (CHead x0 (Bind Abst) x1) (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1)))) (ex2_2_intro C T (\lambda
+(d2: C).(\lambda (u2: T).(drop (S n) O (CHead x0 (Bind Abst) x1) (CHead d2
+(Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))) x3 x4
+(drop_drop (Bind Abst) n x0 (CHead x3 (Bind Void) x4) H15 x1) H16)))))) H14))
+H13)) c2 H9)))))))) H8)) (\lambda (H8: (ex2_2 C T (\lambda (d2: C).(\lambda
+(u2: T).(eq C c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_:
+T).(csuba g d2 c))))).(ex2_2_ind C T (\lambda (d2: C).(\lambda (u2: T).(eq C
+c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+c))) (or (ex2 C (\lambda (d2: C).(drop (S n) O c2 (CHead d2 (Bind Abst) u)))
+(\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(drop (S n) O c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda
+(_: T).(csuba g d2 d1))))) (\lambda (x0: C).(\lambda (x1: T).(\lambda (H9:
+(eq C c2 (CHead x0 (Bind Void) x1))).(\lambda (H10: (csuba g x0 c)).(eq_ind_r
+C (CHead x0 (Bind Void) x1) (\lambda (c0: C).(or (ex2 C (\lambda (d2:
+C).(drop (S n) O c0 (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2
+d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop (S n) O c0 (CHead d2
+(Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1)))))) (let
+H11 \def (H c d1 u H6 g x0 H10) in (or_ind (ex2 C (\lambda (d2: C).(drop n O
+x0 (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T
+(\lambda (d2: C).(\lambda (u2: T).(drop n O x0 (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1)))) (or (ex2 C (\lambda (d2:
+C).(drop (S n) O (CHead x0 (Bind Void) x1) (CHead d2 (Bind Abst) u)))
+(\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(drop (S n) O (CHead x0 (Bind Void) x1) (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda (H12: (ex2 C
+(\lambda (d2: C).(drop n O x0 (CHead d2 (Bind Abst) u))) (\lambda (d2:
+C).(csuba g d2 d1)))).(ex2_ind C (\lambda (d2: C).(drop n O x0 (CHead d2
+(Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1)) (or (ex2 C (\lambda (d2:
+C).(drop (S n) O (CHead x0 (Bind Void) x1) (CHead d2 (Bind Abst) u)))
+(\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(drop (S n) O (CHead x0 (Bind Void) x1) (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda (x: C).(\lambda
+(H13: (drop n O x0 (CHead x (Bind Abst) u))).(\lambda (H14: (csuba g x
+d1)).(or_introl (ex2 C (\lambda (d2: C).(drop (S n) O (CHead x0 (Bind Void)
+x1) (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T
+(\lambda (d2: C).(\lambda (u2: T).(drop (S n) O (CHead x0 (Bind Void) x1)
+(CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+d1)))) (ex_intro2 C (\lambda (d2: C).(drop (S n) O (CHead x0 (Bind Void) x1)
+(CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1)) x (drop_drop
+(Bind Void) n x0 (CHead x (Bind Abst) u) H13 x1) H14))))) H12)) (\lambda
+(H12: (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop n O x0 (CHead d2
+(Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+d1))))).(ex2_2_ind C T (\lambda (d2: C).(\lambda (u2: T).(drop n O x0 (CHead
+d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))) (or
+(ex2 C (\lambda (d2: C).(drop (S n) O (CHead x0 (Bind Void) x1) (CHead d2
+(Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2:
+C).(\lambda (u2: T).(drop (S n) O (CHead x0 (Bind Void) x1) (CHead d2 (Bind
+Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda
+(x2: C).(\lambda (x3: T).(\lambda (H13: (drop n O x0 (CHead x2 (Bind Void)
+x3))).(\lambda (H14: (csuba g x2 d1)).(or_intror (ex2 C (\lambda (d2:
+C).(drop (S n) O (CHead x0 (Bind Void) x1) (CHead d2 (Bind Abst) u)))
+(\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(drop (S n) O (CHead x0 (Bind Void) x1) (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1)))) (ex2_2_intro C T (\lambda
+(d2: C).(\lambda (u2: T).(drop (S n) O (CHead x0 (Bind Void) x1) (CHead d2
+(Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))) x2 x3
+(drop_drop (Bind Void) n x0 (CHead x2 (Bind Void) x3) H13 x1) H14)))))) H12))
+H11)) c2 H9))))) H8)) H7))))) (\lambda (H5: (csuba g c2 (CHead c (Bind Abst)
+t))).(\lambda (H6: (drop (r (Bind Abst) n) O c (CHead d1 (Bind Abst)
u))).(let H_x \def (csuba_gen_abst_rev g c c2 t H5) in (let H7 \def H_x in
-(ex2_ind C (\lambda (d2: C).(eq C c2 (CHead d2 (Bind Abst) t))) (\lambda (d2:
-C).(csuba g d2 c)) (ex2 C (\lambda (d2: C).(drop (S n) O c2 (CHead d2 (Bind
-Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (\lambda (x: C).(\lambda (H8:
-(eq C c2 (CHead x (Bind Abst) t))).(\lambda (H9: (csuba g x c)).(eq_ind_r C
-(CHead x (Bind Abst) t) (\lambda (c0: C).(ex2 C (\lambda (d2: C).(drop (S n)
-O c0 (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1)))) (let H10
-\def (H c d1 u H6 g x H9) in (ex2_ind C (\lambda (d2: C).(drop n O x (CHead
-d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1)) (ex2 C (\lambda (d2:
-C).(drop (S n) O (CHead x (Bind Abst) t) (CHead d2 (Bind Abst) u))) (\lambda
-(d2: C).(csuba g d2 d1))) (\lambda (x0: C).(\lambda (H11: (drop n O x (CHead
-x0 (Bind Abst) u))).(\lambda (H12: (csuba g x0 d1)).(let H13 \def (refl_equal
-nat (r (Bind Abst) n)) in (let H14 \def (eq_ind nat n (\lambda (n0:
-nat).(drop n0 O x (CHead x0 (Bind Abst) u))) H11 (r (Bind Abst) n) H13) in
-(ex_intro2 C (\lambda (d2: C).(drop (S n) O (CHead x (Bind Abst) t) (CHead d2
-(Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1)) x0 (drop_drop (Bind Abst)
-n x (CHead x0 (Bind Abst) u) H14 t) H12)))))) H10)) c2 H8)))) H7)))))
-(\lambda (H5: (csuba g c2 (CHead c (Bind Void) t))).(\lambda (H6: (drop (r
-(Bind Void) n) O c (CHead d1 (Bind Abst) u))).(let H_x \def
-(csuba_gen_void_rev g c c2 t H5) in (let H7 \def H_x in (ex2_ind C (\lambda
-(d2: C).(eq C c2 (CHead d2 (Bind Void) t))) (\lambda (d2: C).(csuba g d2 c))
-(ex2 C (\lambda (d2: C).(drop (S n) O c2 (CHead d2 (Bind Abst) u))) (\lambda
-(d2: C).(csuba g d2 d1))) (\lambda (x: C).(\lambda (H8: (eq C c2 (CHead x
-(Bind Void) t))).(\lambda (H9: (csuba g x c)).(eq_ind_r C (CHead x (Bind
-Void) t) (\lambda (c0: C).(ex2 C (\lambda (d2: C).(drop (S n) O c0 (CHead d2
-(Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1)))) (let H10 \def (H c d1 u
-H6 g x H9) in (ex2_ind C (\lambda (d2: C).(drop n O x (CHead d2 (Bind Abst)
-u))) (\lambda (d2: C).(csuba g d2 d1)) (ex2 C (\lambda (d2: C).(drop (S n) O
-(CHead x (Bind Void) t) (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g
-d2 d1))) (\lambda (x0: C).(\lambda (H11: (drop n O x (CHead x0 (Bind Abst)
-u))).(\lambda (H12: (csuba g x0 d1)).(let H13 \def (refl_equal nat (r (Bind
-Abst) n)) in (let H14 \def (eq_ind nat n (\lambda (n0: nat).(drop n0 O x
-(CHead x0 (Bind Abst) u))) H11 (r (Bind Abst) n) H13) in (ex_intro2 C
+(or_ind (ex2 C (\lambda (d2: C).(eq C c2 (CHead d2 (Bind Abst) t))) (\lambda
+(d2: C).(csuba g d2 c))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(eq C
+c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+c)))) (or (ex2 C (\lambda (d2: C).(drop (S n) O c2 (CHead d2 (Bind Abst) u)))
+(\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(drop (S n) O c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda
+(_: T).(csuba g d2 d1))))) (\lambda (H8: (ex2 C (\lambda (d2: C).(eq C c2
+(CHead d2 (Bind Abst) t))) (\lambda (d2: C).(csuba g d2 c)))).(ex2_ind C
+(\lambda (d2: C).(eq C c2 (CHead d2 (Bind Abst) t))) (\lambda (d2: C).(csuba
+g d2 c)) (or (ex2 C (\lambda (d2: C).(drop (S n) O c2 (CHead d2 (Bind Abst)
+u))) (\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda
+(u2: T).(drop (S n) O c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2:
+C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda (x: C).(\lambda (H9: (eq C c2
+(CHead x (Bind Abst) t))).(\lambda (H10: (csuba g x c)).(eq_ind_r C (CHead x
+(Bind Abst) t) (\lambda (c0: C).(or (ex2 C (\lambda (d2: C).(drop (S n) O c0
+(CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T
+(\lambda (d2: C).(\lambda (u2: T).(drop (S n) O c0 (CHead d2 (Bind Void)
+u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1)))))) (let H11 \def (H
+c d1 u H6 g x H10) in (or_ind (ex2 C (\lambda (d2: C).(drop n O x (CHead d2
+(Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2:
+C).(\lambda (u2: T).(drop n O x (CHead d2 (Bind Void) u2)))) (\lambda (d2:
+C).(\lambda (_: T).(csuba g d2 d1)))) (or (ex2 C (\lambda (d2: C).(drop (S n)
+O (CHead x (Bind Abst) t) (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba
+g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop (S n) O (CHead
+x (Bind Abst) t) (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_:
+T).(csuba g d2 d1))))) (\lambda (H12: (ex2 C (\lambda (d2: C).(drop n O x
+(CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1)))).(ex2_ind C
+(\lambda (d2: C).(drop n O x (CHead d2 (Bind Abst) u))) (\lambda (d2:
+C).(csuba g d2 d1)) (or (ex2 C (\lambda (d2: C).(drop (S n) O (CHead x (Bind
+Abst) t) (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (ex2_2
+C T (\lambda (d2: C).(\lambda (u2: T).(drop (S n) O (CHead x (Bind Abst) t)
+(CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+d1))))) (\lambda (x0: C).(\lambda (H13: (drop n O x (CHead x0 (Bind Abst)
+u))).(\lambda (H14: (csuba g x0 d1)).(or_introl (ex2 C (\lambda (d2: C).(drop
+(S n) O (CHead x (Bind Abst) t) (CHead d2 (Bind Abst) u))) (\lambda (d2:
+C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop (S n)
+O (CHead x (Bind Abst) t) (CHead d2 (Bind Void) u2)))) (\lambda (d2:
+C).(\lambda (_: T).(csuba g d2 d1)))) (ex_intro2 C (\lambda (d2: C).(drop (S
+n) O (CHead x (Bind Abst) t) (CHead d2 (Bind Abst) u))) (\lambda (d2:
+C).(csuba g d2 d1)) x0 (drop_drop (Bind Abst) n x (CHead x0 (Bind Abst) u)
+H13 t) H14))))) H12)) (\lambda (H12: (ex2_2 C T (\lambda (d2: C).(\lambda
+(u2: T).(drop n O x (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda
+(_: T).(csuba g d2 d1))))).(ex2_2_ind C T (\lambda (d2: C).(\lambda (u2:
+T).(drop n O x (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_:
+T).(csuba g d2 d1))) (or (ex2 C (\lambda (d2: C).(drop (S n) O (CHead x (Bind
+Abst) t) (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (ex2_2
+C T (\lambda (d2: C).(\lambda (u2: T).(drop (S n) O (CHead x (Bind Abst) t)
+(CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+d1))))) (\lambda (x0: C).(\lambda (x1: T).(\lambda (H13: (drop n O x (CHead
+x0 (Bind Void) x1))).(\lambda (H14: (csuba g x0 d1)).(or_intror (ex2 C
+(\lambda (d2: C).(drop (S n) O (CHead x (Bind Abst) t) (CHead d2 (Bind Abst)
+u))) (\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda
+(u2: T).(drop (S n) O (CHead x (Bind Abst) t) (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1)))) (ex2_2_intro C T (\lambda
+(d2: C).(\lambda (u2: T).(drop (S n) O (CHead x (Bind Abst) t) (CHead d2
+(Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))) x0 x1
+(drop_drop (Bind Abst) n x (CHead x0 (Bind Void) x1) H13 t) H14)))))) H12))
+H11)) c2 H9)))) H8)) (\lambda (H8: (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(eq C c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_:
+T).(csuba g d2 c))))).(ex2_2_ind C T (\lambda (d2: C).(\lambda (u2: T).(eq C
+c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+c))) (or (ex2 C (\lambda (d2: C).(drop (S n) O c2 (CHead d2 (Bind Abst) u)))
+(\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(drop (S n) O c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda
+(_: T).(csuba g d2 d1))))) (\lambda (x0: C).(\lambda (x1: T).(\lambda (H9:
+(eq C c2 (CHead x0 (Bind Void) x1))).(\lambda (H10: (csuba g x0 c)).(eq_ind_r
+C (CHead x0 (Bind Void) x1) (\lambda (c0: C).(or (ex2 C (\lambda (d2:
+C).(drop (S n) O c0 (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2
+d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop (S n) O c0 (CHead d2
+(Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1)))))) (let
+H11 \def (H c d1 u H6 g x0 H10) in (or_ind (ex2 C (\lambda (d2: C).(drop n O
+x0 (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T
+(\lambda (d2: C).(\lambda (u2: T).(drop n O x0 (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1)))) (or (ex2 C (\lambda (d2:
+C).(drop (S n) O (CHead x0 (Bind Void) x1) (CHead d2 (Bind Abst) u)))
+(\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(drop (S n) O (CHead x0 (Bind Void) x1) (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda (H12: (ex2 C
+(\lambda (d2: C).(drop n O x0 (CHead d2 (Bind Abst) u))) (\lambda (d2:
+C).(csuba g d2 d1)))).(ex2_ind C (\lambda (d2: C).(drop n O x0 (CHead d2
+(Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1)) (or (ex2 C (\lambda (d2:
+C).(drop (S n) O (CHead x0 (Bind Void) x1) (CHead d2 (Bind Abst) u)))
+(\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(drop (S n) O (CHead x0 (Bind Void) x1) (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda (x: C).(\lambda
+(H13: (drop n O x0 (CHead x (Bind Abst) u))).(\lambda (H14: (csuba g x
+d1)).(or_introl (ex2 C (\lambda (d2: C).(drop (S n) O (CHead x0 (Bind Void)
+x1) (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T
+(\lambda (d2: C).(\lambda (u2: T).(drop (S n) O (CHead x0 (Bind Void) x1)
+(CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+d1)))) (ex_intro2 C (\lambda (d2: C).(drop (S n) O (CHead x0 (Bind Void) x1)
+(CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1)) x (drop_drop
+(Bind Void) n x0 (CHead x (Bind Abst) u) H13 x1) H14))))) H12)) (\lambda
+(H12: (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop n O x0 (CHead d2
+(Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+d1))))).(ex2_2_ind C T (\lambda (d2: C).(\lambda (u2: T).(drop n O x0 (CHead
+d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))) (or
+(ex2 C (\lambda (d2: C).(drop (S n) O (CHead x0 (Bind Void) x1) (CHead d2
+(Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2:
+C).(\lambda (u2: T).(drop (S n) O (CHead x0 (Bind Void) x1) (CHead d2 (Bind
+Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda
+(x2: C).(\lambda (x3: T).(\lambda (H13: (drop n O x0 (CHead x2 (Bind Void)
+x3))).(\lambda (H14: (csuba g x2 d1)).(or_intror (ex2 C (\lambda (d2:
+C).(drop (S n) O (CHead x0 (Bind Void) x1) (CHead d2 (Bind Abst) u)))
+(\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(drop (S n) O (CHead x0 (Bind Void) x1) (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1)))) (ex2_2_intro C T (\lambda
+(d2: C).(\lambda (u2: T).(drop (S n) O (CHead x0 (Bind Void) x1) (CHead d2
+(Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))) x2 x3
+(drop_drop (Bind Void) n x0 (CHead x2 (Bind Void) x3) H13 x1) H14)))))) H12))
+H11)) c2 H9))))) H8)) H7))))) (\lambda (H5: (csuba g c2 (CHead c (Bind Void)
+t))).(\lambda (H6: (drop (r (Bind Void) n) O c (CHead d1 (Bind Abst)
+u))).(let H_x \def (csuba_gen_void_rev g c c2 t H5) in (let H7 \def H_x in
+(ex2_ind C (\lambda (d2: C).(eq C c2 (CHead d2 (Bind Void) t))) (\lambda (d2:
+C).(csuba g d2 c)) (or (ex2 C (\lambda (d2: C).(drop (S n) O c2 (CHead d2
+(Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2:
+C).(\lambda (u2: T).(drop (S n) O c2 (CHead d2 (Bind Void) u2)))) (\lambda
+(d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda (x: C).(\lambda (H8: (eq
+C c2 (CHead x (Bind Void) t))).(\lambda (H9: (csuba g x c)).(eq_ind_r C
+(CHead x (Bind Void) t) (\lambda (c0: C).(or (ex2 C (\lambda (d2: C).(drop (S
+n) O c0 (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (ex2_2
+C T (\lambda (d2: C).(\lambda (u2: T).(drop (S n) O c0 (CHead d2 (Bind Void)
+u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1)))))) (let H10 \def (H
+c d1 u H6 g x H9) in (or_ind (ex2 C (\lambda (d2: C).(drop n O x (CHead d2
+(Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2:
+C).(\lambda (u2: T).(drop n O x (CHead d2 (Bind Void) u2)))) (\lambda (d2:
+C).(\lambda (_: T).(csuba g d2 d1)))) (or (ex2 C (\lambda (d2: C).(drop (S n)
+O (CHead x (Bind Void) t) (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba
+g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop (S n) O (CHead
+x (Bind Void) t) (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_:
+T).(csuba g d2 d1))))) (\lambda (H11: (ex2 C (\lambda (d2: C).(drop n O x
+(CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1)))).(ex2_ind C
+(\lambda (d2: C).(drop n O x (CHead d2 (Bind Abst) u))) (\lambda (d2:
+C).(csuba g d2 d1)) (or (ex2 C (\lambda (d2: C).(drop (S n) O (CHead x (Bind
+Void) t) (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (ex2_2
+C T (\lambda (d2: C).(\lambda (u2: T).(drop (S n) O (CHead x (Bind Void) t)
+(CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+d1))))) (\lambda (x0: C).(\lambda (H12: (drop n O x (CHead x0 (Bind Abst)
+u))).(\lambda (H13: (csuba g x0 d1)).(or_introl (ex2 C (\lambda (d2: C).(drop
+(S n) O (CHead x (Bind Void) t) (CHead d2 (Bind Abst) u))) (\lambda (d2:
+C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop (S n)
+O (CHead x (Bind Void) t) (CHead d2 (Bind Void) u2)))) (\lambda (d2:
+C).(\lambda (_: T).(csuba g d2 d1)))) (ex_intro2 C (\lambda (d2: C).(drop (S
+n) O (CHead x (Bind Void) t) (CHead d2 (Bind Abst) u))) (\lambda (d2:
+C).(csuba g d2 d1)) x0 (drop_drop (Bind Void) n x (CHead x0 (Bind Abst) u)
+H12 t) H13))))) H11)) (\lambda (H11: (ex2_2 C T (\lambda (d2: C).(\lambda
+(u2: T).(drop n O x (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda
+(_: T).(csuba g d2 d1))))).(ex2_2_ind C T (\lambda (d2: C).(\lambda (u2:
+T).(drop n O x (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_:
+T).(csuba g d2 d1))) (or (ex2 C (\lambda (d2: C).(drop (S n) O (CHead x (Bind
+Void) t) (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (ex2_2
+C T (\lambda (d2: C).(\lambda (u2: T).(drop (S n) O (CHead x (Bind Void) t)
+(CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+d1))))) (\lambda (x0: C).(\lambda (x1: T).(\lambda (H12: (drop n O x (CHead
+x0 (Bind Void) x1))).(\lambda (H13: (csuba g x0 d1)).(or_intror (ex2 C
(\lambda (d2: C).(drop (S n) O (CHead x (Bind Void) t) (CHead d2 (Bind Abst)
-u))) (\lambda (d2: C).(csuba g d2 d1)) x0 (drop_drop (Bind Void) n x (CHead
-x0 (Bind Abst) u) H14 t) H12)))))) H10)) c2 H8)))) H7))))) b H3 H4))))
-(\lambda (f: F).(\lambda (H3: (csuba g c2 (CHead c (Flat f) t))).(\lambda
-(H4: (drop (r (Flat f) n) O c (CHead d1 (Bind Abst) u))).(let H_x \def
-(csuba_gen_flat_rev g c c2 t f H3) in (let H5 \def H_x in (ex2_2_ind C T
-(\lambda (d2: C).(\lambda (u2: T).(eq C c2 (CHead d2 (Flat f) u2)))) (\lambda
-(d2: C).(\lambda (_: T).(csuba g d2 c))) (ex2 C (\lambda (d2: C).(drop (S n)
-O c2 (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (\lambda
-(x0: C).(\lambda (x1: T).(\lambda (H6: (eq C c2 (CHead x0 (Flat f)
-x1))).(\lambda (H7: (csuba g x0 c)).(eq_ind_r C (CHead x0 (Flat f) x1)
-(\lambda (c0: C).(ex2 C (\lambda (d2: C).(drop (S n) O c0 (CHead d2 (Bind
-Abst) u))) (\lambda (d2: C).(csuba g d2 d1)))) (let H8 \def (H0 d1 u H4 g x0
-H7) in (ex2_ind C (\lambda (d2: C).(drop (S n) O x0 (CHead d2 (Bind Abst)
-u))) (\lambda (d2: C).(csuba g d2 d1)) (ex2 C (\lambda (d2: C).(drop (S n) O
-(CHead x0 (Flat f) x1) (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g
-d2 d1))) (\lambda (x: C).(\lambda (H9: (drop (S n) O x0 (CHead x (Bind Abst)
-u))).(\lambda (H10: (csuba g x d1)).(ex_intro2 C (\lambda (d2: C).(drop (S n)
+u))) (\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda
+(u2: T).(drop (S n) O (CHead x (Bind Void) t) (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1)))) (ex2_2_intro C T (\lambda
+(d2: C).(\lambda (u2: T).(drop (S n) O (CHead x (Bind Void) t) (CHead d2
+(Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))) x0 x1
+(drop_drop (Bind Void) n x (CHead x0 (Bind Void) x1) H12 t) H13)))))) H11))
+H10)) c2 H8)))) H7))))) b H3 H4)))) (\lambda (f: F).(\lambda (H3: (csuba g c2
+(CHead c (Flat f) t))).(\lambda (H4: (drop (r (Flat f) n) O c (CHead d1 (Bind
+Abst) u))).(let H_x \def (csuba_gen_flat_rev g c c2 t f H3) in (let H5 \def
+H_x in (ex2_2_ind C T (\lambda (d2: C).(\lambda (u2: T).(eq C c2 (CHead d2
+(Flat f) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 c))) (or (ex2 C
+(\lambda (d2: C).(drop (S n) O c2 (CHead d2 (Bind Abst) u))) (\lambda (d2:
+C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop (S n)
+O c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g
+d2 d1))))) (\lambda (x0: C).(\lambda (x1: T).(\lambda (H6: (eq C c2 (CHead x0
+(Flat f) x1))).(\lambda (H7: (csuba g x0 c)).(eq_ind_r C (CHead x0 (Flat f)
+x1) (\lambda (c0: C).(or (ex2 C (\lambda (d2: C).(drop (S n) O c0 (CHead d2
+(Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2:
+C).(\lambda (u2: T).(drop (S n) O c0 (CHead d2 (Bind Void) u2)))) (\lambda
+(d2: C).(\lambda (_: T).(csuba g d2 d1)))))) (let H8 \def (H0 d1 u H4 g x0
+H7) in (or_ind (ex2 C (\lambda (d2: C).(drop (S n) O x0 (CHead d2 (Bind Abst)
+u))) (\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda
+(u2: T).(drop (S n) O x0 (CHead d2 (Bind Void) u2)))) (\lambda (d2:
+C).(\lambda (_: T).(csuba g d2 d1)))) (or (ex2 C (\lambda (d2: C).(drop (S n)
O (CHead x0 (Flat f) x1) (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g
-d2 d1)) x (drop_drop (Flat f) n x0 (CHead x (Bind Abst) u) H9 x1) H10))))
+d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop (S n) O (CHead x0
+(Flat f) x1) (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_:
+T).(csuba g d2 d1))))) (\lambda (H9: (ex2 C (\lambda (d2: C).(drop (S n) O x0
+(CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1)))).(ex2_ind C
+(\lambda (d2: C).(drop (S n) O x0 (CHead d2 (Bind Abst) u))) (\lambda (d2:
+C).(csuba g d2 d1)) (or (ex2 C (\lambda (d2: C).(drop (S n) O (CHead x0 (Flat
+f) x1) (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C
+T (\lambda (d2: C).(\lambda (u2: T).(drop (S n) O (CHead x0 (Flat f) x1)
+(CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+d1))))) (\lambda (x: C).(\lambda (H10: (drop (S n) O x0 (CHead x (Bind Abst)
+u))).(\lambda (H11: (csuba g x d1)).(or_introl (ex2 C (\lambda (d2: C).(drop
+(S n) O (CHead x0 (Flat f) x1) (CHead d2 (Bind Abst) u))) (\lambda (d2:
+C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop (S n)
+O (CHead x0 (Flat f) x1) (CHead d2 (Bind Void) u2)))) (\lambda (d2:
+C).(\lambda (_: T).(csuba g d2 d1)))) (ex_intro2 C (\lambda (d2: C).(drop (S
+n) O (CHead x0 (Flat f) x1) (CHead d2 (Bind Abst) u))) (\lambda (d2:
+C).(csuba g d2 d1)) x (drop_drop (Flat f) n x0 (CHead x (Bind Abst) u) H10
+x1) H11))))) H9)) (\lambda (H9: (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(drop (S n) O x0 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda
+(_: T).(csuba g d2 d1))))).(ex2_2_ind C T (\lambda (d2: C).(\lambda (u2:
+T).(drop (S n) O x0 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda
+(_: T).(csuba g d2 d1))) (or (ex2 C (\lambda (d2: C).(drop (S n) O (CHead x0
+(Flat f) x1) (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1)))
+(ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop (S n) O (CHead x0 (Flat f)
+x1) (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+d1))))) (\lambda (x2: C).(\lambda (x3: T).(\lambda (H10: (drop (S n) O x0
+(CHead x2 (Bind Void) x3))).(\lambda (H11: (csuba g x2 d1)).(or_intror (ex2 C
+(\lambda (d2: C).(drop (S n) O (CHead x0 (Flat f) x1) (CHead d2 (Bind Abst)
+u))) (\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda
+(u2: T).(drop (S n) O (CHead x0 (Flat f) x1) (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1)))) (ex2_2_intro C T (\lambda
+(d2: C).(\lambda (u2: T).(drop (S n) O (CHead x0 (Flat f) x1) (CHead d2 (Bind
+Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))) x2 x3
+(drop_drop (Flat f) n x0 (CHead x2 (Bind Void) x3) H10 x1) H11)))))) H9))
H8)) c2 H6))))) H5)))))) k H2 (drop_gen_drop k c (CHead d1 (Bind Abst) u) t n
H1)))))))))))) c1)))) i).
theorem csuba_drop_abbr_rev:
\forall (i: nat).(\forall (c1: C).(\forall (d1: C).(\forall (u1: T).((drop i
O c1 (CHead d1 (Bind Abbr) u1)) \to (\forall (g: G).(\forall (c2: C).((csuba
-g c2 c1) \to (or (ex2 C (\lambda (d2: C).(drop i O c2 (CHead d2 (Bind Abbr)
+g c2 c1) \to (or3 (ex2 C (\lambda (d2: C).(drop i O c2 (CHead d2 (Bind Abbr)
u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2:
C).(\lambda (u2: T).(\lambda (_: A).(drop i O c2 (CHead d2 (Bind Abst)
u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1))))
(\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g
-a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1
-a)))))))))))))
+a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))))
+(ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop i O c2 (CHead d2 (Bind
+Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))))))))))
\def
\lambda (i: nat).(nat_ind (\lambda (n: nat).(\forall (c1: C).(\forall (d1:
C).(\forall (u1: T).((drop n O c1 (CHead d1 (Bind Abbr) u1)) \to (\forall (g:
-G).(\forall (c2: C).((csuba g c2 c1) \to (or (ex2 C (\lambda (d2: C).(drop n
+G).(\forall (c2: C).((csuba g c2 c1) \to (or3 (ex2 C (\lambda (d2: C).(drop n
O c2 (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C
T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop n O c2 (CHead d2
(Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g
d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2
(asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1
-u1 a)))))))))))))) (\lambda (c1: C).(\lambda (d1: C).(\lambda (u1:
-T).(\lambda (H: (drop O O c1 (CHead d1 (Bind Abbr) u1))).(\lambda (g:
-G).(\lambda (c2: C).(\lambda (H0: (csuba g c2 c1)).(let H1 \def (eq_ind C c1
-(\lambda (c: C).(csuba g c2 c)) H0 (CHead d1 (Bind Abbr) u1) (drop_gen_refl
-c1 (CHead d1 (Bind Abbr) u1) H)) in (let H_x \def (csuba_gen_abbr_rev g d1 c2
-u1 H1) in (let H2 \def H_x in (or_ind (ex2 C (\lambda (d2: C).(eq C c2 (CHead
-d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda
-(d2: C).(\lambda (u2: T).(\lambda (_: A).(eq C c2 (CHead d2 (Bind Abst)
-u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1))))
-(\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g
-a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))))
-(or (ex2 C (\lambda (d2: C).(drop O O c2 (CHead d2 (Bind Abbr) u1))) (\lambda
-(d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2:
-T).(\lambda (_: A).(drop O O c2 (CHead d2 (Bind Abst) u2))))) (\lambda (d2:
-C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2:
-C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda
-(_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))))) (\lambda (H3:
-(ex2 C (\lambda (d2: C).(eq C c2 (CHead d2 (Bind Abbr) u1))) (\lambda (d2:
-C).(csuba g d2 d1)))).(ex2_ind C (\lambda (d2: C).(eq C c2 (CHead d2 (Bind
-Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1)) (or (ex2 C (\lambda (d2:
+u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop n O c2 (CHead d2
+(Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+d1))))))))))))) (\lambda (c1: C).(\lambda (d1: C).(\lambda (u1: T).(\lambda
+(H: (drop O O c1 (CHead d1 (Bind Abbr) u1))).(\lambda (g: G).(\lambda (c2:
+C).(\lambda (H0: (csuba g c2 c1)).(let H1 \def (eq_ind C c1 (\lambda (c:
+C).(csuba g c2 c)) H0 (CHead d1 (Bind Abbr) u1) (drop_gen_refl c1 (CHead d1
+(Bind Abbr) u1) H)) in (let H_x \def (csuba_gen_abbr_rev g d1 c2 u1 H1) in
+(let H2 \def H_x in (or3_ind (ex2 C (\lambda (d2: C).(eq C c2 (CHead d2 (Bind
+Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2:
+C).(\lambda (u2: T).(\lambda (_: A).(eq C c2 (CHead d2 (Bind Abst) u2)))))
+(\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda
+(d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a)))))
+(\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex2_2
+C T (\lambda (d2: C).(\lambda (u2: T).(eq C c2 (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1)))) (or3 (ex2 C (\lambda (d2:
C).(drop O O c2 (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2
d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop O
O c2 (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda
(_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda
-(a: A).(arity g d1 u1 a)))))) (\lambda (x: C).(\lambda (H4: (eq C c2 (CHead x
-(Bind Abbr) u1))).(\lambda (H5: (csuba g x d1)).(eq_ind_r C (CHead x (Bind
-Abbr) u1) (\lambda (c: C).(or (ex2 C (\lambda (d2: C).(drop O O c (CHead d2
-(Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda
-(d2: C).(\lambda (u2: T).(\lambda (_: A).(drop O O c (CHead d2 (Bind Abst)
-u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1))))
-(\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g
-a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1
-a))))))) (or_introl (ex2 C (\lambda (d2: C).(drop O O (CHead x (Bind Abbr)
-u1) (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T
-A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop O O (CHead x (Bind
-Abbr) u1) (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_:
-T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2:
-T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda
-(_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex_intro2 C (\lambda (d2:
-C).(drop O O (CHead x (Bind Abbr) u1) (CHead d2 (Bind Abbr) u1))) (\lambda
-(d2: C).(csuba g d2 d1)) x (drop_refl (CHead x (Bind Abbr) u1)) H5)) c2
-H4)))) H3)) (\lambda (H3: (ex4_3 C T A (\lambda (d2: C).(\lambda (u2:
-T).(\lambda (_: A).(eq C c2 (CHead d2 (Bind Abst) u2))))) (\lambda (d2:
-C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2:
-C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda
-(_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))))).(ex4_3_ind C T
-A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(eq C c2 (CHead d2 (Bind
-Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2
-d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2
-(asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1
-u1 a)))) (or (ex2 C (\lambda (d2: C).(drop O O c2 (CHead d2 (Bind Abbr) u1)))
+(a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(drop O O c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_:
+T).(csuba g d2 d1))))) (\lambda (H3: (ex2 C (\lambda (d2: C).(eq C c2 (CHead
+d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1)))).(ex2_ind C (\lambda
+(d2: C).(eq C c2 (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2
+d1)) (or3 (ex2 C (\lambda (d2: C).(drop O O c2 (CHead d2 (Bind Abbr) u1)))
(\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda
(u2: T).(\lambda (_: A).(drop O O c2 (CHead d2 (Bind Abst) u2))))) (\lambda
(d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2:
C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda
-(_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))))) (\lambda (x0:
-C).(\lambda (x1: T).(\lambda (x2: A).(\lambda (H4: (eq C c2 (CHead x0 (Bind
-Abst) x1))).(\lambda (H5: (csuba g x0 d1)).(\lambda (H6: (arity g x0 x1
-(asucc g x2))).(\lambda (H7: (arity g d1 u1 x2)).(eq_ind_r C (CHead x0 (Bind
-Abst) x1) (\lambda (c: C).(or (ex2 C (\lambda (d2: C).(drop O O c (CHead d2
-(Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda
-(d2: C).(\lambda (u2: T).(\lambda (_: A).(drop O O c (CHead d2 (Bind Abst)
+(_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex2_2 C T
+(\lambda (d2: C).(\lambda (u2: T).(drop O O c2 (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda (x: C).(\lambda
+(H4: (eq C c2 (CHead x (Bind Abbr) u1))).(\lambda (H5: (csuba g x
+d1)).(eq_ind_r C (CHead x (Bind Abbr) u1) (\lambda (c: C).(or3 (ex2 C
+(\lambda (d2: C).(drop O O c (CHead d2 (Bind Abbr) u1))) (\lambda (d2:
+C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda
+(_: A).(drop O O c (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda
+(_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2:
+T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda
+(_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2:
+C).(\lambda (u2: T).(drop O O c (CHead d2 (Bind Void) u2)))) (\lambda (d2:
+C).(\lambda (_: T).(csuba g d2 d1)))))) (or3_intro0 (ex2 C (\lambda (d2:
+C).(drop O O (CHead x (Bind Abbr) u1) (CHead d2 (Bind Abbr) u1))) (\lambda
+(d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2:
+T).(\lambda (_: A).(drop O O (CHead x (Bind Abbr) u1) (CHead d2 (Bind Abst)
u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1))))
(\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g
-a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1
-a))))))) (or_intror (ex2 C (\lambda (d2: C).(drop O O (CHead x0 (Bind Abst)
-x1) (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T
-A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop O O (CHead x0 (Bind
-Abst) x1) (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_:
+a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))))
+(ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop O O (CHead x (Bind Abbr)
+u1) (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+d1)))) (ex_intro2 C (\lambda (d2: C).(drop O O (CHead x (Bind Abbr) u1)
+(CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1)) x (drop_refl
+(CHead x (Bind Abbr) u1)) H5)) c2 H4)))) H3)) (\lambda (H3: (ex4_3 C T A
+(\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(eq C c2 (CHead d2 (Bind
+Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2
+d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2
+(asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1
+u1 a)))))).(ex4_3_ind C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_:
+A).(eq C c2 (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_:
T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2:
T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda
-(_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex4_3_intro C T A (\lambda (d2:
-C).(\lambda (u2: T).(\lambda (_: A).(drop O O (CHead x0 (Bind Abst) x1)
-(CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_:
-A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
+(_: T).(\lambda (a: A).(arity g d1 u1 a)))) (or3 (ex2 C (\lambda (d2:
+C).(drop O O c2 (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2
+d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop O
+O c2 (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda
+(_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda
-(a: A).(arity g d1 u1 a)))) x0 x1 x2 (drop_refl (CHead x0 (Bind Abst) x1)) H5
-H6 H7)) c2 H4)))))))) H3)) H2))))))))))) (\lambda (n: nat).(\lambda (H:
-((\forall (c1: C).(\forall (d1: C).(\forall (u1: T).((drop n O c1 (CHead d1
-(Bind Abbr) u1)) \to (\forall (g: G).(\forall (c2: C).((csuba g c2 c1) \to
-(or (ex2 C (\lambda (d2: C).(drop n O c2 (CHead d2 (Bind Abbr) u1))) (\lambda
+(a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(drop O O c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_:
+T).(csuba g d2 d1))))) (\lambda (x0: C).(\lambda (x1: T).(\lambda (x2:
+A).(\lambda (H4: (eq C c2 (CHead x0 (Bind Abst) x1))).(\lambda (H5: (csuba g
+x0 d1)).(\lambda (H6: (arity g x0 x1 (asucc g x2))).(\lambda (H7: (arity g d1
+u1 x2)).(eq_ind_r C (CHead x0 (Bind Abst) x1) (\lambda (c: C).(or3 (ex2 C
+(\lambda (d2: C).(drop O O c (CHead d2 (Bind Abbr) u1))) (\lambda (d2:
+C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda
+(_: A).(drop O O c (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda
+(_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2:
+T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda
+(_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2:
+C).(\lambda (u2: T).(drop O O c (CHead d2 (Bind Void) u2)))) (\lambda (d2:
+C).(\lambda (_: T).(csuba g d2 d1)))))) (or3_intro1 (ex2 C (\lambda (d2:
+C).(drop O O (CHead x0 (Bind Abst) x1) (CHead d2 (Bind Abbr) u1))) (\lambda
(d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2:
-T).(\lambda (_: A).(drop n O c2 (CHead d2 (Bind Abst) u2))))) (\lambda (d2:
-C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2:
+T).(\lambda (_: A).(drop O O (CHead x0 (Bind Abst) x1) (CHead d2 (Bind Abst)
+u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1))))
+(\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g
+a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))))
+(ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop O O (CHead x0 (Bind Abst)
+x1) (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+d1)))) (ex4_3_intro C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_:
+A).(drop O O (CHead x0 (Bind Abst) x1) (CHead d2 (Bind Abst) u2))))) (\lambda
+(d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2:
C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda
-(_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1
-a))))))))))))))).(\lambda (c1: C).(C_ind (\lambda (c: C).(\forall (d1:
-C).(\forall (u1: T).((drop (S n) O c (CHead d1 (Bind Abbr) u1)) \to (\forall
-(g: G).(\forall (c2: C).((csuba g c2 c) \to (or (ex2 C (\lambda (d2: C).(drop
-(S n) O c2 (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1)))
-(ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O
-c2 (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda
+(_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))) x0 x1 x2
+(drop_refl (CHead x0 (Bind Abst) x1)) H5 H6 H7)) c2 H4)))))))) H3)) (\lambda
+(H3: (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(eq C c2 (CHead d2 (Bind
+Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))).(ex2_2_ind
+C T (\lambda (d2: C).(\lambda (u2: T).(eq C c2 (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))) (or3 (ex2 C (\lambda (d2:
+C).(drop O O c2 (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2
+d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop O
+O c2 (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda
(_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda
-(a: A).(arity g d1 u1 a))))))))))))) (\lambda (n0: nat).(\lambda (d1:
-C).(\lambda (u1: T).(\lambda (H0: (drop (S n) O (CSort n0) (CHead d1 (Bind
-Abbr) u1))).(\lambda (g: G).(\lambda (c2: C).(\lambda (_: (csuba g c2 (CSort
-n0))).(and3_ind (eq C (CHead d1 (Bind Abbr) u1) (CSort n0)) (eq nat (S n) O)
-(eq nat O O) (or (ex2 C (\lambda (d2: C).(drop (S n) O c2 (CHead d2 (Bind
-Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2:
-C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O c2 (CHead d2 (Bind Abst)
-u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1))))
-(\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g
-a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a))))))
-(\lambda (_: (eq C (CHead d1 (Bind Abbr) u1) (CSort n0))).(\lambda (H3: (eq
-nat (S n) O)).(\lambda (_: (eq nat O O)).(let H5 \def (eq_ind nat (S n)
-(\lambda (ee: nat).(match ee in nat return (\lambda (_: nat).Prop) with [O
-\Rightarrow False | (S _) \Rightarrow True])) I O H3) in (False_ind (or (ex2
-C (\lambda (d2: C).(drop (S n) O c2 (CHead d2 (Bind Abbr) u1))) (\lambda (d2:
-C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda
-(_: A).(drop (S n) O c2 (CHead d2 (Bind Abst) u2))))) (\lambda (d2:
-C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2:
-C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda
-(_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))))) H5)))))
+(a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(drop O O c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_:
+T).(csuba g d2 d1))))) (\lambda (x0: C).(\lambda (x1: T).(\lambda (H4: (eq C
+c2 (CHead x0 (Bind Void) x1))).(\lambda (H5: (csuba g x0 d1)).(eq_ind_r C
+(CHead x0 (Bind Void) x1) (\lambda (c: C).(or3 (ex2 C (\lambda (d2: C).(drop
+O O c (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C
+T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop O O c (CHead d2
+(Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g
+d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2
+(asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1
+u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop O O c (CHead d2
+(Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))))
+(or3_intro2 (ex2 C (\lambda (d2: C).(drop O O (CHead x0 (Bind Void) x1)
+(CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A
+(\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop O O (CHead x0 (Bind
+Void) x1) (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_:
+T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2:
+T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda
+(_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2:
+C).(\lambda (u2: T).(drop O O (CHead x0 (Bind Void) x1) (CHead d2 (Bind Void)
+u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1)))) (ex2_2_intro C T
+(\lambda (d2: C).(\lambda (u2: T).(drop O O (CHead x0 (Bind Void) x1) (CHead
+d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))) x0
+x1 (drop_refl (CHead x0 (Bind Void) x1)) H5)) c2 H4))))) H3)) H2)))))))))))
+(\lambda (n: nat).(\lambda (H: ((\forall (c1: C).(\forall (d1: C).(\forall
+(u1: T).((drop n O c1 (CHead d1 (Bind Abbr) u1)) \to (\forall (g: G).(\forall
+(c2: C).((csuba g c2 c1) \to (or3 (ex2 C (\lambda (d2: C).(drop n O c2 (CHead
+d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda
+(d2: C).(\lambda (u2: T).(\lambda (_: A).(drop n O c2 (CHead d2 (Bind Abst)
+u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1))))
+(\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g
+a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))))
+(ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop n O c2 (CHead d2 (Bind
+Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+d1)))))))))))))).(\lambda (c1: C).(C_ind (\lambda (c: C).(\forall (d1:
+C).(\forall (u1: T).((drop (S n) O c (CHead d1 (Bind Abbr) u1)) \to (\forall
+(g: G).(\forall (c2: C).((csuba g c2 c) \to (or3 (ex2 C (\lambda (d2:
+C).(drop (S n) O c2 (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2
+d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S
+n) O c2 (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_:
+T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2:
+T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda
+(_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2:
+C).(\lambda (u2: T).(drop (S n) O c2 (CHead d2 (Bind Void) u2)))) (\lambda
+(d2: C).(\lambda (_: T).(csuba g d2 d1)))))))))))) (\lambda (n0:
+nat).(\lambda (d1: C).(\lambda (u1: T).(\lambda (H0: (drop (S n) O (CSort n0)
+(CHead d1 (Bind Abbr) u1))).(\lambda (g: G).(\lambda (c2: C).(\lambda (_:
+(csuba g c2 (CSort n0))).(and3_ind (eq C (CHead d1 (Bind Abbr) u1) (CSort
+n0)) (eq nat (S n) O) (eq nat O O) (or3 (ex2 C (\lambda (d2: C).(drop (S n) O
+c2 (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T
+A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O c2 (CHead
+d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_:
+A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
+A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda
+(a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(drop (S n) O c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda
+(_: T).(csuba g d2 d1))))) (\lambda (_: (eq C (CHead d1 (Bind Abbr) u1)
+(CSort n0))).(\lambda (H3: (eq nat (S n) O)).(\lambda (_: (eq nat O O)).(let
+H5 \def (eq_ind nat (S n) (\lambda (ee: nat).(match ee in nat return (\lambda
+(_: nat).Prop) with [O \Rightarrow False | (S _) \Rightarrow True])) I O H3)
+in (False_ind (or3 (ex2 C (\lambda (d2: C).(drop (S n) O c2 (CHead d2 (Bind
+Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2:
+C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O c2 (CHead d2 (Bind Abst)
+u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1))))
+(\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g
+a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))))
+(ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop (S n) O c2 (CHead d2 (Bind
+Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))) H5)))))
(drop_gen_sort n0 (S n) O (CHead d1 (Bind Abbr) u1) H0))))))))) (\lambda (c:
C).(\lambda (H0: ((\forall (d1: C).(\forall (u1: T).((drop (S n) O c (CHead
d1 (Bind Abbr) u1)) \to (\forall (g: G).(\forall (c2: C).((csuba g c2 c) \to
-(or (ex2 C (\lambda (d2: C).(drop (S n) O c2 (CHead d2 (Bind Abbr) u1)))
+(or3 (ex2 C (\lambda (d2: C).(drop (S n) O c2 (CHead d2 (Bind Abbr) u1)))
(\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda
(u2: T).(\lambda (_: A).(drop (S n) O c2 (CHead d2 (Bind Abst) u2)))))
(\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda
(d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a)))))
-(\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1
-a)))))))))))))).(\lambda (k: K).(\lambda (t: T).(\lambda (d1: C).(\lambda
-(u1: T).(\lambda (H1: (drop (S n) O (CHead c k t) (CHead d1 (Bind Abbr)
-u1))).(\lambda (g: G).(\lambda (c2: C).(\lambda (H2: (csuba g c2 (CHead c k
-t))).(K_ind (\lambda (k0: K).((csuba g c2 (CHead c k0 t)) \to ((drop (r k0 n)
-O c (CHead d1 (Bind Abbr) u1)) \to (or (ex2 C (\lambda (d2: C).(drop (S n) O
-c2 (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T
-A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O c2 (CHead
-d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_:
-A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
+(\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex2_2
+C T (\lambda (d2: C).(\lambda (u2: T).(drop (S n) O c2 (CHead d2 (Bind Void)
+u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))))))))))).(\lambda
+(k: K).(\lambda (t: T).(\lambda (d1: C).(\lambda (u1: T).(\lambda (H1: (drop
+(S n) O (CHead c k t) (CHead d1 (Bind Abbr) u1))).(\lambda (g: G).(\lambda
+(c2: C).(\lambda (H2: (csuba g c2 (CHead c k t))).(K_ind (\lambda (k0:
+K).((csuba g c2 (CHead c k0 t)) \to ((drop (r k0 n) O c (CHead d1 (Bind Abbr)
+u1)) \to (or3 (ex2 C (\lambda (d2: C).(drop (S n) O c2 (CHead d2 (Bind Abbr)
+u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2:
+C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O c2 (CHead d2 (Bind Abst)
+u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1))))
+(\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g
+a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))))
+(ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop (S n) O c2 (CHead d2 (Bind
+Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1)))))))) (\lambda
+(b: B).(\lambda (H3: (csuba g c2 (CHead c (Bind b) t))).(\lambda (H4: (drop
+(r (Bind b) n) O c (CHead d1 (Bind Abbr) u1))).(B_ind (\lambda (b0:
+B).((csuba g c2 (CHead c (Bind b0) t)) \to ((drop (r (Bind b0) n) O c (CHead
+d1 (Bind Abbr) u1)) \to (or3 (ex2 C (\lambda (d2: C).(drop (S n) O c2 (CHead
+d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda
+(d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O c2 (CHead d2 (Bind
+Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2
+d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2
+(asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1
+u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop (S n) O c2
+(CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+d1)))))))) (\lambda (H5: (csuba g c2 (CHead c (Bind Abbr) t))).(\lambda (H6:
+(drop (r (Bind Abbr) n) O c (CHead d1 (Bind Abbr) u1))).(let H_x \def
+(csuba_gen_abbr_rev g c c2 t H5) in (let H7 \def H_x in (or3_ind (ex2 C
+(\lambda (d2: C).(eq C c2 (CHead d2 (Bind Abbr) t))) (\lambda (d2: C).(csuba
+g d2 c))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(eq
+C c2 (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda
+(_: A).(csuba g d2 c)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda
-(a: A).(arity g d1 u1 a))))))))) (\lambda (b: B).(\lambda (H3: (csuba g c2
-(CHead c (Bind b) t))).(\lambda (H4: (drop (r (Bind b) n) O c (CHead d1 (Bind
-Abbr) u1))).(B_ind (\lambda (b0: B).((csuba g c2 (CHead c (Bind b0) t)) \to
-((drop (r (Bind b0) n) O c (CHead d1 (Bind Abbr) u1)) \to (or (ex2 C (\lambda
-(d2: C).(drop (S n) O c2 (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba
-g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_:
-A).(drop (S n) O c2 (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda
+(a: A).(arity g c t a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(eq C
+c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+c)))) (or3 (ex2 C (\lambda (d2: C).(drop (S n) O c2 (CHead d2 (Bind Abbr)
+u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2:
+C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O c2 (CHead d2 (Bind Abst)
+u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1))))
+(\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g
+a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))))
+(ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop (S n) O c2 (CHead d2 (Bind
+Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda
+(H8: (ex2 C (\lambda (d2: C).(eq C c2 (CHead d2 (Bind Abbr) t))) (\lambda
+(d2: C).(csuba g d2 c)))).(ex2_ind C (\lambda (d2: C).(eq C c2 (CHead d2
+(Bind Abbr) t))) (\lambda (d2: C).(csuba g d2 c)) (or3 (ex2 C (\lambda (d2:
+C).(drop (S n) O c2 (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2
+d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S
+n) O c2 (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_:
+T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2:
+T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda
+(_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2:
+C).(\lambda (u2: T).(drop (S n) O c2 (CHead d2 (Bind Void) u2)))) (\lambda
+(d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda (x: C).(\lambda (H9: (eq
+C c2 (CHead x (Bind Abbr) t))).(\lambda (H10: (csuba g x c)).(eq_ind_r C
+(CHead x (Bind Abbr) t) (\lambda (c0: C).(or3 (ex2 C (\lambda (d2: C).(drop
+(S n) O c0 (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1)))
+(ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O
+c0 (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda
+(_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
+A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda
+(a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(drop (S n) O c0 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda
+(_: T).(csuba g d2 d1)))))) (let H11 \def (H c d1 u1 H6 g x H10) in (or3_ind
+(ex2 C (\lambda (d2: C).(drop n O x (CHead d2 (Bind Abbr) u1))) (\lambda (d2:
+C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda
+(_: A).(drop n O x (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda
(_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2:
T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda
-(_: T).(\lambda (a: A).(arity g d1 u1 a))))))))) (\lambda (H5: (csuba g c2
-(CHead c (Bind Abbr) t))).(\lambda (H6: (drop (r (Bind Abbr) n) O c (CHead d1
-(Bind Abbr) u1))).(let H_x \def (csuba_gen_abbr_rev g c c2 t H5) in (let H7
-\def H_x in (or_ind (ex2 C (\lambda (d2: C).(eq C c2 (CHead d2 (Bind Abbr)
-t))) (\lambda (d2: C).(csuba g d2 c))) (ex4_3 C T A (\lambda (d2: C).(\lambda
-(u2: T).(\lambda (_: A).(eq C c2 (CHead d2 (Bind Abst) u2))))) (\lambda (d2:
-C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 c)))) (\lambda (d2:
-C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda
-(_: C).(\lambda (_: T).(\lambda (a: A).(arity g c t a))))) (or (ex2 C
-(\lambda (d2: C).(drop (S n) O c2 (CHead d2 (Bind Abbr) u1))) (\lambda (d2:
+(_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2:
+C).(\lambda (u2: T).(drop n O x (CHead d2 (Bind Void) u2)))) (\lambda (d2:
+C).(\lambda (_: T).(csuba g d2 d1)))) (or3 (ex2 C (\lambda (d2: C).(drop (S
+n) O (CHead x (Bind Abbr) t) (CHead d2 (Bind Abbr) u1))) (\lambda (d2:
C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda
-(_: A).(drop (S n) O c2 (CHead d2 (Bind Abst) u2))))) (\lambda (d2:
-C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2:
-C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda
-(_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))))) (\lambda (H8:
-(ex2 C (\lambda (d2: C).(eq C c2 (CHead d2 (Bind Abbr) t))) (\lambda (d2:
-C).(csuba g d2 c)))).(ex2_ind C (\lambda (d2: C).(eq C c2 (CHead d2 (Bind
-Abbr) t))) (\lambda (d2: C).(csuba g d2 c)) (or (ex2 C (\lambda (d2: C).(drop
-(S n) O c2 (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1)))
-(ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O
-c2 (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda
+(_: A).(drop (S n) O (CHead x (Bind Abbr) t) (CHead d2 (Bind Abst) u2)))))
+(\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda
+(d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a)))))
+(\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex2_2
+C T (\lambda (d2: C).(\lambda (u2: T).(drop (S n) O (CHead x (Bind Abbr) t)
+(CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+d1))))) (\lambda (H12: (ex2 C (\lambda (d2: C).(drop n O x (CHead d2 (Bind
+Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1)))).(ex2_ind C (\lambda (d2:
+C).(drop n O x (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))
+(or3 (ex2 C (\lambda (d2: C).(drop (S n) O (CHead x (Bind Abbr) t) (CHead d2
+(Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda
+(d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O (CHead x (Bind Abbr)
+t) (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda
(_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda
-(a: A).(arity g d1 u1 a)))))) (\lambda (x: C).(\lambda (H9: (eq C c2 (CHead x
-(Bind Abbr) t))).(\lambda (H10: (csuba g x c)).(eq_ind_r C (CHead x (Bind
-Abbr) t) (\lambda (c0: C).(or (ex2 C (\lambda (d2: C).(drop (S n) O c0 (CHead
-d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda
-(d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O c0 (CHead d2 (Bind
-Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2
-d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2
-(asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1
-u1 a))))))) (let H11 \def (H c d1 u1 H6 g x H10) in (or_ind (ex2 C (\lambda
-(d2: C).(drop n O x (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2
-d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop n
+(a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(drop (S n) O (CHead x (Bind Abbr) t) (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda (x0:
+C).(\lambda (H13: (drop n O x (CHead x0 (Bind Abbr) u1))).(\lambda (H14:
+(csuba g x0 d1)).(or3_intro0 (ex2 C (\lambda (d2: C).(drop (S n) O (CHead x
+(Bind Abbr) t) (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1)))
+(ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O
+(CHead x (Bind Abbr) t) (CHead d2 (Bind Abst) u2))))) (\lambda (d2:
+C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2:
+C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda
+(_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex2_2 C T
+(\lambda (d2: C).(\lambda (u2: T).(drop (S n) O (CHead x (Bind Abbr) t)
+(CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+d1)))) (ex_intro2 C (\lambda (d2: C).(drop (S n) O (CHead x (Bind Abbr) t)
+(CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1)) x0 (drop_drop
+(Bind Abbr) n x (CHead x0 (Bind Abbr) u1) H13 t) H14))))) H12)) (\lambda
+(H12: (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop n
O x (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda
(_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda
-(a: A).(arity g d1 u1 a))))) (or (ex2 C (\lambda (d2: C).(drop (S n) O (CHead
-x (Bind Abbr) t) (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2
-d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S
-n) O (CHead x (Bind Abbr) t) (CHead d2 (Bind Abst) u2))))) (\lambda (d2:
+(a: A).(arity g d1 u1 a)))))).(ex4_3_ind C T A (\lambda (d2: C).(\lambda (u2:
+T).(\lambda (_: A).(drop n O x (CHead d2 (Bind Abst) u2))))) (\lambda (d2:
C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2:
C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda
-(_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))))) (\lambda (H12:
-(ex2 C (\lambda (d2: C).(drop n O x (CHead d2 (Bind Abbr) u1))) (\lambda (d2:
-C).(csuba g d2 d1)))).(ex2_ind C (\lambda (d2: C).(drop n O x (CHead d2 (Bind
-Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1)) (or (ex2 C (\lambda (d2:
-C).(drop (S n) O (CHead x (Bind Abbr) t) (CHead d2 (Bind Abbr) u1))) (\lambda
-(d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2:
-T).(\lambda (_: A).(drop (S n) O (CHead x (Bind Abbr) t) (CHead d2 (Bind
-Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2
-d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2
-(asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1
-u1 a)))))) (\lambda (x0: C).(\lambda (H13: (drop n O x (CHead x0 (Bind Abbr)
-u1))).(\lambda (H14: (csuba g x0 d1)).(let H15 \def (refl_equal nat (r (Bind
-Abst) n)) in (let H16 \def (eq_ind nat n (\lambda (n0: nat).(drop n0 O x
-(CHead x0 (Bind Abbr) u1))) H13 (r (Bind Abst) n) H15) in (or_introl (ex2 C
+(_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))) (or3 (ex2 C
(\lambda (d2: C).(drop (S n) O (CHead x (Bind Abbr) t) (CHead d2 (Bind Abbr)
u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2:
C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O (CHead x (Bind Abbr) t)
(CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_:
A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda
-(a: A).(arity g d1 u1 a))))) (ex_intro2 C (\lambda (d2: C).(drop (S n) O
-(CHead x (Bind Abbr) t) (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g
-d2 d1)) x0 (drop_drop (Bind Abbr) n x (CHead x0 (Bind Abbr) u1) H16 t)
-H14))))))) H12)) (\lambda (H12: (ex4_3 C T A (\lambda (d2: C).(\lambda (u2:
-T).(\lambda (_: A).(drop n O x (CHead d2 (Bind Abst) u2))))) (\lambda (d2:
-C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2:
-C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda
-(_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))))).(ex4_3_ind C T
-A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop n O x (CHead d2
-(Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g
-d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2
-(asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1
-u1 a)))) (or (ex2 C (\lambda (d2: C).(drop (S n) O (CHead x (Bind Abbr) t)
-(CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A
+(a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(drop (S n) O (CHead x (Bind Abbr) t) (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda (x0:
+C).(\lambda (x1: T).(\lambda (x2: A).(\lambda (H13: (drop n O x (CHead x0
+(Bind Abst) x1))).(\lambda (H14: (csuba g x0 d1)).(\lambda (H15: (arity g x0
+x1 (asucc g x2))).(\lambda (H16: (arity g d1 u1 x2)).(or3_intro1 (ex2 C
+(\lambda (d2: C).(drop (S n) O (CHead x (Bind Abbr) t) (CHead d2 (Bind Abbr)
+u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2:
+C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O (CHead x (Bind Abbr) t)
+(CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_:
+A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
+A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda
+(a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(drop (S n) O (CHead x (Bind Abbr) t) (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1)))) (ex4_3_intro C T A
(\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O (CHead x
(Bind Abbr) t) (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_:
T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2:
T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda
-(_: T).(\lambda (a: A).(arity g d1 u1 a)))))) (\lambda (x0: C).(\lambda (x1:
-T).(\lambda (x2: A).(\lambda (H13: (drop n O x (CHead x0 (Bind Abst)
-x1))).(\lambda (H14: (csuba g x0 d1)).(\lambda (H15: (arity g x0 x1 (asucc g
-x2))).(\lambda (H16: (arity g d1 u1 x2)).(let H17 \def (refl_equal nat (r
-(Bind Abst) n)) in (let H18 \def (eq_ind nat n (\lambda (n0: nat).(drop n0 O
-x (CHead x0 (Bind Abst) x1))) H13 (r (Bind Abst) n) H17) in (or_intror (ex2 C
+(_: T).(\lambda (a: A).(arity g d1 u1 a)))) x0 x1 x2 (drop_drop (Bind Abbr) n
+x (CHead x0 (Bind Abst) x1) H13 t) H14 H15 H16))))))))) H12)) (\lambda (H12:
+(ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop n O x (CHead d2 (Bind
+Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))).(ex2_2_ind
+C T (\lambda (d2: C).(\lambda (u2: T).(drop n O x (CHead d2 (Bind Void)
+u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))) (or3 (ex2 C
(\lambda (d2: C).(drop (S n) O (CHead x (Bind Abbr) t) (CHead d2 (Bind Abbr)
u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2:
C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O (CHead x (Bind Abbr) t)
(CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_:
A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda
-(a: A).(arity g d1 u1 a))))) (ex4_3_intro C T A (\lambda (d2: C).(\lambda
-(u2: T).(\lambda (_: A).(drop (S n) O (CHead x (Bind Abbr) t) (CHead d2 (Bind
+(a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(drop (S n) O (CHead x (Bind Abbr) t) (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda (x0:
+C).(\lambda (x1: T).(\lambda (H13: (drop n O x (CHead x0 (Bind Void)
+x1))).(\lambda (H14: (csuba g x0 d1)).(or3_intro2 (ex2 C (\lambda (d2:
+C).(drop (S n) O (CHead x (Bind Abbr) t) (CHead d2 (Bind Abbr) u1))) (\lambda
+(d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2:
+T).(\lambda (_: A).(drop (S n) O (CHead x (Bind Abbr) t) (CHead d2 (Bind
Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2
d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2
(asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1
-u1 a)))) x0 x1 x2 (drop_drop (Bind Abbr) n x (CHead x0 (Bind Abst) x1) H18 t)
-H14 H15 H16))))))))))) H12)) H11)) c2 H9)))) H8)) (\lambda (H8: (ex4_3 C T A
-(\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(eq C c2 (CHead d2 (Bind
-Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2
-c)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc
-g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g c t
-a)))))).(ex4_3_ind C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_:
-A).(eq C c2 (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_:
+u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop (S n) O (CHead x
+(Bind Abbr) t) (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_:
+T).(csuba g d2 d1)))) (ex2_2_intro C T (\lambda (d2: C).(\lambda (u2:
+T).(drop (S n) O (CHead x (Bind Abbr) t) (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))) x0 x1 (drop_drop (Bind
+Abbr) n x (CHead x0 (Bind Void) x1) H13 t) H14)))))) H12)) H11)) c2 H9))))
+H8)) (\lambda (H8: (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda
+(_: A).(eq C c2 (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_:
T).(\lambda (_: A).(csuba g d2 c)))) (\lambda (d2: C).(\lambda (u2:
T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda
-(_: T).(\lambda (a: A).(arity g c t a)))) (or (ex2 C (\lambda (d2: C).(drop
-(S n) O c2 (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1)))
-(ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O
-c2 (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda
+(_: T).(\lambda (a: A).(arity g c t a)))))).(ex4_3_ind C T A (\lambda (d2:
+C).(\lambda (u2: T).(\lambda (_: A).(eq C c2 (CHead d2 (Bind Abst) u2)))))
+(\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 c)))) (\lambda
+(d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a)))))
+(\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g c t a)))) (or3 (ex2
+C (\lambda (d2: C).(drop (S n) O c2 (CHead d2 (Bind Abbr) u1))) (\lambda (d2:
+C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda
+(_: A).(drop (S n) O c2 (CHead d2 (Bind Abst) u2))))) (\lambda (d2:
+C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2:
+C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda
+(_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex2_2 C T
+(\lambda (d2: C).(\lambda (u2: T).(drop (S n) O c2 (CHead d2 (Bind Void)
+u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda (x0:
+C).(\lambda (x1: T).(\lambda (x2: A).(\lambda (H9: (eq C c2 (CHead x0 (Bind
+Abst) x1))).(\lambda (H10: (csuba g x0 c)).(\lambda (_: (arity g x0 x1 (asucc
+g x2))).(\lambda (_: (arity g c t x2)).(eq_ind_r C (CHead x0 (Bind Abst) x1)
+(\lambda (c0: C).(or3 (ex2 C (\lambda (d2: C).(drop (S n) O c0 (CHead d2
+(Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda
+(d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O c0 (CHead d2 (Bind
+Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2
+d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2
+(asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1
+u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop (S n) O c0
+(CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+d1)))))) (let H13 \def (H c d1 u1 H6 g x0 H10) in (or3_ind (ex2 C (\lambda
+(d2: C).(drop n O x0 (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2
+d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop n
+O x0 (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda
(_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda
-(a: A).(arity g d1 u1 a)))))) (\lambda (x0: C).(\lambda (x1: T).(\lambda (x2:
-A).(\lambda (H9: (eq C c2 (CHead x0 (Bind Abst) x1))).(\lambda (H10: (csuba g
-x0 c)).(\lambda (_: (arity g x0 x1 (asucc g x2))).(\lambda (_: (arity g c t
-x2)).(eq_ind_r C (CHead x0 (Bind Abst) x1) (\lambda (c0: C).(or (ex2 C
-(\lambda (d2: C).(drop (S n) O c0 (CHead d2 (Bind Abbr) u1))) (\lambda (d2:
-C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda
-(_: A).(drop (S n) O c0 (CHead d2 (Bind Abst) u2))))) (\lambda (d2:
+(a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(drop n O x0 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_:
+T).(csuba g d2 d1)))) (or3 (ex2 C (\lambda (d2: C).(drop (S n) O (CHead x0
+(Bind Abst) x1) (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2
+d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S
+n) O (CHead x0 (Bind Abst) x1) (CHead d2 (Bind Abst) u2))))) (\lambda (d2:
C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2:
C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda
-(_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a))))))) (let H13 \def
-(H c d1 u1 H6 g x0 H10) in (or_ind (ex2 C (\lambda (d2: C).(drop n O x0
-(CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A
+(_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex2_2 C T
+(\lambda (d2: C).(\lambda (u2: T).(drop (S n) O (CHead x0 (Bind Abst) x1)
+(CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+d1))))) (\lambda (H14: (ex2 C (\lambda (d2: C).(drop n O x0 (CHead d2 (Bind
+Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1)))).(ex2_ind C (\lambda (d2:
+C).(drop n O x0 (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))
+(or3 (ex2 C (\lambda (d2: C).(drop (S n) O (CHead x0 (Bind Abst) x1) (CHead
+d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda
+(d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O (CHead x0 (Bind Abst)
+x1) (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda
+(_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
+A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda
+(a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(drop (S n) O (CHead x0 (Bind Abst) x1) (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda (x: C).(\lambda
+(H15: (drop n O x0 (CHead x (Bind Abbr) u1))).(\lambda (H16: (csuba g x
+d1)).(or3_intro0 (ex2 C (\lambda (d2: C).(drop (S n) O (CHead x0 (Bind Abst)
+x1) (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T
+A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O (CHead x0
+(Bind Abst) x1) (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_:
+T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2:
+T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda
+(_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2:
+C).(\lambda (u2: T).(drop (S n) O (CHead x0 (Bind Abst) x1) (CHead d2 (Bind
+Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1)))) (ex_intro2 C
+(\lambda (d2: C).(drop (S n) O (CHead x0 (Bind Abst) x1) (CHead d2 (Bind
+Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1)) x (drop_drop (Bind Abst) n x0
+(CHead x (Bind Abbr) u1) H15 x1) H16))))) H14)) (\lambda (H14: (ex4_3 C T A
(\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop n O x0 (CHead d2
(Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g
d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2
(asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1
-u1 a))))) (or (ex2 C (\lambda (d2: C).(drop (S n) O (CHead x0 (Bind Abst) x1)
+u1 a)))))).(ex4_3_ind C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_:
+A).(drop n O x0 (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_:
+T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2:
+T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda
+(_: T).(\lambda (a: A).(arity g d1 u1 a)))) (or3 (ex2 C (\lambda (d2:
+C).(drop (S n) O (CHead x0 (Bind Abst) x1) (CHead d2 (Bind Abbr) u1)))
+(\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda
+(u2: T).(\lambda (_: A).(drop (S n) O (CHead x0 (Bind Abst) x1) (CHead d2
+(Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g
+d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2
+(asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1
+u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop (S n) O (CHead
+x0 (Bind Abst) x1) (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_:
+T).(csuba g d2 d1))))) (\lambda (x3: C).(\lambda (x4: T).(\lambda (x5:
+A).(\lambda (H15: (drop n O x0 (CHead x3 (Bind Abst) x4))).(\lambda (H16:
+(csuba g x3 d1)).(\lambda (H17: (arity g x3 x4 (asucc g x5))).(\lambda (H18:
+(arity g d1 u1 x5)).(or3_intro1 (ex2 C (\lambda (d2: C).(drop (S n) O (CHead
+x0 (Bind Abst) x1) (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2
+d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S
+n) O (CHead x0 (Bind Abst) x1) (CHead d2 (Bind Abst) u2))))) (\lambda (d2:
+C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2:
+C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda
+(_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex2_2 C T
+(\lambda (d2: C).(\lambda (u2: T).(drop (S n) O (CHead x0 (Bind Abst) x1)
+(CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+d1)))) (ex4_3_intro C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_:
+A).(drop (S n) O (CHead x0 (Bind Abst) x1) (CHead d2 (Bind Abst) u2)))))
+(\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda
+(d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a)))))
+(\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))) x3 x4 x5
+(drop_drop (Bind Abst) n x0 (CHead x3 (Bind Abst) x4) H15 x1) H16 H17
+H18))))))))) H14)) (\lambda (H14: (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(drop n O x0 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_:
+T).(csuba g d2 d1))))).(ex2_2_ind C T (\lambda (d2: C).(\lambda (u2: T).(drop
+n O x0 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g
+d2 d1))) (or3 (ex2 C (\lambda (d2: C).(drop (S n) O (CHead x0 (Bind Abst) x1)
(CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A
(\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O (CHead x0
(Bind Abst) x1) (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_:
T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2:
T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda
-(_: T).(\lambda (a: A).(arity g d1 u1 a)))))) (\lambda (H14: (ex2 C (\lambda
+(_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2:
+C).(\lambda (u2: T).(drop (S n) O (CHead x0 (Bind Abst) x1) (CHead d2 (Bind
+Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda
+(x3: C).(\lambda (x4: T).(\lambda (H15: (drop n O x0 (CHead x3 (Bind Void)
+x4))).(\lambda (H16: (csuba g x3 d1)).(or3_intro2 (ex2 C (\lambda (d2:
+C).(drop (S n) O (CHead x0 (Bind Abst) x1) (CHead d2 (Bind Abbr) u1)))
+(\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda
+(u2: T).(\lambda (_: A).(drop (S n) O (CHead x0 (Bind Abst) x1) (CHead d2
+(Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g
+d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2
+(asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1
+u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop (S n) O (CHead
+x0 (Bind Abst) x1) (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_:
+T).(csuba g d2 d1)))) (ex2_2_intro C T (\lambda (d2: C).(\lambda (u2:
+T).(drop (S n) O (CHead x0 (Bind Abst) x1) (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))) x3 x4 (drop_drop (Bind
+Abst) n x0 (CHead x3 (Bind Void) x4) H15 x1) H16)))))) H14)) H13)) c2
+H9)))))))) H8)) (\lambda (H8: (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(eq C c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_:
+T).(csuba g d2 c))))).(ex2_2_ind C T (\lambda (d2: C).(\lambda (u2: T).(eq C
+c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+c))) (or3 (ex2 C (\lambda (d2: C).(drop (S n) O c2 (CHead d2 (Bind Abbr)
+u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2:
+C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O c2 (CHead d2 (Bind Abst)
+u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1))))
+(\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g
+a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))))
+(ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop (S n) O c2 (CHead d2 (Bind
+Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda
+(x0: C).(\lambda (x1: T).(\lambda (H9: (eq C c2 (CHead x0 (Bind Void)
+x1))).(\lambda (H10: (csuba g x0 c)).(eq_ind_r C (CHead x0 (Bind Void) x1)
+(\lambda (c0: C).(or3 (ex2 C (\lambda (d2: C).(drop (S n) O c0 (CHead d2
+(Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda
+(d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O c0 (CHead d2 (Bind
+Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2
+d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2
+(asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1
+u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop (S n) O c0
+(CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+d1)))))) (let H11 \def (H c d1 u1 H6 g x0 H10) in (or3_ind (ex2 C (\lambda
(d2: C).(drop n O x0 (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2
-d1)))).(ex2_ind C (\lambda (d2: C).(drop n O x0 (CHead d2 (Bind Abbr) u1)))
-(\lambda (d2: C).(csuba g d2 d1)) (or (ex2 C (\lambda (d2: C).(drop (S n) O
-(CHead x0 (Bind Abst) x1) (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba
-g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_:
-A).(drop (S n) O (CHead x0 (Bind Abst) x1) (CHead d2 (Bind Abst) u2)))))
-(\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda
-(d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a)))))
-(\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a))))))
-(\lambda (x: C).(\lambda (H15: (drop n O x0 (CHead x (Bind Abbr)
-u1))).(\lambda (H16: (csuba g x d1)).(let H17 \def (refl_equal nat (r (Bind
-Abst) n)) in (let H18 \def (eq_ind nat n (\lambda (n0: nat).(drop n0 O x0
-(CHead x (Bind Abbr) u1))) H15 (r (Bind Abst) n) H17) in (or_introl (ex2 C
-(\lambda (d2: C).(drop (S n) O (CHead x0 (Bind Abst) x1) (CHead d2 (Bind
-Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2:
-C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O (CHead x0 (Bind Abst) x1)
-(CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_:
-A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
+d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop n
+O x0 (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda
+(_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda
-(a: A).(arity g d1 u1 a))))) (ex_intro2 C (\lambda (d2: C).(drop (S n) O
-(CHead x0 (Bind Abst) x1) (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba
-g d2 d1)) x (drop_drop (Bind Abst) n x0 (CHead x (Bind Abbr) u1) H18 x1)
-H16))))))) H14)) (\lambda (H14: (ex4_3 C T A (\lambda (d2: C).(\lambda (u2:
-T).(\lambda (_: A).(drop n O x0 (CHead d2 (Bind Abst) u2))))) (\lambda (d2:
+(a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(drop n O x0 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_:
+T).(csuba g d2 d1)))) (or3 (ex2 C (\lambda (d2: C).(drop (S n) O (CHead x0
+(Bind Void) x1) (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2
+d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S
+n) O (CHead x0 (Bind Void) x1) (CHead d2 (Bind Abst) u2))))) (\lambda (d2:
C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2:
C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda
-(_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))))).(ex4_3_ind C T
-A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop n O x0 (CHead d2
+(_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex2_2 C T
+(\lambda (d2: C).(\lambda (u2: T).(drop (S n) O (CHead x0 (Bind Void) x1)
+(CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+d1))))) (\lambda (H12: (ex2 C (\lambda (d2: C).(drop n O x0 (CHead d2 (Bind
+Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1)))).(ex2_ind C (\lambda (d2:
+C).(drop n O x0 (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))
+(or3 (ex2 C (\lambda (d2: C).(drop (S n) O (CHead x0 (Bind Void) x1) (CHead
+d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda
+(d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O (CHead x0 (Bind Void)
+x1) (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda
+(_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
+A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda
+(a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(drop (S n) O (CHead x0 (Bind Void) x1) (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda (x: C).(\lambda
+(H13: (drop n O x0 (CHead x (Bind Abbr) u1))).(\lambda (H14: (csuba g x
+d1)).(or3_intro0 (ex2 C (\lambda (d2: C).(drop (S n) O (CHead x0 (Bind Void)
+x1) (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T
+A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O (CHead x0
+(Bind Void) x1) (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_:
+T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2:
+T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda
+(_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2:
+C).(\lambda (u2: T).(drop (S n) O (CHead x0 (Bind Void) x1) (CHead d2 (Bind
+Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1)))) (ex_intro2 C
+(\lambda (d2: C).(drop (S n) O (CHead x0 (Bind Void) x1) (CHead d2 (Bind
+Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1)) x (drop_drop (Bind Void) n x0
+(CHead x (Bind Abbr) u1) H13 x1) H14))))) H12)) (\lambda (H12: (ex4_3 C T A
+(\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop n O x0 (CHead d2
+(Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g
+d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2
+(asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1
+u1 a)))))).(ex4_3_ind C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_:
+A).(drop n O x0 (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_:
+T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2:
+T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda
+(_: T).(\lambda (a: A).(arity g d1 u1 a)))) (or3 (ex2 C (\lambda (d2:
+C).(drop (S n) O (CHead x0 (Bind Void) x1) (CHead d2 (Bind Abbr) u1)))
+(\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda
+(u2: T).(\lambda (_: A).(drop (S n) O (CHead x0 (Bind Void) x1) (CHead d2
(Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g
d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2
(asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1
-u1 a)))) (or (ex2 C (\lambda (d2: C).(drop (S n) O (CHead x0 (Bind Abst) x1)
+u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop (S n) O (CHead
+x0 (Bind Void) x1) (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_:
+T).(csuba g d2 d1))))) (\lambda (x2: C).(\lambda (x3: T).(\lambda (x4:
+A).(\lambda (H13: (drop n O x0 (CHead x2 (Bind Abst) x3))).(\lambda (H14:
+(csuba g x2 d1)).(\lambda (H15: (arity g x2 x3 (asucc g x4))).(\lambda (H16:
+(arity g d1 u1 x4)).(or3_intro1 (ex2 C (\lambda (d2: C).(drop (S n) O (CHead
+x0 (Bind Void) x1) (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2
+d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S
+n) O (CHead x0 (Bind Void) x1) (CHead d2 (Bind Abst) u2))))) (\lambda (d2:
+C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2:
+C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda
+(_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex2_2 C T
+(\lambda (d2: C).(\lambda (u2: T).(drop (S n) O (CHead x0 (Bind Void) x1)
+(CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+d1)))) (ex4_3_intro C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_:
+A).(drop (S n) O (CHead x0 (Bind Void) x1) (CHead d2 (Bind Abst) u2)))))
+(\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda
+(d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a)))))
+(\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))) x2 x3 x4
+(drop_drop (Bind Void) n x0 (CHead x2 (Bind Abst) x3) H13 x1) H14 H15
+H16))))))))) H12)) (\lambda (H12: (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(drop n O x0 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_:
+T).(csuba g d2 d1))))).(ex2_2_ind C T (\lambda (d2: C).(\lambda (u2: T).(drop
+n O x0 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g
+d2 d1))) (or3 (ex2 C (\lambda (d2: C).(drop (S n) O (CHead x0 (Bind Void) x1)
(CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A
(\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O (CHead x0
-(Bind Abst) x1) (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_:
+(Bind Void) x1) (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_:
T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2:
T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda
-(_: T).(\lambda (a: A).(arity g d1 u1 a)))))) (\lambda (x3: C).(\lambda (x4:
-T).(\lambda (x5: A).(\lambda (H15: (drop n O x0 (CHead x3 (Bind Abst)
-x4))).(\lambda (H16: (csuba g x3 d1)).(\lambda (H17: (arity g x3 x4 (asucc g
-x5))).(\lambda (H18: (arity g d1 u1 x5)).(let H19 \def (refl_equal nat (r
-(Bind Abst) n)) in (let H20 \def (eq_ind nat n (\lambda (n0: nat).(drop n0 O
-x0 (CHead x3 (Bind Abst) x4))) H15 (r (Bind Abst) n) H19) in (or_intror (ex2
-C (\lambda (d2: C).(drop (S n) O (CHead x0 (Bind Abst) x1) (CHead d2 (Bind
-Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2:
-C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O (CHead x0 (Bind Abst) x1)
-(CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_:
-A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
-A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda
-(a: A).(arity g d1 u1 a))))) (ex4_3_intro C T A (\lambda (d2: C).(\lambda
-(u2: T).(\lambda (_: A).(drop (S n) O (CHead x0 (Bind Abst) x1) (CHead d2
+(_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2:
+C).(\lambda (u2: T).(drop (S n) O (CHead x0 (Bind Void) x1) (CHead d2 (Bind
+Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda
+(x2: C).(\lambda (x3: T).(\lambda (H13: (drop n O x0 (CHead x2 (Bind Void)
+x3))).(\lambda (H14: (csuba g x2 d1)).(or3_intro2 (ex2 C (\lambda (d2:
+C).(drop (S n) O (CHead x0 (Bind Void) x1) (CHead d2 (Bind Abbr) u1)))
+(\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda
+(u2: T).(\lambda (_: A).(drop (S n) O (CHead x0 (Bind Void) x1) (CHead d2
(Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g
d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2
(asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1
-u1 a)))) x3 x4 x5 (drop_drop (Bind Abst) n x0 (CHead x3 (Bind Abst) x4) H20
-x1) H16 H17 H18))))))))))) H14)) H13)) c2 H9)))))))) H8)) H7))))) (\lambda
-(H5: (csuba g c2 (CHead c (Bind Abst) t))).(\lambda (H6: (drop (r (Bind Abst)
-n) O c (CHead d1 (Bind Abbr) u1))).(let H_x \def (csuba_gen_abst_rev g c c2 t
-H5) in (let H7 \def H_x in (ex2_ind C (\lambda (d2: C).(eq C c2 (CHead d2
-(Bind Abst) t))) (\lambda (d2: C).(csuba g d2 c)) (or (ex2 C (\lambda (d2:
+u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop (S n) O (CHead
+x0 (Bind Void) x1) (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_:
+T).(csuba g d2 d1)))) (ex2_2_intro C T (\lambda (d2: C).(\lambda (u2:
+T).(drop (S n) O (CHead x0 (Bind Void) x1) (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))) x2 x3 (drop_drop (Bind
+Void) n x0 (CHead x2 (Bind Void) x3) H13 x1) H14)))))) H12)) H11)) c2 H9)))))
+H8)) H7))))) (\lambda (H5: (csuba g c2 (CHead c (Bind Abst) t))).(\lambda
+(H6: (drop (r (Bind Abst) n) O c (CHead d1 (Bind Abbr) u1))).(let H_x \def
+(csuba_gen_abst_rev g c c2 t H5) in (let H7 \def H_x in (or_ind (ex2 C
+(\lambda (d2: C).(eq C c2 (CHead d2 (Bind Abst) t))) (\lambda (d2: C).(csuba
+g d2 c))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(eq C c2 (CHead d2
+(Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 c)))) (or3
+(ex2 C (\lambda (d2: C).(drop (S n) O c2 (CHead d2 (Bind Abbr) u1))) (\lambda
+(d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2:
+T).(\lambda (_: A).(drop (S n) O c2 (CHead d2 (Bind Abst) u2))))) (\lambda
+(d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2:
+C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda
+(_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex2_2 C T
+(\lambda (d2: C).(\lambda (u2: T).(drop (S n) O c2 (CHead d2 (Bind Void)
+u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda (H8:
+(ex2 C (\lambda (d2: C).(eq C c2 (CHead d2 (Bind Abst) t))) (\lambda (d2:
+C).(csuba g d2 c)))).(ex2_ind C (\lambda (d2: C).(eq C c2 (CHead d2 (Bind
+Abst) t))) (\lambda (d2: C).(csuba g d2 c)) (or3 (ex2 C (\lambda (d2:
C).(drop (S n) O c2 (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2
d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S
n) O c2 (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_:
T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2:
T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda
-(_: T).(\lambda (a: A).(arity g d1 u1 a)))))) (\lambda (x: C).(\lambda (H8:
-(eq C c2 (CHead x (Bind Abst) t))).(\lambda (H9: (csuba g x c)).(eq_ind_r C
-(CHead x (Bind Abst) t) (\lambda (c0: C).(or (ex2 C (\lambda (d2: C).(drop (S
-n) O c0 (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3
-C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O c0
-(CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_:
-A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
+(_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2:
+C).(\lambda (u2: T).(drop (S n) O c2 (CHead d2 (Bind Void) u2)))) (\lambda
+(d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda (x: C).(\lambda (H9: (eq
+C c2 (CHead x (Bind Abst) t))).(\lambda (H10: (csuba g x c)).(eq_ind_r C
+(CHead x (Bind Abst) t) (\lambda (c0: C).(or3 (ex2 C (\lambda (d2: C).(drop
+(S n) O c0 (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1)))
+(ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O
+c0 (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda
+(_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda
-(a: A).(arity g d1 u1 a))))))) (let H10 \def (H c d1 u1 H6 g x H9) in (or_ind
+(a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(drop (S n) O c0 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda
+(_: T).(csuba g d2 d1)))))) (let H11 \def (H c d1 u1 H6 g x H10) in (or3_ind
(ex2 C (\lambda (d2: C).(drop n O x (CHead d2 (Bind Abbr) u1))) (\lambda (d2:
C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda
(_: A).(drop n O x (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda
(_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2:
T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda
-(_: T).(\lambda (a: A).(arity g d1 u1 a))))) (or (ex2 C (\lambda (d2:
-C).(drop (S n) O (CHead x (Bind Abst) t) (CHead d2 (Bind Abbr) u1))) (\lambda
-(d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2:
-T).(\lambda (_: A).(drop (S n) O (CHead x (Bind Abst) t) (CHead d2 (Bind
-Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2
-d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2
-(asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1
-u1 a)))))) (\lambda (H11: (ex2 C (\lambda (d2: C).(drop n O x (CHead d2 (Bind
+(_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2:
+C).(\lambda (u2: T).(drop n O x (CHead d2 (Bind Void) u2)))) (\lambda (d2:
+C).(\lambda (_: T).(csuba g d2 d1)))) (or3 (ex2 C (\lambda (d2: C).(drop (S
+n) O (CHead x (Bind Abst) t) (CHead d2 (Bind Abbr) u1))) (\lambda (d2:
+C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda
+(_: A).(drop (S n) O (CHead x (Bind Abst) t) (CHead d2 (Bind Abst) u2)))))
+(\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda
+(d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a)))))
+(\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex2_2
+C T (\lambda (d2: C).(\lambda (u2: T).(drop (S n) O (CHead x (Bind Abst) t)
+(CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+d1))))) (\lambda (H12: (ex2 C (\lambda (d2: C).(drop n O x (CHead d2 (Bind
Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1)))).(ex2_ind C (\lambda (d2:
C).(drop n O x (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))
-(or (ex2 C (\lambda (d2: C).(drop (S n) O (CHead x (Bind Abst) t) (CHead d2
+(or3 (ex2 C (\lambda (d2: C).(drop (S n) O (CHead x (Bind Abst) t) (CHead d2
(Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda
(d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O (CHead x (Bind Abst)
t) (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda
(_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda
-(a: A).(arity g d1 u1 a)))))) (\lambda (x0: C).(\lambda (H12: (drop n O x
-(CHead x0 (Bind Abbr) u1))).(\lambda (H13: (csuba g x0 d1)).(let H14 \def
-(refl_equal nat (r (Bind Abst) n)) in (let H15 \def (eq_ind nat n (\lambda
-(n0: nat).(drop n0 O x (CHead x0 (Bind Abbr) u1))) H12 (r (Bind Abst) n) H14)
-in (or_introl (ex2 C (\lambda (d2: C).(drop (S n) O (CHead x (Bind Abst) t)
-(CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A
-(\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O (CHead x
-(Bind Abst) t) (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_:
-T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2:
-T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda
-(_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex_intro2 C (\lambda (d2:
-C).(drop (S n) O (CHead x (Bind Abst) t) (CHead d2 (Bind Abbr) u1))) (\lambda
-(d2: C).(csuba g d2 d1)) x0 (drop_drop (Bind Abst) n x (CHead x0 (Bind Abbr)
-u1) H15 t) H13))))))) H11)) (\lambda (H11: (ex4_3 C T A (\lambda (d2:
-C).(\lambda (u2: T).(\lambda (_: A).(drop n O x (CHead d2 (Bind Abst) u2)))))
-(\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda
-(d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a)))))
-(\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1
-a)))))).(ex4_3_ind C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_:
-A).(drop n O x (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_:
-T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2:
-T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda
-(_: T).(\lambda (a: A).(arity g d1 u1 a)))) (or (ex2 C (\lambda (d2: C).(drop
-(S n) O (CHead x (Bind Abst) t) (CHead d2 (Bind Abbr) u1))) (\lambda (d2:
-C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda
-(_: A).(drop (S n) O (CHead x (Bind Abst) t) (CHead d2 (Bind Abst) u2)))))
-(\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda
-(d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a)))))
-(\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a))))))
-(\lambda (x0: C).(\lambda (x1: T).(\lambda (x2: A).(\lambda (H12: (drop n O x
-(CHead x0 (Bind Abst) x1))).(\lambda (H13: (csuba g x0 d1)).(\lambda (H14:
-(arity g x0 x1 (asucc g x2))).(\lambda (H15: (arity g d1 u1 x2)).(let H16
-\def (refl_equal nat (r (Bind Abst) n)) in (let H17 \def (eq_ind nat n
-(\lambda (n0: nat).(drop n0 O x (CHead x0 (Bind Abst) x1))) H12 (r (Bind
-Abst) n) H16) in (or_intror (ex2 C (\lambda (d2: C).(drop (S n) O (CHead x
+(a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(drop (S n) O (CHead x (Bind Abst) t) (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda (x0:
+C).(\lambda (H13: (drop n O x (CHead x0 (Bind Abbr) u1))).(\lambda (H14:
+(csuba g x0 d1)).(or3_intro0 (ex2 C (\lambda (d2: C).(drop (S n) O (CHead x
(Bind Abst) t) (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1)))
(ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O
(CHead x (Bind Abst) t) (CHead d2 (Bind Abst) u2))))) (\lambda (d2:
C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2:
C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda
-(_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex4_3_intro C T
-A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O (CHead x
+(_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex2_2 C T
+(\lambda (d2: C).(\lambda (u2: T).(drop (S n) O (CHead x (Bind Abst) t)
+(CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+d1)))) (ex_intro2 C (\lambda (d2: C).(drop (S n) O (CHead x (Bind Abst) t)
+(CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1)) x0 (drop_drop
+(Bind Abst) n x (CHead x0 (Bind Abbr) u1) H13 t) H14))))) H12)) (\lambda
+(H12: (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop n
+O x (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda
+(_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
+A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda
+(a: A).(arity g d1 u1 a)))))).(ex4_3_ind C T A (\lambda (d2: C).(\lambda (u2:
+T).(\lambda (_: A).(drop n O x (CHead d2 (Bind Abst) u2))))) (\lambda (d2:
+C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2:
+C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda
+(_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))) (or3 (ex2 C
+(\lambda (d2: C).(drop (S n) O (CHead x (Bind Abst) t) (CHead d2 (Bind Abbr)
+u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2:
+C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O (CHead x (Bind Abst) t)
+(CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_:
+A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
+A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda
+(a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(drop (S n) O (CHead x (Bind Abst) t) (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda (x0:
+C).(\lambda (x1: T).(\lambda (x2: A).(\lambda (H13: (drop n O x (CHead x0
+(Bind Abst) x1))).(\lambda (H14: (csuba g x0 d1)).(\lambda (H15: (arity g x0
+x1 (asucc g x2))).(\lambda (H16: (arity g d1 u1 x2)).(or3_intro1 (ex2 C
+(\lambda (d2: C).(drop (S n) O (CHead x (Bind Abst) t) (CHead d2 (Bind Abbr)
+u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2:
+C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O (CHead x (Bind Abst) t)
+(CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_:
+A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
+A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda
+(a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(drop (S n) O (CHead x (Bind Abst) t) (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1)))) (ex4_3_intro C T A
+(\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O (CHead x
(Bind Abst) t) (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_:
T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2:
T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda
(_: T).(\lambda (a: A).(arity g d1 u1 a)))) x0 x1 x2 (drop_drop (Bind Abst) n
-x (CHead x0 (Bind Abst) x1) H17 t) H13 H14 H15))))))))))) H11)) H10)) c2
-H8)))) H7))))) (\lambda (H5: (csuba g c2 (CHead c (Bind Void) t))).(\lambda
-(H6: (drop (r (Bind Void) n) O c (CHead d1 (Bind Abbr) u1))).(let H_x \def
-(csuba_gen_void_rev g c c2 t H5) in (let H7 \def H_x in (ex2_ind C (\lambda
-(d2: C).(eq C c2 (CHead d2 (Bind Void) t))) (\lambda (d2: C).(csuba g d2 c))
-(or (ex2 C (\lambda (d2: C).(drop (S n) O c2 (CHead d2 (Bind Abbr) u1)))
-(\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda
-(u2: T).(\lambda (_: A).(drop (S n) O c2 (CHead d2 (Bind Abst) u2)))))
-(\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda
-(d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a)))))
-(\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a))))))
-(\lambda (x: C).(\lambda (H8: (eq C c2 (CHead x (Bind Void) t))).(\lambda
-(H9: (csuba g x c)).(eq_ind_r C (CHead x (Bind Void) t) (\lambda (c0: C).(or
-(ex2 C (\lambda (d2: C).(drop (S n) O c0 (CHead d2 (Bind Abbr) u1))) (\lambda
+x (CHead x0 (Bind Abst) x1) H13 t) H14 H15 H16))))))))) H12)) (\lambda (H12:
+(ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop n O x (CHead d2 (Bind
+Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))).(ex2_2_ind
+C T (\lambda (d2: C).(\lambda (u2: T).(drop n O x (CHead d2 (Bind Void)
+u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))) (or3 (ex2 C
+(\lambda (d2: C).(drop (S n) O (CHead x (Bind Abst) t) (CHead d2 (Bind Abbr)
+u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2:
+C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O (CHead x (Bind Abst) t)
+(CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_:
+A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
+A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda
+(a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(drop (S n) O (CHead x (Bind Abst) t) (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda (x0:
+C).(\lambda (x1: T).(\lambda (H13: (drop n O x (CHead x0 (Bind Void)
+x1))).(\lambda (H14: (csuba g x0 d1)).(or3_intro2 (ex2 C (\lambda (d2:
+C).(drop (S n) O (CHead x (Bind Abst) t) (CHead d2 (Bind Abbr) u1))) (\lambda
+(d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2:
+T).(\lambda (_: A).(drop (S n) O (CHead x (Bind Abst) t) (CHead d2 (Bind
+Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2
+d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2
+(asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1
+u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop (S n) O (CHead x
+(Bind Abst) t) (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_:
+T).(csuba g d2 d1)))) (ex2_2_intro C T (\lambda (d2: C).(\lambda (u2:
+T).(drop (S n) O (CHead x (Bind Abst) t) (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))) x0 x1 (drop_drop (Bind
+Abst) n x (CHead x0 (Bind Void) x1) H13 t) H14)))))) H12)) H11)) c2 H9))))
+H8)) (\lambda (H8: (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(eq C c2
+(CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+c))))).(ex2_2_ind C T (\lambda (d2: C).(\lambda (u2: T).(eq C c2 (CHead d2
+(Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 c))) (or3
+(ex2 C (\lambda (d2: C).(drop (S n) O c2 (CHead d2 (Bind Abbr) u1))) (\lambda
(d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2:
-T).(\lambda (_: A).(drop (S n) O c0 (CHead d2 (Bind Abst) u2))))) (\lambda
+T).(\lambda (_: A).(drop (S n) O c2 (CHead d2 (Bind Abst) u2))))) (\lambda
(d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2:
C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda
-(_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a))))))) (let H10 \def
-(H c d1 u1 H6 g x H9) in (or_ind (ex2 C (\lambda (d2: C).(drop n O x (CHead
-d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda
-(d2: C).(\lambda (u2: T).(\lambda (_: A).(drop n O x (CHead d2 (Bind Abst)
-u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1))))
-(\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g
-a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))))
-(or (ex2 C (\lambda (d2: C).(drop (S n) O (CHead x (Bind Void) t) (CHead d2
+(_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex2_2 C T
+(\lambda (d2: C).(\lambda (u2: T).(drop (S n) O c2 (CHead d2 (Bind Void)
+u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda (x0:
+C).(\lambda (x1: T).(\lambda (H9: (eq C c2 (CHead x0 (Bind Void)
+x1))).(\lambda (H10: (csuba g x0 c)).(eq_ind_r C (CHead x0 (Bind Void) x1)
+(\lambda (c0: C).(or3 (ex2 C (\lambda (d2: C).(drop (S n) O c0 (CHead d2
(Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda
-(d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O (CHead x (Bind Void)
-t) (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda
+(d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O c0 (CHead d2 (Bind
+Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2
+d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2
+(asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1
+u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop (S n) O c0
+(CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+d1)))))) (let H11 \def (H c d1 u1 H6 g x0 H10) in (or3_ind (ex2 C (\lambda
+(d2: C).(drop n O x0 (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2
+d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop n
+O x0 (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda
(_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda
-(a: A).(arity g d1 u1 a)))))) (\lambda (H11: (ex2 C (\lambda (d2: C).(drop n
-O x (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1)))).(ex2_ind
-C (\lambda (d2: C).(drop n O x (CHead d2 (Bind Abbr) u1))) (\lambda (d2:
-C).(csuba g d2 d1)) (or (ex2 C (\lambda (d2: C).(drop (S n) O (CHead x (Bind
-Void) t) (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1)))
-(ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O
-(CHead x (Bind Void) t) (CHead d2 (Bind Abst) u2))))) (\lambda (d2:
+(a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(drop n O x0 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_:
+T).(csuba g d2 d1)))) (or3 (ex2 C (\lambda (d2: C).(drop (S n) O (CHead x0
+(Bind Void) x1) (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2
+d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S
+n) O (CHead x0 (Bind Void) x1) (CHead d2 (Bind Abst) u2))))) (\lambda (d2:
C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2:
C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda
-(_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))))) (\lambda (x0:
-C).(\lambda (H12: (drop n O x (CHead x0 (Bind Abbr) u1))).(\lambda (H13:
-(csuba g x0 d1)).(let H14 \def (refl_equal nat (r (Bind Abst) n)) in (let H15
-\def (eq_ind nat n (\lambda (n0: nat).(drop n0 O x (CHead x0 (Bind Abbr)
-u1))) H12 (r (Bind Abst) n) H14) in (or_introl (ex2 C (\lambda (d2: C).(drop
-(S n) O (CHead x (Bind Void) t) (CHead d2 (Bind Abbr) u1))) (\lambda (d2:
-C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda
-(_: A).(drop (S n) O (CHead x (Bind Void) t) (CHead d2 (Bind Abst) u2)))))
+(_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex2_2 C T
+(\lambda (d2: C).(\lambda (u2: T).(drop (S n) O (CHead x0 (Bind Void) x1)
+(CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+d1))))) (\lambda (H12: (ex2 C (\lambda (d2: C).(drop n O x0 (CHead d2 (Bind
+Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1)))).(ex2_ind C (\lambda (d2:
+C).(drop n O x0 (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))
+(or3 (ex2 C (\lambda (d2: C).(drop (S n) O (CHead x0 (Bind Void) x1) (CHead
+d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda
+(d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O (CHead x0 (Bind Void)
+x1) (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda
+(_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
+A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda
+(a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(drop (S n) O (CHead x0 (Bind Void) x1) (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda (x: C).(\lambda
+(H13: (drop n O x0 (CHead x (Bind Abbr) u1))).(\lambda (H14: (csuba g x
+d1)).(or3_intro0 (ex2 C (\lambda (d2: C).(drop (S n) O (CHead x0 (Bind Void)
+x1) (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T
+A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O (CHead x0
+(Bind Void) x1) (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_:
+T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2:
+T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda
+(_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2:
+C).(\lambda (u2: T).(drop (S n) O (CHead x0 (Bind Void) x1) (CHead d2 (Bind
+Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1)))) (ex_intro2 C
+(\lambda (d2: C).(drop (S n) O (CHead x0 (Bind Void) x1) (CHead d2 (Bind
+Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1)) x (drop_drop (Bind Void) n x0
+(CHead x (Bind Abbr) u1) H13 x1) H14))))) H12)) (\lambda (H12: (ex4_3 C T A
+(\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop n O x0 (CHead d2
+(Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g
+d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2
+(asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1
+u1 a)))))).(ex4_3_ind C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_:
+A).(drop n O x0 (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_:
+T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2:
+T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda
+(_: T).(\lambda (a: A).(arity g d1 u1 a)))) (or3 (ex2 C (\lambda (d2:
+C).(drop (S n) O (CHead x0 (Bind Void) x1) (CHead d2 (Bind Abbr) u1)))
+(\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda
+(u2: T).(\lambda (_: A).(drop (S n) O (CHead x0 (Bind Void) x1) (CHead d2
+(Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g
+d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2
+(asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1
+u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop (S n) O (CHead
+x0 (Bind Void) x1) (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_:
+T).(csuba g d2 d1))))) (\lambda (x2: C).(\lambda (x3: T).(\lambda (x4:
+A).(\lambda (H13: (drop n O x0 (CHead x2 (Bind Abst) x3))).(\lambda (H14:
+(csuba g x2 d1)).(\lambda (H15: (arity g x2 x3 (asucc g x4))).(\lambda (H16:
+(arity g d1 u1 x4)).(or3_intro1 (ex2 C (\lambda (d2: C).(drop (S n) O (CHead
+x0 (Bind Void) x1) (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2
+d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S
+n) O (CHead x0 (Bind Void) x1) (CHead d2 (Bind Abst) u2))))) (\lambda (d2:
+C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2:
+C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda
+(_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex2_2 C T
+(\lambda (d2: C).(\lambda (u2: T).(drop (S n) O (CHead x0 (Bind Void) x1)
+(CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+d1)))) (ex4_3_intro C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_:
+A).(drop (S n) O (CHead x0 (Bind Void) x1) (CHead d2 (Bind Abst) u2)))))
(\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda
(d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a)))))
-(\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))))
-(ex_intro2 C (\lambda (d2: C).(drop (S n) O (CHead x (Bind Void) t) (CHead d2
-(Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1)) x0 (drop_drop (Bind Void)
-n x (CHead x0 (Bind Abbr) u1) H15 t) H13))))))) H11)) (\lambda (H11: (ex4_3 C
-T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop n O x (CHead d2
+(\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))) x2 x3 x4
+(drop_drop (Bind Void) n x0 (CHead x2 (Bind Abst) x3) H13 x1) H14 H15
+H16))))))))) H12)) (\lambda (H12: (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(drop n O x0 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_:
+T).(csuba g d2 d1))))).(ex2_2_ind C T (\lambda (d2: C).(\lambda (u2: T).(drop
+n O x0 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g
+d2 d1))) (or3 (ex2 C (\lambda (d2: C).(drop (S n) O (CHead x0 (Bind Void) x1)
+(CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A
+(\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O (CHead x0
+(Bind Void) x1) (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_:
+T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2:
+T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda
+(_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2:
+C).(\lambda (u2: T).(drop (S n) O (CHead x0 (Bind Void) x1) (CHead d2 (Bind
+Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda
+(x2: C).(\lambda (x3: T).(\lambda (H13: (drop n O x0 (CHead x2 (Bind Void)
+x3))).(\lambda (H14: (csuba g x2 d1)).(or3_intro2 (ex2 C (\lambda (d2:
+C).(drop (S n) O (CHead x0 (Bind Void) x1) (CHead d2 (Bind Abbr) u1)))
+(\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda
+(u2: T).(\lambda (_: A).(drop (S n) O (CHead x0 (Bind Void) x1) (CHead d2
(Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g
d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2
(asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1
-u1 a)))))).(ex4_3_ind C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_:
+u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop (S n) O (CHead
+x0 (Bind Void) x1) (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_:
+T).(csuba g d2 d1)))) (ex2_2_intro C T (\lambda (d2: C).(\lambda (u2:
+T).(drop (S n) O (CHead x0 (Bind Void) x1) (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))) x2 x3 (drop_drop (Bind
+Void) n x0 (CHead x2 (Bind Void) x3) H13 x1) H14)))))) H12)) H11)) c2 H9)))))
+H8)) H7))))) (\lambda (H5: (csuba g c2 (CHead c (Bind Void) t))).(\lambda
+(H6: (drop (r (Bind Void) n) O c (CHead d1 (Bind Abbr) u1))).(let H_x \def
+(csuba_gen_void_rev g c c2 t H5) in (let H7 \def H_x in (ex2_ind C (\lambda
+(d2: C).(eq C c2 (CHead d2 (Bind Void) t))) (\lambda (d2: C).(csuba g d2 c))
+(or3 (ex2 C (\lambda (d2: C).(drop (S n) O c2 (CHead d2 (Bind Abbr) u1)))
+(\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda
+(u2: T).(\lambda (_: A).(drop (S n) O c2 (CHead d2 (Bind Abst) u2)))))
+(\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda
+(d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a)))))
+(\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex2_2
+C T (\lambda (d2: C).(\lambda (u2: T).(drop (S n) O c2 (CHead d2 (Bind Void)
+u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda (x:
+C).(\lambda (H8: (eq C c2 (CHead x (Bind Void) t))).(\lambda (H9: (csuba g x
+c)).(eq_ind_r C (CHead x (Bind Void) t) (\lambda (c0: C).(or3 (ex2 C (\lambda
+(d2: C).(drop (S n) O c0 (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba
+g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_:
+A).(drop (S n) O c0 (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda
+(_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2:
+T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda
+(_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2:
+C).(\lambda (u2: T).(drop (S n) O c0 (CHead d2 (Bind Void) u2)))) (\lambda
+(d2: C).(\lambda (_: T).(csuba g d2 d1)))))) (let H10 \def (H c d1 u1 H6 g x
+H9) in (or3_ind (ex2 C (\lambda (d2: C).(drop n O x (CHead d2 (Bind Abbr)
+u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2:
+C).(\lambda (u2: T).(\lambda (_: A).(drop n O x (CHead d2 (Bind Abst) u2)))))
+(\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda
+(d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a)))))
+(\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex2_2
+C T (\lambda (d2: C).(\lambda (u2: T).(drop n O x (CHead d2 (Bind Void)
+u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1)))) (or3 (ex2 C
+(\lambda (d2: C).(drop (S n) O (CHead x (Bind Void) t) (CHead d2 (Bind Abbr)
+u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2:
+C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O (CHead x (Bind Void) t)
+(CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_:
+A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
+A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda
+(a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(drop (S n) O (CHead x (Bind Void) t) (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda (H11: (ex2 C
+(\lambda (d2: C).(drop n O x (CHead d2 (Bind Abbr) u1))) (\lambda (d2:
+C).(csuba g d2 d1)))).(ex2_ind C (\lambda (d2: C).(drop n O x (CHead d2 (Bind
+Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1)) (or3 (ex2 C (\lambda (d2:
+C).(drop (S n) O (CHead x (Bind Void) t) (CHead d2 (Bind Abbr) u1))) (\lambda
+(d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2:
+T).(\lambda (_: A).(drop (S n) O (CHead x (Bind Void) t) (CHead d2 (Bind
+Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2
+d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2
+(asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1
+u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop (S n) O (CHead x
+(Bind Void) t) (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_:
+T).(csuba g d2 d1))))) (\lambda (x0: C).(\lambda (H12: (drop n O x (CHead x0
+(Bind Abbr) u1))).(\lambda (H13: (csuba g x0 d1)).(or3_intro0 (ex2 C (\lambda
+(d2: C).(drop (S n) O (CHead x (Bind Void) t) (CHead d2 (Bind Abbr) u1)))
+(\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda
+(u2: T).(\lambda (_: A).(drop (S n) O (CHead x (Bind Void) t) (CHead d2 (Bind
+Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2
+d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2
+(asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1
+u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop (S n) O (CHead x
+(Bind Void) t) (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_:
+T).(csuba g d2 d1)))) (ex_intro2 C (\lambda (d2: C).(drop (S n) O (CHead x
+(Bind Void) t) (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))
+x0 (drop_drop (Bind Void) n x (CHead x0 (Bind Abbr) u1) H12 t) H13))))) H11))
+(\lambda (H11: (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_:
A).(drop n O x (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_:
T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2:
T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda
-(_: T).(\lambda (a: A).(arity g d1 u1 a)))) (or (ex2 C (\lambda (d2: C).(drop
-(S n) O (CHead x (Bind Void) t) (CHead d2 (Bind Abbr) u1))) (\lambda (d2:
-C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda
-(_: A).(drop (S n) O (CHead x (Bind Void) t) (CHead d2 (Bind Abst) u2)))))
+(_: T).(\lambda (a: A).(arity g d1 u1 a)))))).(ex4_3_ind C T A (\lambda (d2:
+C).(\lambda (u2: T).(\lambda (_: A).(drop n O x (CHead d2 (Bind Abst) u2)))))
(\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda
(d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a)))))
-(\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a))))))
-(\lambda (x0: C).(\lambda (x1: T).(\lambda (x2: A).(\lambda (H12: (drop n O x
-(CHead x0 (Bind Abst) x1))).(\lambda (H13: (csuba g x0 d1)).(\lambda (H14:
-(arity g x0 x1 (asucc g x2))).(\lambda (H15: (arity g d1 u1 x2)).(let H16
-\def (refl_equal nat (r (Bind Abst) n)) in (let H17 \def (eq_ind nat n
-(\lambda (n0: nat).(drop n0 O x (CHead x0 (Bind Abst) x1))) H12 (r (Bind
-Abst) n) H16) in (or_intror (ex2 C (\lambda (d2: C).(drop (S n) O (CHead x
-(Bind Void) t) (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1)))
-(ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O
-(CHead x (Bind Void) t) (CHead d2 (Bind Abst) u2))))) (\lambda (d2:
-C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2:
-C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda
-(_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex4_3_intro C T
-A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O (CHead x
+(\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))) (or3
+(ex2 C (\lambda (d2: C).(drop (S n) O (CHead x (Bind Void) t) (CHead d2 (Bind
+Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2:
+C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O (CHead x (Bind Void) t)
+(CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_:
+A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
+A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda
+(a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(drop (S n) O (CHead x (Bind Void) t) (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda (x0:
+C).(\lambda (x1: T).(\lambda (x2: A).(\lambda (H12: (drop n O x (CHead x0
+(Bind Abst) x1))).(\lambda (H13: (csuba g x0 d1)).(\lambda (H14: (arity g x0
+x1 (asucc g x2))).(\lambda (H15: (arity g d1 u1 x2)).(or3_intro1 (ex2 C
+(\lambda (d2: C).(drop (S n) O (CHead x (Bind Void) t) (CHead d2 (Bind Abbr)
+u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2:
+C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O (CHead x (Bind Void) t)
+(CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_:
+A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
+A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda
+(a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(drop (S n) O (CHead x (Bind Void) t) (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1)))) (ex4_3_intro C T A
+(\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O (CHead x
(Bind Void) t) (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_:
T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2:
T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda
(_: T).(\lambda (a: A).(arity g d1 u1 a)))) x0 x1 x2 (drop_drop (Bind Void) n
-x (CHead x0 (Bind Abst) x1) H17 t) H13 H14 H15))))))))))) H11)) H10)) c2
-H8)))) H7))))) b H3 H4)))) (\lambda (f: F).(\lambda (H3: (csuba g c2 (CHead c
-(Flat f) t))).(\lambda (H4: (drop (r (Flat f) n) O c (CHead d1 (Bind Abbr)
+x (CHead x0 (Bind Abst) x1) H12 t) H13 H14 H15))))))))) H11)) (\lambda (H11:
+(ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop n O x (CHead d2 (Bind
+Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))).(ex2_2_ind
+C T (\lambda (d2: C).(\lambda (u2: T).(drop n O x (CHead d2 (Bind Void)
+u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))) (or3 (ex2 C
+(\lambda (d2: C).(drop (S n) O (CHead x (Bind Void) t) (CHead d2 (Bind Abbr)
+u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2:
+C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O (CHead x (Bind Void) t)
+(CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_:
+A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
+A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda
+(a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(drop (S n) O (CHead x (Bind Void) t) (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda (x0:
+C).(\lambda (x1: T).(\lambda (H12: (drop n O x (CHead x0 (Bind Void)
+x1))).(\lambda (H13: (csuba g x0 d1)).(or3_intro2 (ex2 C (\lambda (d2:
+C).(drop (S n) O (CHead x (Bind Void) t) (CHead d2 (Bind Abbr) u1))) (\lambda
+(d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2:
+T).(\lambda (_: A).(drop (S n) O (CHead x (Bind Void) t) (CHead d2 (Bind
+Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2
+d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2
+(asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1
+u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop (S n) O (CHead x
+(Bind Void) t) (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_:
+T).(csuba g d2 d1)))) (ex2_2_intro C T (\lambda (d2: C).(\lambda (u2:
+T).(drop (S n) O (CHead x (Bind Void) t) (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))) x0 x1 (drop_drop (Bind
+Void) n x (CHead x0 (Bind Void) x1) H12 t) H13)))))) H11)) H10)) c2 H8))))
+H7))))) b H3 H4)))) (\lambda (f: F).(\lambda (H3: (csuba g c2 (CHead c (Flat
+f) t))).(\lambda (H4: (drop (r (Flat f) n) O c (CHead d1 (Bind Abbr)
u1))).(let H_x \def (csuba_gen_flat_rev g c c2 t f H3) in (let H5 \def H_x in
(ex2_2_ind C T (\lambda (d2: C).(\lambda (u2: T).(eq C c2 (CHead d2 (Flat f)
-u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 c))) (or (ex2 C (\lambda
+u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 c))) (or3 (ex2 C (\lambda
(d2: C).(drop (S n) O c2 (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba
g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_:
A).(drop (S n) O c2 (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda
(_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2:
T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda
-(_: T).(\lambda (a: A).(arity g d1 u1 a)))))) (\lambda (x0: C).(\lambda (x1:
+(_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2:
+C).(\lambda (u2: T).(drop (S n) O c2 (CHead d2 (Bind Void) u2)))) (\lambda
+(d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda (x0: C).(\lambda (x1:
T).(\lambda (H6: (eq C c2 (CHead x0 (Flat f) x1))).(\lambda (H7: (csuba g x0
-c)).(eq_ind_r C (CHead x0 (Flat f) x1) (\lambda (c0: C).(or (ex2 C (\lambda
+c)).(eq_ind_r C (CHead x0 (Flat f) x1) (\lambda (c0: C).(or3 (ex2 C (\lambda
(d2: C).(drop (S n) O c0 (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba
g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_:
A).(drop (S n) O c0 (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda
(_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2:
T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda
-(_: T).(\lambda (a: A).(arity g d1 u1 a))))))) (let H8 \def (H0 d1 u1 H4 g x0
-H7) in (or_ind (ex2 C (\lambda (d2: C).(drop (S n) O x0 (CHead d2 (Bind Abbr)
-u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2:
+(_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2:
+C).(\lambda (u2: T).(drop (S n) O c0 (CHead d2 (Bind Void) u2)))) (\lambda
+(d2: C).(\lambda (_: T).(csuba g d2 d1)))))) (let H8 \def (H0 d1 u1 H4 g x0
+H7) in (or3_ind (ex2 C (\lambda (d2: C).(drop (S n) O x0 (CHead d2 (Bind
+Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2:
C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O x0 (CHead d2 (Bind Abst)
u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1))))
(\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g
a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))))
-(or (ex2 C (\lambda (d2: C).(drop (S n) O (CHead x0 (Flat f) x1) (CHead d2
-(Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda
-(d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O (CHead x0 (Flat f) x1)
+(ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop (S n) O x0 (CHead d2 (Bind
+Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1)))) (or3 (ex2 C
+(\lambda (d2: C).(drop (S n) O (CHead x0 (Flat f) x1) (CHead d2 (Bind Abbr)
+u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2:
+C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O (CHead x0 (Flat f) x1)
(CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_:
A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda
-(a: A).(arity g d1 u1 a)))))) (\lambda (H9: (ex2 C (\lambda (d2: C).(drop (S
-n) O x0 (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2
-d1)))).(ex2_ind C (\lambda (d2: C).(drop (S n) O x0 (CHead d2 (Bind Abbr)
-u1))) (\lambda (d2: C).(csuba g d2 d1)) (or (ex2 C (\lambda (d2: C).(drop (S
-n) O (CHead x0 (Flat f) x1) (CHead d2 (Bind Abbr) u1))) (\lambda (d2:
-C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda
-(_: A).(drop (S n) O (CHead x0 (Flat f) x1) (CHead d2 (Bind Abst) u2)))))
-(\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda
-(d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a)))))
-(\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a))))))
-(\lambda (x: C).(\lambda (H10: (drop (S n) O x0 (CHead x (Bind Abbr)
-u1))).(\lambda (H11: (csuba g x d1)).(or_introl (ex2 C (\lambda (d2: C).(drop
-(S n) O (CHead x0 (Flat f) x1) (CHead d2 (Bind Abbr) u1))) (\lambda (d2:
-C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda
-(_: A).(drop (S n) O (CHead x0 (Flat f) x1) (CHead d2 (Bind Abst) u2)))))
-(\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda
-(d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a)))))
-(\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))))
-(ex_intro2 C (\lambda (d2: C).(drop (S n) O (CHead x0 (Flat f) x1) (CHead d2
-(Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1)) x (drop_drop (Flat f) n
-x0 (CHead x (Bind Abbr) u1) H10 x1) H11))))) H9)) (\lambda (H9: (ex4_3 C T A
-(\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O x0 (CHead d2
-(Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g
-d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2
-(asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1
-u1 a)))))).(ex4_3_ind C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_:
-A).(drop (S n) O x0 (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda
-(_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2:
-T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda
-(_: T).(\lambda (a: A).(arity g d1 u1 a)))) (or (ex2 C (\lambda (d2: C).(drop
-(S n) O (CHead x0 (Flat f) x1) (CHead d2 (Bind Abbr) u1))) (\lambda (d2:
-C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda
-(_: A).(drop (S n) O (CHead x0 (Flat f) x1) (CHead d2 (Bind Abst) u2)))))
-(\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda
-(d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a)))))
-(\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a))))))
-(\lambda (x2: C).(\lambda (x3: T).(\lambda (x4: A).(\lambda (H10: (drop (S n)
-O x0 (CHead x2 (Bind Abst) x3))).(\lambda (H11: (csuba g x2 d1)).(\lambda
-(H12: (arity g x2 x3 (asucc g x4))).(\lambda (H13: (arity g d1 u1
-x4)).(or_intror (ex2 C (\lambda (d2: C).(drop (S n) O (CHead x0 (Flat f) x1)
-(CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A
-(\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O (CHead x0
-(Flat f) x1) (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_:
-T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2:
-T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda
-(_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex4_3_intro C T A (\lambda (d2:
+(a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(drop (S n) O (CHead x0 (Flat f) x1) (CHead d2 (Bind Void) u2)))) (\lambda
+(d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda (H9: (ex2 C (\lambda
+(d2: C).(drop (S n) O x0 (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba
+g d2 d1)))).(ex2_ind C (\lambda (d2: C).(drop (S n) O x0 (CHead d2 (Bind
+Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1)) (or3 (ex2 C (\lambda (d2:
+C).(drop (S n) O (CHead x0 (Flat f) x1) (CHead d2 (Bind Abbr) u1))) (\lambda
+(d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2:
+T).(\lambda (_: A).(drop (S n) O (CHead x0 (Flat f) x1) (CHead d2 (Bind Abst)
+u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1))))
+(\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g
+a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))))
+(ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop (S n) O (CHead x0 (Flat f)
+x1) (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+d1))))) (\lambda (x: C).(\lambda (H10: (drop (S n) O x0 (CHead x (Bind Abbr)
+u1))).(\lambda (H11: (csuba g x d1)).(or3_intro0 (ex2 C (\lambda (d2:
+C).(drop (S n) O (CHead x0 (Flat f) x1) (CHead d2 (Bind Abbr) u1))) (\lambda
+(d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2:
+T).(\lambda (_: A).(drop (S n) O (CHead x0 (Flat f) x1) (CHead d2 (Bind Abst)
+u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1))))
+(\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g
+a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))))
+(ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop (S n) O (CHead x0 (Flat f)
+x1) (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+d1)))) (ex_intro2 C (\lambda (d2: C).(drop (S n) O (CHead x0 (Flat f) x1)
+(CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1)) x (drop_drop
+(Flat f) n x0 (CHead x (Bind Abbr) u1) H10 x1) H11))))) H9)) (\lambda (H9:
+(ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O
+x0 (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda
+(_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
+A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda
+(a: A).(arity g d1 u1 a)))))).(ex4_3_ind C T A (\lambda (d2: C).(\lambda (u2:
+T).(\lambda (_: A).(drop (S n) O x0 (CHead d2 (Bind Abst) u2))))) (\lambda
+(d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2:
+C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda
+(_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))) (or3 (ex2 C
+(\lambda (d2: C).(drop (S n) O (CHead x0 (Flat f) x1) (CHead d2 (Bind Abbr)
+u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2:
C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O (CHead x0 (Flat f) x1)
(CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_:
A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda
-(a: A).(arity g d1 u1 a)))) x2 x3 x4 (drop_drop (Flat f) n x0 (CHead x2 (Bind
-Abst) x3) H10 x1) H11 H12 H13))))))))) H9)) H8)) c2 H6))))) H5)))))) k H2
-(drop_gen_drop k c (CHead d1 (Bind Abbr) u1) t n H1)))))))))))) c1)))) i).
+(a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(drop (S n) O (CHead x0 (Flat f) x1) (CHead d2 (Bind Void) u2)))) (\lambda
+(d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda (x2: C).(\lambda (x3:
+T).(\lambda (x4: A).(\lambda (H10: (drop (S n) O x0 (CHead x2 (Bind Abst)
+x3))).(\lambda (H11: (csuba g x2 d1)).(\lambda (H12: (arity g x2 x3 (asucc g
+x4))).(\lambda (H13: (arity g d1 u1 x4)).(or3_intro1 (ex2 C (\lambda (d2:
+C).(drop (S n) O (CHead x0 (Flat f) x1) (CHead d2 (Bind Abbr) u1))) (\lambda
+(d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2:
+T).(\lambda (_: A).(drop (S n) O (CHead x0 (Flat f) x1) (CHead d2 (Bind Abst)
+u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1))))
+(\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g
+a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))))
+(ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop (S n) O (CHead x0 (Flat f)
+x1) (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+d1)))) (ex4_3_intro C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_:
+A).(drop (S n) O (CHead x0 (Flat f) x1) (CHead d2 (Bind Abst) u2)))))
+(\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda
+(d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a)))))
+(\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))) x2 x3 x4
+(drop_drop (Flat f) n x0 (CHead x2 (Bind Abst) x3) H10 x1) H11 H12
+H13))))))))) H9)) (\lambda (H9: (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(drop (S n) O x0 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda
+(_: T).(csuba g d2 d1))))).(ex2_2_ind C T (\lambda (d2: C).(\lambda (u2:
+T).(drop (S n) O x0 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda
+(_: T).(csuba g d2 d1))) (or3 (ex2 C (\lambda (d2: C).(drop (S n) O (CHead x0
+(Flat f) x1) (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1)))
+(ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop (S n) O
+(CHead x0 (Flat f) x1) (CHead d2 (Bind Abst) u2))))) (\lambda (d2:
+C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2:
+C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda
+(_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex2_2 C T
+(\lambda (d2: C).(\lambda (u2: T).(drop (S n) O (CHead x0 (Flat f) x1) (CHead
+d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1)))))
+(\lambda (x2: C).(\lambda (x3: T).(\lambda (H10: (drop (S n) O x0 (CHead x2
+(Bind Void) x3))).(\lambda (H11: (csuba g x2 d1)).(or3_intro2 (ex2 C (\lambda
+(d2: C).(drop (S n) O (CHead x0 (Flat f) x1) (CHead d2 (Bind Abbr) u1)))
+(\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda
+(u2: T).(\lambda (_: A).(drop (S n) O (CHead x0 (Flat f) x1) (CHead d2 (Bind
+Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2
+d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2
+(asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1
+u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(drop (S n) O (CHead
+x0 (Flat f) x1) (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_:
+T).(csuba g d2 d1)))) (ex2_2_intro C T (\lambda (d2: C).(\lambda (u2:
+T).(drop (S n) O (CHead x0 (Flat f) x1) (CHead d2 (Bind Void) u2)))) (\lambda
+(d2: C).(\lambda (_: T).(csuba g d2 d1))) x2 x3 (drop_drop (Flat f) n x0
+(CHead x2 (Bind Void) x3) H10 x1) H11)))))) H9)) H8)) c2 H6))))) H5)))))) k
+H2 (drop_gen_drop k c (CHead d1 (Bind Abbr) u1) t n H1)))))))))))) c1)))) i).
H4))))))))) (\lambda (c1: C).(\lambda (c2: C).(\lambda (_: (csuba g c1
c2)).(\lambda (_: (((eq C c1 (CHead d1 (Bind Abbr) u)) \to (ex2 C (\lambda
(d2: C).(eq C c2 (CHead d2 (Bind Abbr) u))) (\lambda (d2: C).(csuba g d1
-d2)))))).(\lambda (t: T).(\lambda (a: A).(\lambda (_: (arity g c1 t (asucc g
-a))).(\lambda (u0: T).(\lambda (_: (arity g c2 u0 a)).(\lambda (H5: (eq C
-(CHead c1 (Bind Abst) t) (CHead d1 (Bind Abbr) u))).(let H6 \def (eq_ind C
-(CHead c1 (Bind Abst) t) (\lambda (ee: C).(match ee in C return (\lambda (_:
-C).Prop) with [(CSort _) \Rightarrow False | (CHead _ k _) \Rightarrow (match
-k in K return (\lambda (_: K).Prop) with [(Bind b) \Rightarrow (match b in B
-return (\lambda (_: B).Prop) with [Abbr \Rightarrow False | Abst \Rightarrow
-True | Void \Rightarrow False]) | (Flat _) \Rightarrow False])])) I (CHead d1
-(Bind Abbr) u) H5) in (False_ind (ex2 C (\lambda (d2: C).(eq C (CHead c2
-(Bind Abbr) u0) (CHead d2 (Bind Abbr) u))) (\lambda (d2: C).(csuba g d1 d2)))
-H6)))))))))))) y c H0))) H))))).
+d2)))))).(\lambda (b: B).(\lambda (_: (not (eq B b Void))).(\lambda (u1:
+T).(\lambda (u2: T).(\lambda (H4: (eq C (CHead c1 (Bind Void) u1) (CHead d1
+(Bind Abbr) u))).(let H5 \def (eq_ind C (CHead c1 (Bind Void) u1) (\lambda
+(ee: C).(match ee in C return (\lambda (_: C).Prop) with [(CSort _)
+\Rightarrow False | (CHead _ k _) \Rightarrow (match k in K return (\lambda
+(_: K).Prop) with [(Bind b0) \Rightarrow (match b0 in B return (\lambda (_:
+B).Prop) with [Abbr \Rightarrow False | Abst \Rightarrow False | Void
+\Rightarrow True]) | (Flat _) \Rightarrow False])])) I (CHead d1 (Bind Abbr)
+u) H4) in (False_ind (ex2 C (\lambda (d2: C).(eq C (CHead c2 (Bind b) u2)
+(CHead d2 (Bind Abbr) u))) (\lambda (d2: C).(csuba g d1 d2))) H5)))))))))))
+(\lambda (c1: C).(\lambda (c2: C).(\lambda (_: (csuba g c1 c2)).(\lambda (_:
+(((eq C c1 (CHead d1 (Bind Abbr) u)) \to (ex2 C (\lambda (d2: C).(eq C c2
+(CHead d2 (Bind Abbr) u))) (\lambda (d2: C).(csuba g d1 d2)))))).(\lambda (t:
+T).(\lambda (a: A).(\lambda (_: (arity g c1 t (asucc g a))).(\lambda (u0:
+T).(\lambda (_: (arity g c2 u0 a)).(\lambda (H5: (eq C (CHead c1 (Bind Abst)
+t) (CHead d1 (Bind Abbr) u))).(let H6 \def (eq_ind C (CHead c1 (Bind Abst) t)
+(\lambda (ee: C).(match ee in C return (\lambda (_: C).Prop) with [(CSort _)
+\Rightarrow False | (CHead _ k _) \Rightarrow (match k in K return (\lambda
+(_: K).Prop) with [(Bind b) \Rightarrow (match b in B return (\lambda (_:
+B).Prop) with [Abbr \Rightarrow False | Abst \Rightarrow True | Void
+\Rightarrow False]) | (Flat _) \Rightarrow False])])) I (CHead d1 (Bind Abbr)
+u) H5) in (False_ind (ex2 C (\lambda (d2: C).(eq C (CHead c2 (Bind Abbr) u0)
+(CHead d2 (Bind Abbr) u))) (\lambda (d2: C).(csuba g d1 d2))) H6))))))))))))
+y c H0))) H))))).
theorem csuba_gen_void:
- \forall (g: G).(\forall (d1: C).(\forall (c: C).(\forall (u: T).((csuba g
-(CHead d1 (Bind Void) u) c) \to (ex2 C (\lambda (d2: C).(eq C c (CHead d2
-(Bind Void) u))) (\lambda (d2: C).(csuba g d1 d2)))))))
+ \forall (g: G).(\forall (d1: C).(\forall (c: C).(\forall (u1: T).((csuba g
+(CHead d1 (Bind Void) u1) c) \to (ex2_3 B C T (\lambda (b: B).(\lambda (d2:
+C).(\lambda (u2: T).(eq C c (CHead d2 (Bind b) u2))))) (\lambda (_:
+B).(\lambda (d2: C).(\lambda (_: T).(csuba g d1 d2)))))))))
\def
- \lambda (g: G).(\lambda (d1: C).(\lambda (c: C).(\lambda (u: T).(\lambda (H:
-(csuba g (CHead d1 (Bind Void) u) c)).(insert_eq C (CHead d1 (Bind Void) u)
-(\lambda (c0: C).(csuba g c0 c)) (\lambda (_: C).(ex2 C (\lambda (d2: C).(eq
-C c (CHead d2 (Bind Void) u))) (\lambda (d2: C).(csuba g d1 d2)))) (\lambda
-(y: C).(\lambda (H0: (csuba g y c)).(csuba_ind g (\lambda (c0: C).(\lambda
-(c1: C).((eq C c0 (CHead d1 (Bind Void) u)) \to (ex2 C (\lambda (d2: C).(eq C
-c1 (CHead d2 (Bind Void) u))) (\lambda (d2: C).(csuba g d1 d2)))))) (\lambda
-(n: nat).(\lambda (H1: (eq C (CSort n) (CHead d1 (Bind Void) u))).(let H2
-\def (eq_ind C (CSort n) (\lambda (ee: C).(match ee in C return (\lambda (_:
-C).Prop) with [(CSort _) \Rightarrow True | (CHead _ _ _) \Rightarrow
-False])) I (CHead d1 (Bind Void) u) H1) in (False_ind (ex2 C (\lambda (d2:
-C).(eq C (CSort n) (CHead d2 (Bind Void) u))) (\lambda (d2: C).(csuba g d1
-d2))) H2)))) (\lambda (c1: C).(\lambda (c2: C).(\lambda (H1: (csuba g c1
-c2)).(\lambda (H2: (((eq C c1 (CHead d1 (Bind Void) u)) \to (ex2 C (\lambda
-(d2: C).(eq C c2 (CHead d2 (Bind Void) u))) (\lambda (d2: C).(csuba g d1
-d2)))))).(\lambda (k: K).(\lambda (u0: T).(\lambda (H3: (eq C (CHead c1 k u0)
-(CHead d1 (Bind Void) u))).(let H4 \def (f_equal C C (\lambda (e: C).(match e
-in C return (\lambda (_: C).C) with [(CSort _) \Rightarrow c1 | (CHead c0 _
-_) \Rightarrow c0])) (CHead c1 k u0) (CHead d1 (Bind Void) u) H3) in ((let H5
+ \lambda (g: G).(\lambda (d1: C).(\lambda (c: C).(\lambda (u1: T).(\lambda
+(H: (csuba g (CHead d1 (Bind Void) u1) c)).(insert_eq C (CHead d1 (Bind Void)
+u1) (\lambda (c0: C).(csuba g c0 c)) (\lambda (_: C).(ex2_3 B C T (\lambda
+(b: B).(\lambda (d2: C).(\lambda (u2: T).(eq C c (CHead d2 (Bind b) u2)))))
+(\lambda (_: B).(\lambda (d2: C).(\lambda (_: T).(csuba g d1 d2))))))
+(\lambda (y: C).(\lambda (H0: (csuba g y c)).(csuba_ind g (\lambda (c0:
+C).(\lambda (c1: C).((eq C c0 (CHead d1 (Bind Void) u1)) \to (ex2_3 B C T
+(\lambda (b: B).(\lambda (d2: C).(\lambda (u2: T).(eq C c1 (CHead d2 (Bind b)
+u2))))) (\lambda (_: B).(\lambda (d2: C).(\lambda (_: T).(csuba g d1
+d2)))))))) (\lambda (n: nat).(\lambda (H1: (eq C (CSort n) (CHead d1 (Bind
+Void) u1))).(let H2 \def (eq_ind C (CSort n) (\lambda (ee: C).(match ee in C
+return (\lambda (_: C).Prop) with [(CSort _) \Rightarrow True | (CHead _ _ _)
+\Rightarrow False])) I (CHead d1 (Bind Void) u1) H1) in (False_ind (ex2_3 B C
+T (\lambda (b: B).(\lambda (d2: C).(\lambda (u2: T).(eq C (CSort n) (CHead d2
+(Bind b) u2))))) (\lambda (_: B).(\lambda (d2: C).(\lambda (_: T).(csuba g d1
+d2))))) H2)))) (\lambda (c1: C).(\lambda (c2: C).(\lambda (H1: (csuba g c1
+c2)).(\lambda (H2: (((eq C c1 (CHead d1 (Bind Void) u1)) \to (ex2_3 B C T
+(\lambda (b: B).(\lambda (d2: C).(\lambda (u2: T).(eq C c2 (CHead d2 (Bind b)
+u2))))) (\lambda (_: B).(\lambda (d2: C).(\lambda (_: T).(csuba g d1
+d2)))))))).(\lambda (k: K).(\lambda (u: T).(\lambda (H3: (eq C (CHead c1 k u)
+(CHead d1 (Bind Void) u1))).(let H4 \def (f_equal C C (\lambda (e: C).(match
+e in C return (\lambda (_: C).C) with [(CSort _) \Rightarrow c1 | (CHead c0 _
+_) \Rightarrow c0])) (CHead c1 k u) (CHead d1 (Bind Void) u1) H3) in ((let H5
\def (f_equal C K (\lambda (e: C).(match e in C return (\lambda (_: C).K)
with [(CSort _) \Rightarrow k | (CHead _ k0 _) \Rightarrow k0])) (CHead c1 k
-u0) (CHead d1 (Bind Void) u) H3) in ((let H6 \def (f_equal C T (\lambda (e:
-C).(match e in C return (\lambda (_: C).T) with [(CSort _) \Rightarrow u0 |
-(CHead _ _ t) \Rightarrow t])) (CHead c1 k u0) (CHead d1 (Bind Void) u) H3)
+u) (CHead d1 (Bind Void) u1) H3) in ((let H6 \def (f_equal C T (\lambda (e:
+C).(match e in C return (\lambda (_: C).T) with [(CSort _) \Rightarrow u |
+(CHead _ _ t) \Rightarrow t])) (CHead c1 k u) (CHead d1 (Bind Void) u1) H3)
in (\lambda (H7: (eq K k (Bind Void))).(\lambda (H8: (eq C c1 d1)).(eq_ind_r
-T u (\lambda (t: T).(ex2 C (\lambda (d2: C).(eq C (CHead c2 k t) (CHead d2
-(Bind Void) u))) (\lambda (d2: C).(csuba g d1 d2)))) (eq_ind_r K (Bind Void)
-(\lambda (k0: K).(ex2 C (\lambda (d2: C).(eq C (CHead c2 k0 u) (CHead d2
-(Bind Void) u))) (\lambda (d2: C).(csuba g d1 d2)))) (let H9 \def (eq_ind C
-c1 (\lambda (c0: C).((eq C c0 (CHead d1 (Bind Void) u)) \to (ex2 C (\lambda
-(d2: C).(eq C c2 (CHead d2 (Bind Void) u))) (\lambda (d2: C).(csuba g d1
-d2))))) H2 d1 H8) in (let H10 \def (eq_ind C c1 (\lambda (c0: C).(csuba g c0
-c2)) H1 d1 H8) in (ex_intro2 C (\lambda (d2: C).(eq C (CHead c2 (Bind Void)
-u) (CHead d2 (Bind Void) u))) (\lambda (d2: C).(csuba g d1 d2)) c2
-(refl_equal C (CHead c2 (Bind Void) u)) H10))) k H7) u0 H6)))) H5))
-H4))))))))) (\lambda (c1: C).(\lambda (c2: C).(\lambda (_: (csuba g c1
-c2)).(\lambda (_: (((eq C c1 (CHead d1 (Bind Void) u)) \to (ex2 C (\lambda
-(d2: C).(eq C c2 (CHead d2 (Bind Void) u))) (\lambda (d2: C).(csuba g d1
-d2)))))).(\lambda (t: T).(\lambda (a: A).(\lambda (_: (arity g c1 t (asucc g
-a))).(\lambda (u0: T).(\lambda (_: (arity g c2 u0 a)).(\lambda (H5: (eq C
-(CHead c1 (Bind Abst) t) (CHead d1 (Bind Void) u))).(let H6 \def (eq_ind C
+T u1 (\lambda (t: T).(ex2_3 B C T (\lambda (b: B).(\lambda (d2: C).(\lambda
+(u2: T).(eq C (CHead c2 k t) (CHead d2 (Bind b) u2))))) (\lambda (_:
+B).(\lambda (d2: C).(\lambda (_: T).(csuba g d1 d2)))))) (eq_ind_r K (Bind
+Void) (\lambda (k0: K).(ex2_3 B C T (\lambda (b: B).(\lambda (d2: C).(\lambda
+(u2: T).(eq C (CHead c2 k0 u1) (CHead d2 (Bind b) u2))))) (\lambda (_:
+B).(\lambda (d2: C).(\lambda (_: T).(csuba g d1 d2)))))) (let H9 \def (eq_ind
+C c1 (\lambda (c0: C).((eq C c0 (CHead d1 (Bind Void) u1)) \to (ex2_3 B C T
+(\lambda (b: B).(\lambda (d2: C).(\lambda (u2: T).(eq C c2 (CHead d2 (Bind b)
+u2))))) (\lambda (_: B).(\lambda (d2: C).(\lambda (_: T).(csuba g d1
+d2))))))) H2 d1 H8) in (let H10 \def (eq_ind C c1 (\lambda (c0: C).(csuba g
+c0 c2)) H1 d1 H8) in (ex2_3_intro B C T (\lambda (b: B).(\lambda (d2:
+C).(\lambda (u2: T).(eq C (CHead c2 (Bind Void) u1) (CHead d2 (Bind b)
+u2))))) (\lambda (_: B).(\lambda (d2: C).(\lambda (_: T).(csuba g d1 d2))))
+Void c2 u1 (refl_equal C (CHead c2 (Bind Void) u1)) H10))) k H7) u H6))))
+H5)) H4))))))))) (\lambda (c1: C).(\lambda (c2: C).(\lambda (H1: (csuba g c1
+c2)).(\lambda (H2: (((eq C c1 (CHead d1 (Bind Void) u1)) \to (ex2_3 B C T
+(\lambda (b: B).(\lambda (d2: C).(\lambda (u2: T).(eq C c2 (CHead d2 (Bind b)
+u2))))) (\lambda (_: B).(\lambda (d2: C).(\lambda (_: T).(csuba g d1
+d2)))))))).(\lambda (b: B).(\lambda (_: (not (eq B b Void))).(\lambda (u0:
+T).(\lambda (u2: T).(\lambda (H4: (eq C (CHead c1 (Bind Void) u0) (CHead d1
+(Bind Void) u1))).(let H5 \def (f_equal C C (\lambda (e: C).(match e in C
+return (\lambda (_: C).C) with [(CSort _) \Rightarrow c1 | (CHead c0 _ _)
+\Rightarrow c0])) (CHead c1 (Bind Void) u0) (CHead d1 (Bind Void) u1) H4) in
+((let H6 \def (f_equal C T (\lambda (e: C).(match e in C return (\lambda (_:
+C).T) with [(CSort _) \Rightarrow u0 | (CHead _ _ t) \Rightarrow t])) (CHead
+c1 (Bind Void) u0) (CHead d1 (Bind Void) u1) H4) in (\lambda (H7: (eq C c1
+d1)).(let H8 \def (eq_ind C c1 (\lambda (c0: C).((eq C c0 (CHead d1 (Bind
+Void) u1)) \to (ex2_3 B C T (\lambda (b0: B).(\lambda (d2: C).(\lambda (u3:
+T).(eq C c2 (CHead d2 (Bind b0) u3))))) (\lambda (_: B).(\lambda (d2:
+C).(\lambda (_: T).(csuba g d1 d2))))))) H2 d1 H7) in (let H9 \def (eq_ind C
+c1 (\lambda (c0: C).(csuba g c0 c2)) H1 d1 H7) in (ex2_3_intro B C T (\lambda
+(b0: B).(\lambda (d2: C).(\lambda (u3: T).(eq C (CHead c2 (Bind b) u2) (CHead
+d2 (Bind b0) u3))))) (\lambda (_: B).(\lambda (d2: C).(\lambda (_: T).(csuba
+g d1 d2)))) b c2 u2 (refl_equal C (CHead c2 (Bind b) u2)) H9)))))
+H5))))))))))) (\lambda (c1: C).(\lambda (c2: C).(\lambda (_: (csuba g c1
+c2)).(\lambda (_: (((eq C c1 (CHead d1 (Bind Void) u1)) \to (ex2_3 B C T
+(\lambda (b: B).(\lambda (d2: C).(\lambda (u2: T).(eq C c2 (CHead d2 (Bind b)
+u2))))) (\lambda (_: B).(\lambda (d2: C).(\lambda (_: T).(csuba g d1
+d2)))))))).(\lambda (t: T).(\lambda (a: A).(\lambda (_: (arity g c1 t (asucc
+g a))).(\lambda (u: T).(\lambda (_: (arity g c2 u a)).(\lambda (H5: (eq C
+(CHead c1 (Bind Abst) t) (CHead d1 (Bind Void) u1))).(let H6 \def (eq_ind C
(CHead c1 (Bind Abst) t) (\lambda (ee: C).(match ee in C return (\lambda (_:
C).Prop) with [(CSort _) \Rightarrow False | (CHead _ k _) \Rightarrow (match
k in K return (\lambda (_: K).Prop) with [(Bind b) \Rightarrow (match b in B
return (\lambda (_: B).Prop) with [Abbr \Rightarrow False | Abst \Rightarrow
True | Void \Rightarrow False]) | (Flat _) \Rightarrow False])])) I (CHead d1
-(Bind Void) u) H5) in (False_ind (ex2 C (\lambda (d2: C).(eq C (CHead c2
-(Bind Abbr) u0) (CHead d2 (Bind Void) u))) (\lambda (d2: C).(csuba g d1 d2)))
+(Bind Void) u1) H5) in (False_ind (ex2_3 B C T (\lambda (b: B).(\lambda (d2:
+C).(\lambda (u2: T).(eq C (CHead c2 (Bind Abbr) u) (CHead d2 (Bind b) u2)))))
+(\lambda (_: B).(\lambda (d2: C).(\lambda (_: T).(csuba g d1 d2)))))
H6)))))))))))) y c H0))) H))))).
theorem csuba_gen_abst:
(a: A).(arity g d2 u2 a))))) (ex_intro2 C (\lambda (d2: C).(eq C (CHead c2
(Bind Abst) u1) (CHead d2 (Bind Abst) u1))) (\lambda (d2: C).(csuba g d1 d2))
c2 (refl_equal C (CHead c2 (Bind Abst) u1)) H10)))) k H7) u H6)))) H5))
-H4))))))))) (\lambda (c1: C).(\lambda (c2: C).(\lambda (H1: (csuba g c1
-c2)).(\lambda (H2: (((eq C c1 (CHead d1 (Bind Abst) u1)) \to (or (ex2 C
+H4))))))))) (\lambda (c1: C).(\lambda (c2: C).(\lambda (_: (csuba g c1
+c2)).(\lambda (_: (((eq C c1 (CHead d1 (Bind Abst) u1)) \to (or (ex2 C
(\lambda (d2: C).(eq C c2 (CHead d2 (Bind Abst) u1))) (\lambda (d2: C).(csuba
g d1 d2))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(eq
C c2 (CHead d2 (Bind Abbr) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda
(_: A).(csuba g d1 d2)))) (\lambda (_: C).(\lambda (_: T).(\lambda (a:
A).(arity g d1 u1 (asucc g a))))) (\lambda (d2: C).(\lambda (u2: T).(\lambda
-(a: A).(arity g d2 u2 a))))))))).(\lambda (t: T).(\lambda (a: A).(\lambda
-(H3: (arity g c1 t (asucc g a))).(\lambda (u: T).(\lambda (H4: (arity g c2 u
-a)).(\lambda (H5: (eq C (CHead c1 (Bind Abst) t) (CHead d1 (Bind Abst)
-u1))).(let H6 \def (f_equal C C (\lambda (e: C).(match e in C return (\lambda
-(_: C).C) with [(CSort _) \Rightarrow c1 | (CHead c0 _ _) \Rightarrow c0]))
-(CHead c1 (Bind Abst) t) (CHead d1 (Bind Abst) u1) H5) in ((let H7 \def
-(f_equal C T (\lambda (e: C).(match e in C return (\lambda (_: C).T) with
-[(CSort _) \Rightarrow t | (CHead _ _ t0) \Rightarrow t0])) (CHead c1 (Bind
-Abst) t) (CHead d1 (Bind Abst) u1) H5) in (\lambda (H8: (eq C c1 d1)).(let H9
-\def (eq_ind T t (\lambda (t0: T).(arity g c1 t0 (asucc g a))) H3 u1 H7) in
-(let H10 \def (eq_ind C c1 (\lambda (c0: C).(arity g c0 u1 (asucc g a))) H9
-d1 H8) in (let H11 \def (eq_ind C c1 (\lambda (c0: C).((eq C c0 (CHead d1
-(Bind Abst) u1)) \to (or (ex2 C (\lambda (d2: C).(eq C c2 (CHead d2 (Bind
-Abst) u1))) (\lambda (d2: C).(csuba g d1 d2))) (ex4_3 C T A (\lambda (d2:
-C).(\lambda (u2: T).(\lambda (_: A).(eq C c2 (CHead d2 (Bind Abbr) u2)))))
-(\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d1 d2)))) (\lambda
-(_: C).(\lambda (_: T).(\lambda (a0: A).(arity g d1 u1 (asucc g a0)))))
-(\lambda (d2: C).(\lambda (u2: T).(\lambda (a0: A).(arity g d2 u2 a0))))))))
-H2 d1 H8) in (let H12 \def (eq_ind C c1 (\lambda (c0: C).(csuba g c0 c2)) H1
-d1 H8) in (or_intror (ex2 C (\lambda (d2: C).(eq C (CHead c2 (Bind Abbr) u)
-(CHead d2 (Bind Abst) u1))) (\lambda (d2: C).(csuba g d1 d2))) (ex4_3 C T A
-(\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(eq C (CHead c2 (Bind Abbr)
-u) (CHead d2 (Bind Abbr) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda
-(_: A).(csuba g d1 d2)))) (\lambda (_: C).(\lambda (_: T).(\lambda (a0:
-A).(arity g d1 u1 (asucc g a0))))) (\lambda (d2: C).(\lambda (u2: T).(\lambda
-(a0: A).(arity g d2 u2 a0))))) (ex4_3_intro C T A (\lambda (d2: C).(\lambda
-(u2: T).(\lambda (_: A).(eq C (CHead c2 (Bind Abbr) u) (CHead d2 (Bind Abbr)
+(a: A).(arity g d2 u2 a))))))))).(\lambda (b: B).(\lambda (_: (not (eq B b
+Void))).(\lambda (u0: T).(\lambda (u2: T).(\lambda (H4: (eq C (CHead c1 (Bind
+Void) u0) (CHead d1 (Bind Abst) u1))).(let H5 \def (eq_ind C (CHead c1 (Bind
+Void) u0) (\lambda (ee: C).(match ee in C return (\lambda (_: C).Prop) with
+[(CSort _) \Rightarrow False | (CHead _ k _) \Rightarrow (match k in K return
+(\lambda (_: K).Prop) with [(Bind b0) \Rightarrow (match b0 in B return
+(\lambda (_: B).Prop) with [Abbr \Rightarrow False | Abst \Rightarrow False |
+Void \Rightarrow True]) | (Flat _) \Rightarrow False])])) I (CHead d1 (Bind
+Abst) u1) H4) in (False_ind (or (ex2 C (\lambda (d2: C).(eq C (CHead c2 (Bind
+b) u2) (CHead d2 (Bind Abst) u1))) (\lambda (d2: C).(csuba g d1 d2))) (ex4_3
+C T A (\lambda (d2: C).(\lambda (u3: T).(\lambda (_: A).(eq C (CHead c2 (Bind
+b) u2) (CHead d2 (Bind Abbr) u3))))) (\lambda (d2: C).(\lambda (_:
+T).(\lambda (_: A).(csuba g d1 d2)))) (\lambda (_: C).(\lambda (_:
+T).(\lambda (a: A).(arity g d1 u1 (asucc g a))))) (\lambda (d2: C).(\lambda
+(u3: T).(\lambda (a: A).(arity g d2 u3 a)))))) H5))))))))))) (\lambda (c1:
+C).(\lambda (c2: C).(\lambda (H1: (csuba g c1 c2)).(\lambda (H2: (((eq C c1
+(CHead d1 (Bind Abst) u1)) \to (or (ex2 C (\lambda (d2: C).(eq C c2 (CHead d2
+(Bind Abst) u1))) (\lambda (d2: C).(csuba g d1 d2))) (ex4_3 C T A (\lambda
+(d2: C).(\lambda (u2: T).(\lambda (_: A).(eq C c2 (CHead d2 (Bind Abbr)
+u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d1 d2))))
+(\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 (asucc g
+a))))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2
+a))))))))).(\lambda (t: T).(\lambda (a: A).(\lambda (H3: (arity g c1 t (asucc
+g a))).(\lambda (u: T).(\lambda (H4: (arity g c2 u a)).(\lambda (H5: (eq C
+(CHead c1 (Bind Abst) t) (CHead d1 (Bind Abst) u1))).(let H6 \def (f_equal C
+C (\lambda (e: C).(match e in C return (\lambda (_: C).C) with [(CSort _)
+\Rightarrow c1 | (CHead c0 _ _) \Rightarrow c0])) (CHead c1 (Bind Abst) t)
+(CHead d1 (Bind Abst) u1) H5) in ((let H7 \def (f_equal C T (\lambda (e:
+C).(match e in C return (\lambda (_: C).T) with [(CSort _) \Rightarrow t |
+(CHead _ _ t0) \Rightarrow t0])) (CHead c1 (Bind Abst) t) (CHead d1 (Bind
+Abst) u1) H5) in (\lambda (H8: (eq C c1 d1)).(let H9 \def (eq_ind T t
+(\lambda (t0: T).(arity g c1 t0 (asucc g a))) H3 u1 H7) in (let H10 \def
+(eq_ind C c1 (\lambda (c0: C).(arity g c0 u1 (asucc g a))) H9 d1 H8) in (let
+H11 \def (eq_ind C c1 (\lambda (c0: C).((eq C c0 (CHead d1 (Bind Abst) u1))
+\to (or (ex2 C (\lambda (d2: C).(eq C c2 (CHead d2 (Bind Abst) u1))) (\lambda
+(d2: C).(csuba g d1 d2))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2:
+T).(\lambda (_: A).(eq C c2 (CHead d2 (Bind Abbr) u2))))) (\lambda (d2:
+C).(\lambda (_: T).(\lambda (_: A).(csuba g d1 d2)))) (\lambda (_:
+C).(\lambda (_: T).(\lambda (a0: A).(arity g d1 u1 (asucc g a0))))) (\lambda
+(d2: C).(\lambda (u2: T).(\lambda (a0: A).(arity g d2 u2 a0)))))))) H2 d1 H8)
+in (let H12 \def (eq_ind C c1 (\lambda (c0: C).(csuba g c0 c2)) H1 d1 H8) in
+(or_intror (ex2 C (\lambda (d2: C).(eq C (CHead c2 (Bind Abbr) u) (CHead d2
+(Bind Abst) u1))) (\lambda (d2: C).(csuba g d1 d2))) (ex4_3 C T A (\lambda
+(d2: C).(\lambda (u2: T).(\lambda (_: A).(eq C (CHead c2 (Bind Abbr) u)
+(CHead d2 (Bind Abbr) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_:
+A).(csuba g d1 d2)))) (\lambda (_: C).(\lambda (_: T).(\lambda (a0: A).(arity
+g d1 u1 (asucc g a0))))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a0:
+A).(arity g d2 u2 a0))))) (ex4_3_intro C T A (\lambda (d2: C).(\lambda (u2:
+T).(\lambda (_: A).(eq C (CHead c2 (Bind Abbr) u) (CHead d2 (Bind Abbr)
u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d1 d2))))
(\lambda (_: C).(\lambda (_: T).(\lambda (a0: A).(arity g d1 u1 (asucc g
a0))))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a0: A).(arity g d2 u2
C).(\lambda (c2: C).(\lambda (_: (csuba g c1 c2)).(\lambda (_: (((eq C c1
(CHead d1 (Flat f) u1)) \to (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(eq
C c2 (CHead d2 (Flat f) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d1
+d2))))))).(\lambda (b: B).(\lambda (_: (not (eq B b Void))).(\lambda (u0:
+T).(\lambda (u2: T).(\lambda (H4: (eq C (CHead c1 (Bind Void) u0) (CHead d1
+(Flat f) u1))).(let H5 \def (eq_ind C (CHead c1 (Bind Void) u0) (\lambda (ee:
+C).(match ee in C return (\lambda (_: C).Prop) with [(CSort _) \Rightarrow
+False | (CHead _ k _) \Rightarrow (match k in K return (\lambda (_: K).Prop)
+with [(Bind _) \Rightarrow True | (Flat _) \Rightarrow False])])) I (CHead d1
+(Flat f) u1) H4) in (False_ind (ex2_2 C T (\lambda (d2: C).(\lambda (u3:
+T).(eq C (CHead c2 (Bind b) u2) (CHead d2 (Flat f) u3)))) (\lambda (d2:
+C).(\lambda (_: T).(csuba g d1 d2)))) H5))))))))))) (\lambda (c1: C).(\lambda
+(c2: C).(\lambda (_: (csuba g c1 c2)).(\lambda (_: (((eq C c1 (CHead d1 (Flat
+f) u1)) \to (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(eq C c2 (CHead d2
+(Flat f) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d1
d2))))))).(\lambda (t: T).(\lambda (a: A).(\lambda (_: (arity g c1 t (asucc g
a))).(\lambda (u: T).(\lambda (_: (arity g c2 u a)).(\lambda (H5: (eq C
(CHead c1 (Bind Abst) t) (CHead d1 (Flat f) u1))).(let H6 \def (eq_ind C
C).(\lambda (c3: C).(\lambda (H1: (csuba g c1 c3)).(\lambda (H2: (((eq C c1
(CHead e1 (Bind b1) v1)) \to (ex2_3 B C T (\lambda (b2: B).(\lambda (e2:
C).(\lambda (v2: T).(eq C c3 (CHead e2 (Bind b2) v2))))) (\lambda (_:
-B).(\lambda (e2: C).(\lambda (_: T).(csuba g e1 e2)))))))).(\lambda (t:
-T).(\lambda (a: A).(\lambda (H3: (arity g c1 t (asucc g a))).(\lambda (u:
-T).(\lambda (_: (arity g c3 u a)).(\lambda (H5: (eq C (CHead c1 (Bind Abst)
-t) (CHead e1 (Bind b1) v1))).(let H6 \def (f_equal C C (\lambda (e: C).(match
-e in C return (\lambda (_: C).C) with [(CSort _) \Rightarrow c1 | (CHead c _
-_) \Rightarrow c])) (CHead c1 (Bind Abst) t) (CHead e1 (Bind b1) v1) H5) in
-((let H7 \def (f_equal C B (\lambda (e: C).(match e in C return (\lambda (_:
-C).B) with [(CSort _) \Rightarrow Abst | (CHead _ k _) \Rightarrow (match k
-in K return (\lambda (_: K).B) with [(Bind b) \Rightarrow b | (Flat _)
-\Rightarrow Abst])])) (CHead c1 (Bind Abst) t) (CHead e1 (Bind b1) v1) H5) in
-((let H8 \def (f_equal C T (\lambda (e: C).(match e in C return (\lambda (_:
-C).T) with [(CSort _) \Rightarrow t | (CHead _ _ t0) \Rightarrow t0])) (CHead
-c1 (Bind Abst) t) (CHead e1 (Bind b1) v1) H5) in (\lambda (H9: (eq B Abst
-b1)).(\lambda (H10: (eq C c1 e1)).(let H11 \def (eq_ind T t (\lambda (t0:
-T).(arity g c1 t0 (asucc g a))) H3 v1 H8) in (let H12 \def (eq_ind C c1
-(\lambda (c: C).(arity g c v1 (asucc g a))) H11 e1 H10) in (let H13 \def
-(eq_ind C c1 (\lambda (c: C).((eq C c (CHead e1 (Bind b1) v1)) \to (ex2_3 B C
-T (\lambda (b2: B).(\lambda (e2: C).(\lambda (v2: T).(eq C c3 (CHead e2 (Bind
-b2) v2))))) (\lambda (_: B).(\lambda (e2: C).(\lambda (_: T).(csuba g e1
-e2))))))) H2 e1 H10) in (let H14 \def (eq_ind C c1 (\lambda (c: C).(csuba g c
-c3)) H1 e1 H10) in (let H15 \def (eq_ind_r B b1 (\lambda (b: B).((eq C e1
-(CHead e1 (Bind b) v1)) \to (ex2_3 B C T (\lambda (b2: B).(\lambda (e2:
+B).(\lambda (e2: C).(\lambda (_: T).(csuba g e1 e2)))))))).(\lambda (b:
+B).(\lambda (_: (not (eq B b Void))).(\lambda (u1: T).(\lambda (u2:
+T).(\lambda (H4: (eq C (CHead c1 (Bind Void) u1) (CHead e1 (Bind b1)
+v1))).(let H5 \def (f_equal C C (\lambda (e: C).(match e in C return (\lambda
+(_: C).C) with [(CSort _) \Rightarrow c1 | (CHead c _ _) \Rightarrow c]))
+(CHead c1 (Bind Void) u1) (CHead e1 (Bind b1) v1) H4) in ((let H6 \def
+(f_equal C B (\lambda (e: C).(match e in C return (\lambda (_: C).B) with
+[(CSort _) \Rightarrow Void | (CHead _ k _) \Rightarrow (match k in K return
+(\lambda (_: K).B) with [(Bind b0) \Rightarrow b0 | (Flat _) \Rightarrow
+Void])])) (CHead c1 (Bind Void) u1) (CHead e1 (Bind b1) v1) H4) in ((let H7
+\def (f_equal C T (\lambda (e: C).(match e in C return (\lambda (_: C).T)
+with [(CSort _) \Rightarrow u1 | (CHead _ _ t) \Rightarrow t])) (CHead c1
+(Bind Void) u1) (CHead e1 (Bind b1) v1) H4) in (\lambda (H8: (eq B Void
+b1)).(\lambda (H9: (eq C c1 e1)).(let H10 \def (eq_ind C c1 (\lambda (c:
+C).((eq C c (CHead e1 (Bind b1) v1)) \to (ex2_3 B C T (\lambda (b2:
+B).(\lambda (e2: C).(\lambda (v2: T).(eq C c3 (CHead e2 (Bind b2) v2)))))
+(\lambda (_: B).(\lambda (e2: C).(\lambda (_: T).(csuba g e1 e2))))))) H2 e1
+H9) in (let H11 \def (eq_ind C c1 (\lambda (c: C).(csuba g c c3)) H1 e1 H9)
+in (let H12 \def (eq_ind_r B b1 (\lambda (b0: B).((eq C e1 (CHead e1 (Bind
+b0) v1)) \to (ex2_3 B C T (\lambda (b2: B).(\lambda (e2: C).(\lambda (v2:
+T).(eq C c3 (CHead e2 (Bind b2) v2))))) (\lambda (_: B).(\lambda (e2:
+C).(\lambda (_: T).(csuba g e1 e2))))))) H10 Void H8) in (ex2_3_intro B C T
+(\lambda (b2: B).(\lambda (e2: C).(\lambda (v2: T).(eq C (CHead c3 (Bind b)
+u2) (CHead e2 (Bind b2) v2))))) (\lambda (_: B).(\lambda (e2: C).(\lambda (_:
+T).(csuba g e1 e2)))) b c3 u2 (refl_equal C (CHead c3 (Bind b) u2))
+H11))))))) H6)) H5))))))))))) (\lambda (c1: C).(\lambda (c3: C).(\lambda (H1:
+(csuba g c1 c3)).(\lambda (H2: (((eq C c1 (CHead e1 (Bind b1) v1)) \to (ex2_3
+B C T (\lambda (b2: B).(\lambda (e2: C).(\lambda (v2: T).(eq C c3 (CHead e2
+(Bind b2) v2))))) (\lambda (_: B).(\lambda (e2: C).(\lambda (_: T).(csuba g
+e1 e2)))))))).(\lambda (t: T).(\lambda (a: A).(\lambda (H3: (arity g c1 t
+(asucc g a))).(\lambda (u: T).(\lambda (_: (arity g c3 u a)).(\lambda (H5:
+(eq C (CHead c1 (Bind Abst) t) (CHead e1 (Bind b1) v1))).(let H6 \def
+(f_equal C C (\lambda (e: C).(match e in C return (\lambda (_: C).C) with
+[(CSort _) \Rightarrow c1 | (CHead c _ _) \Rightarrow c])) (CHead c1 (Bind
+Abst) t) (CHead e1 (Bind b1) v1) H5) in ((let H7 \def (f_equal C B (\lambda
+(e: C).(match e in C return (\lambda (_: C).B) with [(CSort _) \Rightarrow
+Abst | (CHead _ k _) \Rightarrow (match k in K return (\lambda (_: K).B) with
+[(Bind b) \Rightarrow b | (Flat _) \Rightarrow Abst])])) (CHead c1 (Bind
+Abst) t) (CHead e1 (Bind b1) v1) H5) in ((let H8 \def (f_equal C T (\lambda
+(e: C).(match e in C return (\lambda (_: C).T) with [(CSort _) \Rightarrow t
+| (CHead _ _ t0) \Rightarrow t0])) (CHead c1 (Bind Abst) t) (CHead e1 (Bind
+b1) v1) H5) in (\lambda (H9: (eq B Abst b1)).(\lambda (H10: (eq C c1
+e1)).(let H11 \def (eq_ind T t (\lambda (t0: T).(arity g c1 t0 (asucc g a)))
+H3 v1 H8) in (let H12 \def (eq_ind C c1 (\lambda (c: C).(arity g c v1 (asucc
+g a))) H11 e1 H10) in (let H13 \def (eq_ind C c1 (\lambda (c: C).((eq C c
+(CHead e1 (Bind b1) v1)) \to (ex2_3 B C T (\lambda (b2: B).(\lambda (e2:
C).(\lambda (v2: T).(eq C c3 (CHead e2 (Bind b2) v2))))) (\lambda (_:
-B).(\lambda (e2: C).(\lambda (_: T).(csuba g e1 e2))))))) H13 Abst H9) in
-(ex2_3_intro B C T (\lambda (b2: B).(\lambda (e2: C).(\lambda (v2: T).(eq C
-(CHead c3 (Bind Abbr) u) (CHead e2 (Bind b2) v2))))) (\lambda (_: B).(\lambda
-(e2: C).(\lambda (_: T).(csuba g e1 e2)))) Abbr c3 u (refl_equal C (CHead c3
-(Bind Abbr) u)) H14))))))))) H7)) H6)))))))))))) y c2 H0))) H)))))).
+B).(\lambda (e2: C).(\lambda (_: T).(csuba g e1 e2))))))) H2 e1 H10) in (let
+H14 \def (eq_ind C c1 (\lambda (c: C).(csuba g c c3)) H1 e1 H10) in (let H15
+\def (eq_ind_r B b1 (\lambda (b: B).((eq C e1 (CHead e1 (Bind b) v1)) \to
+(ex2_3 B C T (\lambda (b2: B).(\lambda (e2: C).(\lambda (v2: T).(eq C c3
+(CHead e2 (Bind b2) v2))))) (\lambda (_: B).(\lambda (e2: C).(\lambda (_:
+T).(csuba g e1 e2))))))) H13 Abst H9) in (ex2_3_intro B C T (\lambda (b2:
+B).(\lambda (e2: C).(\lambda (v2: T).(eq C (CHead c3 (Bind Abbr) u) (CHead e2
+(Bind b2) v2))))) (\lambda (_: B).(\lambda (e2: C).(\lambda (_: T).(csuba g
+e1 e2)))) Abbr c3 u (refl_equal C (CHead c3 (Bind Abbr) u)) H14))))))))) H7))
+H6)))))))))))) y c2 H0))) H)))))).
theorem csuba_gen_abst_rev:
\forall (g: G).(\forall (d1: C).(\forall (c: C).(\forall (u: T).((csuba g c
-(CHead d1 (Bind Abst) u)) \to (ex2 C (\lambda (d2: C).(eq C c (CHead d2 (Bind
-Abst) u))) (\lambda (d2: C).(csuba g d2 d1)))))))
+(CHead d1 (Bind Abst) u)) \to (or (ex2 C (\lambda (d2: C).(eq C c (CHead d2
+(Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2:
+C).(\lambda (u2: T).(eq C c (CHead d2 (Bind Void) u2)))) (\lambda (d2:
+C).(\lambda (_: T).(csuba g d2 d1)))))))))
\def
\lambda (g: G).(\lambda (d1: C).(\lambda (c: C).(\lambda (u: T).(\lambda (H:
(csuba g c (CHead d1 (Bind Abst) u))).(insert_eq C (CHead d1 (Bind Abst) u)
-(\lambda (c0: C).(csuba g c c0)) (\lambda (_: C).(ex2 C (\lambda (d2: C).(eq
-C c (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1)))) (\lambda
-(y: C).(\lambda (H0: (csuba g c y)).(csuba_ind g (\lambda (c0: C).(\lambda
-(c1: C).((eq C c1 (CHead d1 (Bind Abst) u)) \to (ex2 C (\lambda (d2: C).(eq C
-c0 (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1)))))) (\lambda
-(n: nat).(\lambda (H1: (eq C (CSort n) (CHead d1 (Bind Abst) u))).(let H2
-\def (eq_ind C (CSort n) (\lambda (ee: C).(match ee in C return (\lambda (_:
+(\lambda (c0: C).(csuba g c c0)) (\lambda (_: C).(or (ex2 C (\lambda (d2:
+C).(eq C c (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1)))
+(ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(eq C c (CHead d2 (Bind Void)
+u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1)))))) (\lambda (y:
+C).(\lambda (H0: (csuba g c y)).(csuba_ind g (\lambda (c0: C).(\lambda (c1:
+C).((eq C c1 (CHead d1 (Bind Abst) u)) \to (or (ex2 C (\lambda (d2: C).(eq C
+c0 (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T
+(\lambda (d2: C).(\lambda (u2: T).(eq C c0 (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1)))))))) (\lambda (n:
+nat).(\lambda (H1: (eq C (CSort n) (CHead d1 (Bind Abst) u))).(let H2 \def
+(eq_ind C (CSort n) (\lambda (ee: C).(match ee in C return (\lambda (_:
C).Prop) with [(CSort _) \Rightarrow True | (CHead _ _ _) \Rightarrow
-False])) I (CHead d1 (Bind Abst) u) H1) in (False_ind (ex2 C (\lambda (d2:
-C).(eq C (CSort n) (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2
-d1))) H2)))) (\lambda (c1: C).(\lambda (c2: C).(\lambda (H1: (csuba g c1
-c2)).(\lambda (H2: (((eq C c2 (CHead d1 (Bind Abst) u)) \to (ex2 C (\lambda
-(d2: C).(eq C c1 (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2
-d1)))))).(\lambda (k: K).(\lambda (u0: T).(\lambda (H3: (eq C (CHead c2 k u0)
-(CHead d1 (Bind Abst) u))).(let H4 \def (f_equal C C (\lambda (e: C).(match e
-in C return (\lambda (_: C).C) with [(CSort _) \Rightarrow c2 | (CHead c0 _
-_) \Rightarrow c0])) (CHead c2 k u0) (CHead d1 (Bind Abst) u) H3) in ((let H5
-\def (f_equal C K (\lambda (e: C).(match e in C return (\lambda (_: C).K)
-with [(CSort _) \Rightarrow k | (CHead _ k0 _) \Rightarrow k0])) (CHead c2 k
-u0) (CHead d1 (Bind Abst) u) H3) in ((let H6 \def (f_equal C T (\lambda (e:
-C).(match e in C return (\lambda (_: C).T) with [(CSort _) \Rightarrow u0 |
-(CHead _ _ t) \Rightarrow t])) (CHead c2 k u0) (CHead d1 (Bind Abst) u) H3)
-in (\lambda (H7: (eq K k (Bind Abst))).(\lambda (H8: (eq C c2 d1)).(eq_ind_r
-T u (\lambda (t: T).(ex2 C (\lambda (d2: C).(eq C (CHead c1 k t) (CHead d2
-(Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1)))) (eq_ind_r K (Bind Abst)
-(\lambda (k0: K).(ex2 C (\lambda (d2: C).(eq C (CHead c1 k0 u) (CHead d2
-(Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1)))) (let H9 \def (eq_ind C
-c2 (\lambda (c0: C).((eq C c0 (CHead d1 (Bind Abst) u)) \to (ex2 C (\lambda
-(d2: C).(eq C c1 (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2
-d1))))) H2 d1 H8) in (let H10 \def (eq_ind C c2 (\lambda (c0: C).(csuba g c1
-c0)) H1 d1 H8) in (ex_intro2 C (\lambda (d2: C).(eq C (CHead c1 (Bind Abst)
-u) (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1)) c1
-(refl_equal C (CHead c1 (Bind Abst) u)) H10))) k H7) u0 H6)))) H5))
-H4))))))))) (\lambda (c1: C).(\lambda (c2: C).(\lambda (_: (csuba g c1
-c2)).(\lambda (_: (((eq C c2 (CHead d1 (Bind Abst) u)) \to (ex2 C (\lambda
-(d2: C).(eq C c1 (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2
-d1)))))).(\lambda (t: T).(\lambda (a: A).(\lambda (_: (arity g c1 t (asucc g
-a))).(\lambda (u0: T).(\lambda (_: (arity g c2 u0 a)).(\lambda (H5: (eq C
+False])) I (CHead d1 (Bind Abst) u) H1) in (False_ind (or (ex2 C (\lambda
+(d2: C).(eq C (CSort n) (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g
+d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(eq C (CSort n) (CHead
+d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1)))))
+H2)))) (\lambda (c1: C).(\lambda (c2: C).(\lambda (H1: (csuba g c1
+c2)).(\lambda (H2: (((eq C c2 (CHead d1 (Bind Abst) u)) \to (or (ex2 C
+(\lambda (d2: C).(eq C c1 (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba
+g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(eq C c1 (CHead d2
+(Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+d1)))))))).(\lambda (k: K).(\lambda (u0: T).(\lambda (H3: (eq C (CHead c2 k
+u0) (CHead d1 (Bind Abst) u))).(let H4 \def (f_equal C C (\lambda (e:
+C).(match e in C return (\lambda (_: C).C) with [(CSort _) \Rightarrow c2 |
+(CHead c0 _ _) \Rightarrow c0])) (CHead c2 k u0) (CHead d1 (Bind Abst) u) H3)
+in ((let H5 \def (f_equal C K (\lambda (e: C).(match e in C return (\lambda
+(_: C).K) with [(CSort _) \Rightarrow k | (CHead _ k0 _) \Rightarrow k0]))
+(CHead c2 k u0) (CHead d1 (Bind Abst) u) H3) in ((let H6 \def (f_equal C T
+(\lambda (e: C).(match e in C return (\lambda (_: C).T) with [(CSort _)
+\Rightarrow u0 | (CHead _ _ t) \Rightarrow t])) (CHead c2 k u0) (CHead d1
+(Bind Abst) u) H3) in (\lambda (H7: (eq K k (Bind Abst))).(\lambda (H8: (eq C
+c2 d1)).(eq_ind_r T u (\lambda (t: T).(or (ex2 C (\lambda (d2: C).(eq C
+(CHead c1 k t) (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1)))
+(ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(eq C (CHead c1 k t) (CHead d2
+(Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))))
+(eq_ind_r K (Bind Abst) (\lambda (k0: K).(or (ex2 C (\lambda (d2: C).(eq C
+(CHead c1 k0 u) (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1)))
+(ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(eq C (CHead c1 k0 u) (CHead d2
+(Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1)))))) (let
+H9 \def (eq_ind C c2 (\lambda (c0: C).((eq C c0 (CHead d1 (Bind Abst) u)) \to
+(or (ex2 C (\lambda (d2: C).(eq C c1 (CHead d2 (Bind Abst) u))) (\lambda (d2:
+C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(eq C c1
+(CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+d1))))))) H2 d1 H8) in (let H10 \def (eq_ind C c2 (\lambda (c0: C).(csuba g
+c1 c0)) H1 d1 H8) in (or_introl (ex2 C (\lambda (d2: C).(eq C (CHead c1 (Bind
+Abst) u) (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (ex2_2
+C T (\lambda (d2: C).(\lambda (u2: T).(eq C (CHead c1 (Bind Abst) u) (CHead
+d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))
+(ex_intro2 C (\lambda (d2: C).(eq C (CHead c1 (Bind Abst) u) (CHead d2 (Bind
+Abst) u))) (\lambda (d2: C).(csuba g d2 d1)) c1 (refl_equal C (CHead c1 (Bind
+Abst) u)) H10)))) k H7) u0 H6)))) H5)) H4))))))))) (\lambda (c1: C).(\lambda
+(c2: C).(\lambda (H1: (csuba g c1 c2)).(\lambda (H2: (((eq C c2 (CHead d1
+(Bind Abst) u)) \to (or (ex2 C (\lambda (d2: C).(eq C c1 (CHead d2 (Bind
+Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2:
+C).(\lambda (u2: T).(eq C c1 (CHead d2 (Bind Void) u2)))) (\lambda (d2:
+C).(\lambda (_: T).(csuba g d2 d1)))))))).(\lambda (b: B).(\lambda (H3: (not
+(eq B b Void))).(\lambda (u1: T).(\lambda (u2: T).(\lambda (H4: (eq C (CHead
+c2 (Bind b) u2) (CHead d1 (Bind Abst) u))).(let H5 \def (f_equal C C (\lambda
+(e: C).(match e in C return (\lambda (_: C).C) with [(CSort _) \Rightarrow c2
+| (CHead c0 _ _) \Rightarrow c0])) (CHead c2 (Bind b) u2) (CHead d1 (Bind
+Abst) u) H4) in ((let H6 \def (f_equal C B (\lambda (e: C).(match e in C
+return (\lambda (_: C).B) with [(CSort _) \Rightarrow b | (CHead _ k _)
+\Rightarrow (match k in K return (\lambda (_: K).B) with [(Bind b0)
+\Rightarrow b0 | (Flat _) \Rightarrow b])])) (CHead c2 (Bind b) u2) (CHead d1
+(Bind Abst) u) H4) in ((let H7 \def (f_equal C T (\lambda (e: C).(match e in
+C return (\lambda (_: C).T) with [(CSort _) \Rightarrow u2 | (CHead _ _ t)
+\Rightarrow t])) (CHead c2 (Bind b) u2) (CHead d1 (Bind Abst) u) H4) in
+(\lambda (H8: (eq B b Abst)).(\lambda (H9: (eq C c2 d1)).(let H10 \def
+(eq_ind B b (\lambda (b0: B).(not (eq B b0 Void))) H3 Abst H8) in (let H11
+\def (eq_ind C c2 (\lambda (c0: C).((eq C c0 (CHead d1 (Bind Abst) u)) \to
+(or (ex2 C (\lambda (d2: C).(eq C c1 (CHead d2 (Bind Abst) u))) (\lambda (d2:
+C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u3: T).(eq C c1
+(CHead d2 (Bind Void) u3)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+d1))))))) H2 d1 H9) in (let H12 \def (eq_ind C c2 (\lambda (c0: C).(csuba g
+c1 c0)) H1 d1 H9) in (or_intror (ex2 C (\lambda (d2: C).(eq C (CHead c1 (Bind
+Void) u1) (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1)))
+(ex2_2 C T (\lambda (d2: C).(\lambda (u3: T).(eq C (CHead c1 (Bind Void) u1)
+(CHead d2 (Bind Void) u3)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+d1)))) (ex2_2_intro C T (\lambda (d2: C).(\lambda (u3: T).(eq C (CHead c1
+(Bind Void) u1) (CHead d2 (Bind Void) u3)))) (\lambda (d2: C).(\lambda (_:
+T).(csuba g d2 d1))) c1 u1 (refl_equal C (CHead c1 (Bind Void) u1))
+H12)))))))) H6)) H5))))))))))) (\lambda (c1: C).(\lambda (c2: C).(\lambda (_:
+(csuba g c1 c2)).(\lambda (_: (((eq C c2 (CHead d1 (Bind Abst) u)) \to (or
+(ex2 C (\lambda (d2: C).(eq C c1 (CHead d2 (Bind Abst) u))) (\lambda (d2:
+C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(eq C c1
+(CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+d1)))))))).(\lambda (t: T).(\lambda (a: A).(\lambda (_: (arity g c1 t (asucc
+g a))).(\lambda (u0: T).(\lambda (_: (arity g c2 u0 a)).(\lambda (H5: (eq C
(CHead c2 (Bind Abbr) u0) (CHead d1 (Bind Abst) u))).(let H6 \def (eq_ind C
(CHead c2 (Bind Abbr) u0) (\lambda (ee: C).(match ee in C return (\lambda (_:
C).Prop) with [(CSort _) \Rightarrow False | (CHead _ k _) \Rightarrow (match
k in K return (\lambda (_: K).Prop) with [(Bind b) \Rightarrow (match b in B
return (\lambda (_: B).Prop) with [Abbr \Rightarrow True | Abst \Rightarrow
False | Void \Rightarrow False]) | (Flat _) \Rightarrow False])])) I (CHead
-d1 (Bind Abst) u) H5) in (False_ind (ex2 C (\lambda (d2: C).(eq C (CHead c1
-(Bind Abst) t) (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1)))
-H6)))))))))))) c y H0))) H))))).
+d1 (Bind Abst) u) H5) in (False_ind (or (ex2 C (\lambda (d2: C).(eq C (CHead
+c1 (Bind Abst) t) (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2
+d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(eq C (CHead c1 (Bind
+Abst) t) (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba
+g d2 d1))))) H6)))))))))))) c y H0))) H))))).
theorem csuba_gen_void_rev:
\forall (g: G).(\forall (d1: C).(\forall (c: C).(\forall (u: T).((csuba g c
c0)) H1 d1 H8) in (ex_intro2 C (\lambda (d2: C).(eq C (CHead c1 (Bind Void)
u) (CHead d2 (Bind Void) u))) (\lambda (d2: C).(csuba g d2 d1)) c1
(refl_equal C (CHead c1 (Bind Void) u)) H10))) k H7) u0 H6)))) H5))
-H4))))))))) (\lambda (c1: C).(\lambda (c2: C).(\lambda (_: (csuba g c1
+H4))))))))) (\lambda (c1: C).(\lambda (c2: C).(\lambda (H1: (csuba g c1
+c2)).(\lambda (H2: (((eq C c2 (CHead d1 (Bind Void) u)) \to (ex2 C (\lambda
+(d2: C).(eq C c1 (CHead d2 (Bind Void) u))) (\lambda (d2: C).(csuba g d2
+d1)))))).(\lambda (b: B).(\lambda (H3: (not (eq B b Void))).(\lambda (u1:
+T).(\lambda (u2: T).(\lambda (H4: (eq C (CHead c2 (Bind b) u2) (CHead d1
+(Bind Void) u))).(let H5 \def (f_equal C C (\lambda (e: C).(match e in C
+return (\lambda (_: C).C) with [(CSort _) \Rightarrow c2 | (CHead c0 _ _)
+\Rightarrow c0])) (CHead c2 (Bind b) u2) (CHead d1 (Bind Void) u) H4) in
+((let H6 \def (f_equal C B (\lambda (e: C).(match e in C return (\lambda (_:
+C).B) with [(CSort _) \Rightarrow b | (CHead _ k _) \Rightarrow (match k in K
+return (\lambda (_: K).B) with [(Bind b0) \Rightarrow b0 | (Flat _)
+\Rightarrow b])])) (CHead c2 (Bind b) u2) (CHead d1 (Bind Void) u) H4) in
+((let H7 \def (f_equal C T (\lambda (e: C).(match e in C return (\lambda (_:
+C).T) with [(CSort _) \Rightarrow u2 | (CHead _ _ t) \Rightarrow t])) (CHead
+c2 (Bind b) u2) (CHead d1 (Bind Void) u) H4) in (\lambda (H8: (eq B b
+Void)).(\lambda (H9: (eq C c2 d1)).(let H10 \def (eq_ind B b (\lambda (b0:
+B).(not (eq B b0 Void))) H3 Void H8) in (let H11 \def (eq_ind C c2 (\lambda
+(c0: C).((eq C c0 (CHead d1 (Bind Void) u)) \to (ex2 C (\lambda (d2: C).(eq C
+c1 (CHead d2 (Bind Void) u))) (\lambda (d2: C).(csuba g d2 d1))))) H2 d1 H9)
+in (let H12 \def (eq_ind C c2 (\lambda (c0: C).(csuba g c1 c0)) H1 d1 H9) in
+(let H13 \def (match (H10 (refl_equal B Void)) in False return (\lambda (_:
+False).(ex2 C (\lambda (d2: C).(eq C (CHead c1 (Bind Void) u1) (CHead d2
+(Bind Void) u))) (\lambda (d2: C).(csuba g d2 d1)))) with []) in H13)))))))
+H6)) H5))))))))))) (\lambda (c1: C).(\lambda (c2: C).(\lambda (_: (csuba g c1
c2)).(\lambda (_: (((eq C c2 (CHead d1 (Bind Void) u)) \to (ex2 C (\lambda
(d2: C).(eq C c1 (CHead d2 (Bind Void) u))) (\lambda (d2: C).(csuba g d2
d1)))))).(\lambda (t: T).(\lambda (a: A).(\lambda (_: (arity g c1 t (asucc g
theorem csuba_gen_abbr_rev:
\forall (g: G).(\forall (d1: C).(\forall (c: C).(\forall (u1: T).((csuba g c
-(CHead d1 (Bind Abbr) u1)) \to (or (ex2 C (\lambda (d2: C).(eq C c (CHead d2
+(CHead d1 (Bind Abbr) u1)) \to (or3 (ex2 C (\lambda (d2: C).(eq C c (CHead d2
(Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda
(d2: C).(\lambda (u2: T).(\lambda (_: A).(eq C c (CHead d2 (Bind Abst)
u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1))))
(\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g
-a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1
-a))))))))))
+a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))))
+(ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(eq C c (CHead d2 (Bind Void)
+u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1)))))))))
\def
\lambda (g: G).(\lambda (d1: C).(\lambda (c: C).(\lambda (u1: T).(\lambda
(H: (csuba g c (CHead d1 (Bind Abbr) u1))).(insert_eq C (CHead d1 (Bind Abbr)
-u1) (\lambda (c0: C).(csuba g c c0)) (\lambda (_: C).(or (ex2 C (\lambda (d2:
-C).(eq C c (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1)))
-(ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(eq C c (CHead
-d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_:
+u1) (\lambda (c0: C).(csuba g c c0)) (\lambda (_: C).(or3 (ex2 C (\lambda
+(d2: C).(eq C c (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2
+d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(eq C c
+(CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_:
A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda
-(a: A).(arity g d1 u1 a))))))) (\lambda (y: C).(\lambda (H0: (csuba g c
-y)).(csuba_ind g (\lambda (c0: C).(\lambda (c1: C).((eq C c1 (CHead d1 (Bind
-Abbr) u1)) \to (or (ex2 C (\lambda (d2: C).(eq C c0 (CHead d2 (Bind Abbr)
-u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2:
-C).(\lambda (u2: T).(\lambda (_: A).(eq C c0 (CHead d2 (Bind Abst) u2)))))
-(\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda
-(d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a)))))
-(\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))))))))
-(\lambda (n: nat).(\lambda (H1: (eq C (CSort n) (CHead d1 (Bind Abbr)
-u1))).(let H2 \def (eq_ind C (CSort n) (\lambda (ee: C).(match ee in C return
-(\lambda (_: C).Prop) with [(CSort _) \Rightarrow True | (CHead _ _ _)
-\Rightarrow False])) I (CHead d1 (Bind Abbr) u1) H1) in (False_ind (or (ex2 C
-(\lambda (d2: C).(eq C (CSort n) (CHead d2 (Bind Abbr) u1))) (\lambda (d2:
+(a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(eq
+C c (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+d1)))))) (\lambda (y: C).(\lambda (H0: (csuba g c y)).(csuba_ind g (\lambda
+(c0: C).(\lambda (c1: C).((eq C c1 (CHead d1 (Bind Abbr) u1)) \to (or3 (ex2 C
+(\lambda (d2: C).(eq C c0 (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba
+g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(eq
+C c0 (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda
+(_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
+A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda
+(a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(eq
+C c0 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g
+d2 d1)))))))) (\lambda (n: nat).(\lambda (H1: (eq C (CSort n) (CHead d1 (Bind
+Abbr) u1))).(let H2 \def (eq_ind C (CSort n) (\lambda (ee: C).(match ee in C
+return (\lambda (_: C).Prop) with [(CSort _) \Rightarrow True | (CHead _ _ _)
+\Rightarrow False])) I (CHead d1 (Bind Abbr) u1) H1) in (False_ind (or3 (ex2
+C (\lambda (d2: C).(eq C (CSort n) (CHead d2 (Bind Abbr) u1))) (\lambda (d2:
C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda
(_: A).(eq C (CSort n) (CHead d2 (Bind Abst) u2))))) (\lambda (d2:
C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2:
C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda
-(_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))))) H2)))) (\lambda
+(_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex2_2 C T
+(\lambda (d2: C).(\lambda (u2: T).(eq C (CSort n) (CHead d2 (Bind Void)
+u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))) H2)))) (\lambda
(c1: C).(\lambda (c2: C).(\lambda (H1: (csuba g c1 c2)).(\lambda (H2: (((eq C
-c2 (CHead d1 (Bind Abbr) u1)) \to (or (ex2 C (\lambda (d2: C).(eq C c1 (CHead
-d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda
-(d2: C).(\lambda (u2: T).(\lambda (_: A).(eq C c1 (CHead d2 (Bind Abst)
-u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1))))
-(\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g
-a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1
-a))))))))).(\lambda (k: K).(\lambda (u: T).(\lambda (H3: (eq C (CHead c2 k u)
+c2 (CHead d1 (Bind Abbr) u1)) \to (or3 (ex2 C (\lambda (d2: C).(eq C c1
+(CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A
+(\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(eq C c1 (CHead d2 (Bind
+Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2
+d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2
+(asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1
+u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(eq C c1 (CHead d2
+(Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+d1)))))))).(\lambda (k: K).(\lambda (u: T).(\lambda (H3: (eq C (CHead c2 k u)
(CHead d1 (Bind Abbr) u1))).(let H4 \def (f_equal C C (\lambda (e: C).(match
e in C return (\lambda (_: C).C) with [(CSort _) \Rightarrow c2 | (CHead c0 _
_) \Rightarrow c0])) (CHead c2 k u) (CHead d1 (Bind Abbr) u1) H3) in ((let H5
C).(match e in C return (\lambda (_: C).T) with [(CSort _) \Rightarrow u |
(CHead _ _ t) \Rightarrow t])) (CHead c2 k u) (CHead d1 (Bind Abbr) u1) H3)
in (\lambda (H7: (eq K k (Bind Abbr))).(\lambda (H8: (eq C c2 d1)).(eq_ind_r
-T u1 (\lambda (t: T).(or (ex2 C (\lambda (d2: C).(eq C (CHead c1 k t) (CHead
+T u1 (\lambda (t: T).(or3 (ex2 C (\lambda (d2: C).(eq C (CHead c1 k t) (CHead
d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda
(d2: C).(\lambda (u2: T).(\lambda (_: A).(eq C (CHead c1 k t) (CHead d2 (Bind
Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2
d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2
(asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1
-u1 a))))))) (eq_ind_r K (Bind Abbr) (\lambda (k0: K).(or (ex2 C (\lambda (d2:
+u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(eq C (CHead c1 k t)
+(CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+d1)))))) (eq_ind_r K (Bind Abbr) (\lambda (k0: K).(or3 (ex2 C (\lambda (d2:
C).(eq C (CHead c1 k0 u1) (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba
g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(eq
C (CHead c1 k0 u1) (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda
(_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2:
T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda
-(_: T).(\lambda (a: A).(arity g d1 u1 a))))))) (let H9 \def (eq_ind C c2
-(\lambda (c0: C).((eq C c0 (CHead d1 (Bind Abbr) u1)) \to (or (ex2 C (\lambda
-(d2: C).(eq C c1 (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2
-d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(eq C c1
-(CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_:
-A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
+(_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2:
+C).(\lambda (u2: T).(eq C (CHead c1 k0 u1) (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1)))))) (let H9 \def (eq_ind C
+c2 (\lambda (c0: C).((eq C c0 (CHead d1 (Bind Abbr) u1)) \to (or3 (ex2 C
+(\lambda (d2: C).(eq C c1 (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba
+g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(eq
+C c1 (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda
+(_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda
-(a: A).(arity g d1 u1 a)))))))) H2 d1 H8) in (let H10 \def (eq_ind C c2
-(\lambda (c0: C).(csuba g c1 c0)) H1 d1 H8) in (or_introl (ex2 C (\lambda
-(d2: C).(eq C (CHead c1 (Bind Abbr) u1) (CHead d2 (Bind Abbr) u1))) (\lambda
-(d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2:
-T).(\lambda (_: A).(eq C (CHead c1 (Bind Abbr) u1) (CHead d2 (Bind Abst)
-u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1))))
-(\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g
-a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))))
+(a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(eq
+C c1 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g
+d2 d1))))))) H2 d1 H8) in (let H10 \def (eq_ind C c2 (\lambda (c0: C).(csuba
+g c1 c0)) H1 d1 H8) in (or3_intro0 (ex2 C (\lambda (d2: C).(eq C (CHead c1
+(Bind Abbr) u1) (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2
+d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(eq C
+(CHead c1 (Bind Abbr) u1) (CHead d2 (Bind Abst) u2))))) (\lambda (d2:
+C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2:
+C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda
+(_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex2_2 C T
+(\lambda (d2: C).(\lambda (u2: T).(eq C (CHead c1 (Bind Abbr) u1) (CHead d2
+(Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))
(ex_intro2 C (\lambda (d2: C).(eq C (CHead c1 (Bind Abbr) u1) (CHead d2 (Bind
Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1)) c1 (refl_equal C (CHead c1
(Bind Abbr) u1)) H10)))) k H7) u H6)))) H5)) H4))))))))) (\lambda (c1:
C).(\lambda (c2: C).(\lambda (H1: (csuba g c1 c2)).(\lambda (H2: (((eq C c2
-(CHead d1 (Bind Abbr) u1)) \to (or (ex2 C (\lambda (d2: C).(eq C c1 (CHead d2
+(CHead d1 (Bind Abbr) u1)) \to (or3 (ex2 C (\lambda (d2: C).(eq C c1 (CHead
+d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda
+(d2: C).(\lambda (u2: T).(\lambda (_: A).(eq C c1 (CHead d2 (Bind Abst)
+u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1))))
+(\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g
+a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))))
+(ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(eq C c1 (CHead d2 (Bind Void)
+u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1)))))))).(\lambda (b:
+B).(\lambda (H3: (not (eq B b Void))).(\lambda (u0: T).(\lambda (u2:
+T).(\lambda (H4: (eq C (CHead c2 (Bind b) u2) (CHead d1 (Bind Abbr)
+u1))).(let H5 \def (f_equal C C (\lambda (e: C).(match e in C return (\lambda
+(_: C).C) with [(CSort _) \Rightarrow c2 | (CHead c0 _ _) \Rightarrow c0]))
+(CHead c2 (Bind b) u2) (CHead d1 (Bind Abbr) u1) H4) in ((let H6 \def
+(f_equal C B (\lambda (e: C).(match e in C return (\lambda (_: C).B) with
+[(CSort _) \Rightarrow b | (CHead _ k _) \Rightarrow (match k in K return
+(\lambda (_: K).B) with [(Bind b0) \Rightarrow b0 | (Flat _) \Rightarrow
+b])])) (CHead c2 (Bind b) u2) (CHead d1 (Bind Abbr) u1) H4) in ((let H7 \def
+(f_equal C T (\lambda (e: C).(match e in C return (\lambda (_: C).T) with
+[(CSort _) \Rightarrow u2 | (CHead _ _ t) \Rightarrow t])) (CHead c2 (Bind b)
+u2) (CHead d1 (Bind Abbr) u1) H4) in (\lambda (H8: (eq B b Abbr)).(\lambda
+(H9: (eq C c2 d1)).(let H10 \def (eq_ind B b (\lambda (b0: B).(not (eq B b0
+Void))) H3 Abbr H8) in (let H11 \def (eq_ind C c2 (\lambda (c0: C).((eq C c0
+(CHead d1 (Bind Abbr) u1)) \to (or3 (ex2 C (\lambda (d2: C).(eq C c1 (CHead
+d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda
+(d2: C).(\lambda (u3: T).(\lambda (_: A).(eq C c1 (CHead d2 (Bind Abst)
+u3))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1))))
+(\lambda (d2: C).(\lambda (u3: T).(\lambda (a: A).(arity g d2 u3 (asucc g
+a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))))
+(ex2_2 C T (\lambda (d2: C).(\lambda (u3: T).(eq C c1 (CHead d2 (Bind Void)
+u3)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))))) H2 d1 H9) in
+(let H12 \def (eq_ind C c2 (\lambda (c0: C).(csuba g c1 c0)) H1 d1 H9) in
+(or3_intro2 (ex2 C (\lambda (d2: C).(eq C (CHead c1 (Bind Void) u0) (CHead d2
(Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda
+(d2: C).(\lambda (u3: T).(\lambda (_: A).(eq C (CHead c1 (Bind Void) u0)
+(CHead d2 (Bind Abst) u3))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_:
+A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u3: T).(\lambda (a:
+A).(arity g d2 u3 (asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda
+(a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u3: T).(eq
+C (CHead c1 (Bind Void) u0) (CHead d2 (Bind Void) u3)))) (\lambda (d2:
+C).(\lambda (_: T).(csuba g d2 d1)))) (ex2_2_intro C T (\lambda (d2:
+C).(\lambda (u3: T).(eq C (CHead c1 (Bind Void) u0) (CHead d2 (Bind Void)
+u3)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))) c1 u0 (refl_equal C
+(CHead c1 (Bind Void) u0)) H12)))))))) H6)) H5))))))))))) (\lambda (c1:
+C).(\lambda (c2: C).(\lambda (H1: (csuba g c1 c2)).(\lambda (H2: (((eq C c2
+(CHead d1 (Bind Abbr) u1)) \to (or3 (ex2 C (\lambda (d2: C).(eq C c1 (CHead
+d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda
(d2: C).(\lambda (u2: T).(\lambda (_: A).(eq C c1 (CHead d2 (Bind Abst)
u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1))))
(\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g
-a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1
-a))))))))).(\lambda (t: T).(\lambda (a: A).(\lambda (H3: (arity g c1 t (asucc
-g a))).(\lambda (u: T).(\lambda (H4: (arity g c2 u a)).(\lambda (H5: (eq C
-(CHead c2 (Bind Abbr) u) (CHead d1 (Bind Abbr) u1))).(let H6 \def (f_equal C
-C (\lambda (e: C).(match e in C return (\lambda (_: C).C) with [(CSort _)
-\Rightarrow c2 | (CHead c0 _ _) \Rightarrow c0])) (CHead c2 (Bind Abbr) u)
-(CHead d1 (Bind Abbr) u1) H5) in ((let H7 \def (f_equal C T (\lambda (e:
-C).(match e in C return (\lambda (_: C).T) with [(CSort _) \Rightarrow u |
-(CHead _ _ t0) \Rightarrow t0])) (CHead c2 (Bind Abbr) u) (CHead d1 (Bind
-Abbr) u1) H5) in (\lambda (H8: (eq C c2 d1)).(let H9 \def (eq_ind T u
-(\lambda (t0: T).(arity g c2 t0 a)) H4 u1 H7) in (let H10 \def (eq_ind C c2
-(\lambda (c0: C).(arity g c0 u1 a)) H9 d1 H8) in (let H11 \def (eq_ind C c2
-(\lambda (c0: C).((eq C c0 (CHead d1 (Bind Abbr) u1)) \to (or (ex2 C (\lambda
-(d2: C).(eq C c1 (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2
-d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(eq C c1
-(CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_:
-A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a0:
-A).(arity g d2 u2 (asucc g a0))))) (\lambda (_: C).(\lambda (_: T).(\lambda
-(a0: A).(arity g d1 u1 a0)))))))) H2 d1 H8) in (let H12 \def (eq_ind C c2
-(\lambda (c0: C).(csuba g c1 c0)) H1 d1 H8) in (or_intror (ex2 C (\lambda
-(d2: C).(eq C (CHead c1 (Bind Abst) t) (CHead d2 (Bind Abbr) u1))) (\lambda
-(d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2:
-T).(\lambda (_: A).(eq C (CHead c1 (Bind Abst) t) (CHead d2 (Bind Abst)
+a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))))
+(ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(eq C c1 (CHead d2 (Bind Void)
+u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1)))))))).(\lambda (t:
+T).(\lambda (a: A).(\lambda (H3: (arity g c1 t (asucc g a))).(\lambda (u:
+T).(\lambda (H4: (arity g c2 u a)).(\lambda (H5: (eq C (CHead c2 (Bind Abbr)
+u) (CHead d1 (Bind Abbr) u1))).(let H6 \def (f_equal C C (\lambda (e:
+C).(match e in C return (\lambda (_: C).C) with [(CSort _) \Rightarrow c2 |
+(CHead c0 _ _) \Rightarrow c0])) (CHead c2 (Bind Abbr) u) (CHead d1 (Bind
+Abbr) u1) H5) in ((let H7 \def (f_equal C T (\lambda (e: C).(match e in C
+return (\lambda (_: C).T) with [(CSort _) \Rightarrow u | (CHead _ _ t0)
+\Rightarrow t0])) (CHead c2 (Bind Abbr) u) (CHead d1 (Bind Abbr) u1) H5) in
+(\lambda (H8: (eq C c2 d1)).(let H9 \def (eq_ind T u (\lambda (t0: T).(arity
+g c2 t0 a)) H4 u1 H7) in (let H10 \def (eq_ind C c2 (\lambda (c0: C).(arity g
+c0 u1 a)) H9 d1 H8) in (let H11 \def (eq_ind C c2 (\lambda (c0: C).((eq C c0
+(CHead d1 (Bind Abbr) u1)) \to (or3 (ex2 C (\lambda (d2: C).(eq C c1 (CHead
+d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda
+(d2: C).(\lambda (u2: T).(\lambda (_: A).(eq C c1 (CHead d2 (Bind Abst)
u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1))))
(\lambda (d2: C).(\lambda (u2: T).(\lambda (a0: A).(arity g d2 u2 (asucc g
a0))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a0: A).(arity g d1 u1
-a0))))) (ex4_3_intro C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_:
-A).(eq C (CHead c1 (Bind Abst) t) (CHead d2 (Bind Abst) u2))))) (\lambda (d2:
-C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2:
-C).(\lambda (u2: T).(\lambda (a0: A).(arity g d2 u2 (asucc g a0))))) (\lambda
-(_: C).(\lambda (_: T).(\lambda (a0: A).(arity g d1 u1 a0)))) c1 t a
-(refl_equal C (CHead c1 (Bind Abst) t)) H12 H3 H10)))))))) H6)))))))))))) c y
-H0))) H))))).
+a0))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(eq C c1 (CHead d2 (Bind
+Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))))) H2 d1 H8)
+in (let H12 \def (eq_ind C c2 (\lambda (c0: C).(csuba g c1 c0)) H1 d1 H8) in
+(or3_intro1 (ex2 C (\lambda (d2: C).(eq C (CHead c1 (Bind Abst) t) (CHead d2
+(Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda
+(d2: C).(\lambda (u2: T).(\lambda (_: A).(eq C (CHead c1 (Bind Abst) t)
+(CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_:
+A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a0:
+A).(arity g d2 u2 (asucc g a0))))) (\lambda (_: C).(\lambda (_: T).(\lambda
+(a0: A).(arity g d1 u1 a0))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(eq C (CHead c1 (Bind Abst) t) (CHead d2 (Bind Void) u2)))) (\lambda (d2:
+C).(\lambda (_: T).(csuba g d2 d1)))) (ex4_3_intro C T A (\lambda (d2:
+C).(\lambda (u2: T).(\lambda (_: A).(eq C (CHead c1 (Bind Abst) t) (CHead d2
+(Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g
+d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a0: A).(arity g d2 u2
+(asucc g a0))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a0: A).(arity g d1
+u1 a0)))) c1 t a (refl_equal C (CHead c1 (Bind Abst) t)) H12 H3 H10))))))))
+H6)))))))))))) c y H0))) H))))).
theorem csuba_gen_flat_rev:
\forall (g: G).(\forall (d1: C).(\forall (c: C).(\forall (u1: T).(\forall
C).(\lambda (c2: C).(\lambda (_: (csuba g c1 c2)).(\lambda (_: (((eq C c2
(CHead d1 (Flat f) u1)) \to (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(eq
C c1 (CHead d2 (Flat f) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+d1))))))).(\lambda (b: B).(\lambda (_: (not (eq B b Void))).(\lambda (u0:
+T).(\lambda (u2: T).(\lambda (H4: (eq C (CHead c2 (Bind b) u2) (CHead d1
+(Flat f) u1))).(let H5 \def (eq_ind C (CHead c2 (Bind b) u2) (\lambda (ee:
+C).(match ee in C return (\lambda (_: C).Prop) with [(CSort _) \Rightarrow
+False | (CHead _ k _) \Rightarrow (match k in K return (\lambda (_: K).Prop)
+with [(Bind _) \Rightarrow True | (Flat _) \Rightarrow False])])) I (CHead d1
+(Flat f) u1) H4) in (False_ind (ex2_2 C T (\lambda (d2: C).(\lambda (u3:
+T).(eq C (CHead c1 (Bind Void) u0) (CHead d2 (Flat f) u3)))) (\lambda (d2:
+C).(\lambda (_: T).(csuba g d2 d1)))) H5))))))))))) (\lambda (c1: C).(\lambda
+(c2: C).(\lambda (_: (csuba g c1 c2)).(\lambda (_: (((eq C c2 (CHead d1 (Flat
+f) u1)) \to (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(eq C c1 (CHead d2
+(Flat f) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
d1))))))).(\lambda (t: T).(\lambda (a: A).(\lambda (_: (arity g c1 t (asucc g
a))).(\lambda (u: T).(\lambda (_: (arity g c2 u a)).(\lambda (H5: (eq C
(CHead c2 (Bind Abbr) u) (CHead d1 (Flat f) u1))).(let H6 \def (eq_ind C
C).(\lambda (c3: C).(\lambda (H1: (csuba g c1 c3)).(\lambda (H2: (((eq C c3
(CHead e1 (Bind b1) v1)) \to (ex2_3 B C T (\lambda (b2: B).(\lambda (e2:
C).(\lambda (v2: T).(eq C c1 (CHead e2 (Bind b2) v2))))) (\lambda (_:
-B).(\lambda (e2: C).(\lambda (_: T).(csuba g e2 e1)))))))).(\lambda (t:
-T).(\lambda (a: A).(\lambda (_: (arity g c1 t (asucc g a))).(\lambda (u:
-T).(\lambda (H4: (arity g c3 u a)).(\lambda (H5: (eq C (CHead c3 (Bind Abbr)
-u) (CHead e1 (Bind b1) v1))).(let H6 \def (f_equal C C (\lambda (e: C).(match
-e in C return (\lambda (_: C).C) with [(CSort _) \Rightarrow c3 | (CHead c _
-_) \Rightarrow c])) (CHead c3 (Bind Abbr) u) (CHead e1 (Bind b1) v1) H5) in
-((let H7 \def (f_equal C B (\lambda (e: C).(match e in C return (\lambda (_:
-C).B) with [(CSort _) \Rightarrow Abbr | (CHead _ k _) \Rightarrow (match k
-in K return (\lambda (_: K).B) with [(Bind b) \Rightarrow b | (Flat _)
-\Rightarrow Abbr])])) (CHead c3 (Bind Abbr) u) (CHead e1 (Bind b1) v1) H5) in
-((let H8 \def (f_equal C T (\lambda (e: C).(match e in C return (\lambda (_:
-C).T) with [(CSort _) \Rightarrow u | (CHead _ _ t0) \Rightarrow t0])) (CHead
-c3 (Bind Abbr) u) (CHead e1 (Bind b1) v1) H5) in (\lambda (H9: (eq B Abbr
-b1)).(\lambda (H10: (eq C c3 e1)).(let H11 \def (eq_ind T u (\lambda (t0:
-T).(arity g c3 t0 a)) H4 v1 H8) in (let H12 \def (eq_ind C c3 (\lambda (c:
-C).(arity g c v1 a)) H11 e1 H10) in (let H13 \def (eq_ind C c3 (\lambda (c:
-C).((eq C c (CHead e1 (Bind b1) v1)) \to (ex2_3 B C T (\lambda (b2:
-B).(\lambda (e2: C).(\lambda (v2: T).(eq C c1 (CHead e2 (Bind b2) v2)))))
-(\lambda (_: B).(\lambda (e2: C).(\lambda (_: T).(csuba g e2 e1))))))) H2 e1
-H10) in (let H14 \def (eq_ind C c3 (\lambda (c: C).(csuba g c1 c)) H1 e1 H10)
-in (let H15 \def (eq_ind_r B b1 (\lambda (b: B).((eq C e1 (CHead e1 (Bind b)
+B).(\lambda (e2: C).(\lambda (_: T).(csuba g e2 e1)))))))).(\lambda (b:
+B).(\lambda (H3: (not (eq B b Void))).(\lambda (u1: T).(\lambda (u2:
+T).(\lambda (H4: (eq C (CHead c3 (Bind b) u2) (CHead e1 (Bind b1) v1))).(let
+H5 \def (f_equal C C (\lambda (e: C).(match e in C return (\lambda (_: C).C)
+with [(CSort _) \Rightarrow c3 | (CHead c _ _) \Rightarrow c])) (CHead c3
+(Bind b) u2) (CHead e1 (Bind b1) v1) H4) in ((let H6 \def (f_equal C B
+(\lambda (e: C).(match e in C return (\lambda (_: C).B) with [(CSort _)
+\Rightarrow b | (CHead _ k _) \Rightarrow (match k in K return (\lambda (_:
+K).B) with [(Bind b0) \Rightarrow b0 | (Flat _) \Rightarrow b])])) (CHead c3
+(Bind b) u2) (CHead e1 (Bind b1) v1) H4) in ((let H7 \def (f_equal C T
+(\lambda (e: C).(match e in C return (\lambda (_: C).T) with [(CSort _)
+\Rightarrow u2 | (CHead _ _ t) \Rightarrow t])) (CHead c3 (Bind b) u2) (CHead
+e1 (Bind b1) v1) H4) in (\lambda (H8: (eq B b b1)).(\lambda (H9: (eq C c3
+e1)).(let H10 \def (eq_ind B b (\lambda (b0: B).(not (eq B b0 Void))) H3 b1
+H8) in (let H11 \def (eq_ind C c3 (\lambda (c: C).((eq C c (CHead e1 (Bind
+b1) v1)) \to (ex2_3 B C T (\lambda (b2: B).(\lambda (e2: C).(\lambda (v2:
+T).(eq C c1 (CHead e2 (Bind b2) v2))))) (\lambda (_: B).(\lambda (e2:
+C).(\lambda (_: T).(csuba g e2 e1))))))) H2 e1 H9) in (let H12 \def (eq_ind C
+c3 (\lambda (c: C).(csuba g c1 c)) H1 e1 H9) in (ex2_3_intro B C T (\lambda
+(b2: B).(\lambda (e2: C).(\lambda (v2: T).(eq C (CHead c1 (Bind Void) u1)
+(CHead e2 (Bind b2) v2))))) (\lambda (_: B).(\lambda (e2: C).(\lambda (_:
+T).(csuba g e2 e1)))) Void c1 u1 (refl_equal C (CHead c1 (Bind Void) u1))
+H12))))))) H6)) H5))))))))))) (\lambda (c1: C).(\lambda (c3: C).(\lambda (H1:
+(csuba g c1 c3)).(\lambda (H2: (((eq C c3 (CHead e1 (Bind b1) v1)) \to (ex2_3
+B C T (\lambda (b2: B).(\lambda (e2: C).(\lambda (v2: T).(eq C c1 (CHead e2
+(Bind b2) v2))))) (\lambda (_: B).(\lambda (e2: C).(\lambda (_: T).(csuba g
+e2 e1)))))))).(\lambda (t: T).(\lambda (a: A).(\lambda (_: (arity g c1 t
+(asucc g a))).(\lambda (u: T).(\lambda (H4: (arity g c3 u a)).(\lambda (H5:
+(eq C (CHead c3 (Bind Abbr) u) (CHead e1 (Bind b1) v1))).(let H6 \def
+(f_equal C C (\lambda (e: C).(match e in C return (\lambda (_: C).C) with
+[(CSort _) \Rightarrow c3 | (CHead c _ _) \Rightarrow c])) (CHead c3 (Bind
+Abbr) u) (CHead e1 (Bind b1) v1) H5) in ((let H7 \def (f_equal C B (\lambda
+(e: C).(match e in C return (\lambda (_: C).B) with [(CSort _) \Rightarrow
+Abbr | (CHead _ k _) \Rightarrow (match k in K return (\lambda (_: K).B) with
+[(Bind b) \Rightarrow b | (Flat _) \Rightarrow Abbr])])) (CHead c3 (Bind
+Abbr) u) (CHead e1 (Bind b1) v1) H5) in ((let H8 \def (f_equal C T (\lambda
+(e: C).(match e in C return (\lambda (_: C).T) with [(CSort _) \Rightarrow u
+| (CHead _ _ t0) \Rightarrow t0])) (CHead c3 (Bind Abbr) u) (CHead e1 (Bind
+b1) v1) H5) in (\lambda (H9: (eq B Abbr b1)).(\lambda (H10: (eq C c3
+e1)).(let H11 \def (eq_ind T u (\lambda (t0: T).(arity g c3 t0 a)) H4 v1 H8)
+in (let H12 \def (eq_ind C c3 (\lambda (c: C).(arity g c v1 a)) H11 e1 H10)
+in (let H13 \def (eq_ind C c3 (\lambda (c: C).((eq C c (CHead e1 (Bind b1)
v1)) \to (ex2_3 B C T (\lambda (b2: B).(\lambda (e2: C).(\lambda (v2: T).(eq
C c1 (CHead e2 (Bind b2) v2))))) (\lambda (_: B).(\lambda (e2: C).(\lambda
-(_: T).(csuba g e2 e1))))))) H13 Abbr H9) in (ex2_3_intro B C T (\lambda (b2:
-B).(\lambda (e2: C).(\lambda (v2: T).(eq C (CHead c1 (Bind Abst) t) (CHead e2
-(Bind b2) v2))))) (\lambda (_: B).(\lambda (e2: C).(\lambda (_: T).(csuba g
-e2 e1)))) Abst c1 t (refl_equal C (CHead c1 (Bind Abst) t)) H14))))))))) H7))
+(_: T).(csuba g e2 e1))))))) H2 e1 H10) in (let H14 \def (eq_ind C c3
+(\lambda (c: C).(csuba g c1 c)) H1 e1 H10) in (let H15 \def (eq_ind_r B b1
+(\lambda (b: B).((eq C e1 (CHead e1 (Bind b) v1)) \to (ex2_3 B C T (\lambda
+(b2: B).(\lambda (e2: C).(\lambda (v2: T).(eq C c1 (CHead e2 (Bind b2)
+v2))))) (\lambda (_: B).(\lambda (e2: C).(\lambda (_: T).(csuba g e2
+e1))))))) H13 Abbr H9) in (ex2_3_intro B C T (\lambda (b2: B).(\lambda (e2:
+C).(\lambda (v2: T).(eq C (CHead c1 (Bind Abst) t) (CHead e2 (Bind b2)
+v2))))) (\lambda (_: B).(\lambda (e2: C).(\lambda (_: T).(csuba g e2 e1))))
+Abst c1 t (refl_equal C (CHead c1 (Bind Abst) t)) H14))))))))) H7))
H6)))))))))))) c2 y H0))) H)))))).
theorem csuba_getl_abst_rev:
\forall (g: G).(\forall (c1: C).(\forall (d1: C).(\forall (u: T).(\forall
(i: nat).((getl i c1 (CHead d1 (Bind Abst) u)) \to (\forall (c2: C).((csuba g
-c2 c1) \to (ex2 C (\lambda (d2: C).(getl i c2 (CHead d2 (Bind Abst) u)))
-(\lambda (d2: C).(csuba g d2 d1))))))))))
+c2 c1) \to (or (ex2 C (\lambda (d2: C).(getl i c2 (CHead d2 (Bind Abst) u)))
+(\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(getl i c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_:
+T).(csuba g d2 d1))))))))))))
\def
\lambda (g: G).(\lambda (c1: C).(\lambda (d1: C).(\lambda (u: T).(\lambda
(i: nat).(\lambda (H: (getl i c1 (CHead d1 (Bind Abst) u))).(let H0 \def
(getl_gen_all c1 (CHead d1 (Bind Abst) u) i H) in (ex2_ind C (\lambda (e:
C).(drop i O c1 e)) (\lambda (e: C).(clear e (CHead d1 (Bind Abst) u)))
-(\forall (c2: C).((csuba g c2 c1) \to (ex2 C (\lambda (d2: C).(getl i c2
-(CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1))))) (\lambda (x:
+(\forall (c2: C).((csuba g c2 c1) \to (or (ex2 C (\lambda (d2: C).(getl i c2
+(CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T
+(\lambda (d2: C).(\lambda (u2: T).(getl i c2 (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))))) (\lambda (x:
C).(\lambda (H1: (drop i O c1 x)).(\lambda (H2: (clear x (CHead d1 (Bind
Abst) u))).(C_ind (\lambda (c: C).((drop i O c1 c) \to ((clear c (CHead d1
-(Bind Abst) u)) \to (\forall (c2: C).((csuba g c2 c1) \to (ex2 C (\lambda
-(d2: C).(getl i c2 (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2
-d1)))))))) (\lambda (n: nat).(\lambda (_: (drop i O c1 (CSort n))).(\lambda
-(H4: (clear (CSort n) (CHead d1 (Bind Abst) u))).(clear_gen_sort (CHead d1
-(Bind Abst) u) n H4 (\forall (c2: C).((csuba g c2 c1) \to (ex2 C (\lambda
+(Bind Abst) u)) \to (\forall (c2: C).((csuba g c2 c1) \to (or (ex2 C (\lambda
(d2: C).(getl i c2 (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2
-d1))))))))) (\lambda (x0: C).(\lambda (_: (((drop i O c1 x0) \to ((clear x0
-(CHead d1 (Bind Abst) u)) \to (\forall (c2: C).((csuba g c2 c1) \to (ex2 C
-(\lambda (d2: C).(getl i c2 (CHead d2 (Bind Abst) u))) (\lambda (d2:
-C).(csuba g d2 d1))))))))).(\lambda (k: K).(\lambda (t: T).(\lambda (H3:
-(drop i O c1 (CHead x0 k t))).(\lambda (H4: (clear (CHead x0 k t) (CHead d1
-(Bind Abst) u))).(K_ind (\lambda (k0: K).((drop i O c1 (CHead x0 k0 t)) \to
-((clear (CHead x0 k0 t) (CHead d1 (Bind Abst) u)) \to (\forall (c2:
-C).((csuba g c2 c1) \to (ex2 C (\lambda (d2: C).(getl i c2 (CHead d2 (Bind
-Abst) u))) (\lambda (d2: C).(csuba g d2 d1)))))))) (\lambda (b: B).(\lambda
-(H5: (drop i O c1 (CHead x0 (Bind b) t))).(\lambda (H6: (clear (CHead x0
-(Bind b) t) (CHead d1 (Bind Abst) u))).(let H7 \def (f_equal C C (\lambda (e:
-C).(match e in C return (\lambda (_: C).C) with [(CSort _) \Rightarrow d1 |
-(CHead c _ _) \Rightarrow c])) (CHead d1 (Bind Abst) u) (CHead x0 (Bind b) t)
-(clear_gen_bind b x0 (CHead d1 (Bind Abst) u) t H6)) in ((let H8 \def
-(f_equal C B (\lambda (e: C).(match e in C return (\lambda (_: C).B) with
-[(CSort _) \Rightarrow Abst | (CHead _ k0 _) \Rightarrow (match k0 in K
-return (\lambda (_: K).B) with [(Bind b0) \Rightarrow b0 | (Flat _)
+d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(getl i c2 (CHead d2 (Bind
+Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))))))))
+(\lambda (n: nat).(\lambda (_: (drop i O c1 (CSort n))).(\lambda (H4: (clear
+(CSort n) (CHead d1 (Bind Abst) u))).(clear_gen_sort (CHead d1 (Bind Abst) u)
+n H4 (\forall (c2: C).((csuba g c2 c1) \to (or (ex2 C (\lambda (d2: C).(getl
+i c2 (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T
+(\lambda (d2: C).(\lambda (u2: T).(getl i c2 (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))))))))) (\lambda (x0:
+C).(\lambda (_: (((drop i O c1 x0) \to ((clear x0 (CHead d1 (Bind Abst) u))
+\to (\forall (c2: C).((csuba g c2 c1) \to (or (ex2 C (\lambda (d2: C).(getl i
+c2 (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T
+(\lambda (d2: C).(\lambda (u2: T).(getl i c2 (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))))))))).(\lambda (k:
+K).(\lambda (t: T).(\lambda (H3: (drop i O c1 (CHead x0 k t))).(\lambda (H4:
+(clear (CHead x0 k t) (CHead d1 (Bind Abst) u))).(K_ind (\lambda (k0:
+K).((drop i O c1 (CHead x0 k0 t)) \to ((clear (CHead x0 k0 t) (CHead d1 (Bind
+Abst) u)) \to (\forall (c2: C).((csuba g c2 c1) \to (or (ex2 C (\lambda (d2:
+C).(getl i c2 (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1)))
+(ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(getl i c2 (CHead d2 (Bind Void)
+u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1)))))))))) (\lambda (b:
+B).(\lambda (H5: (drop i O c1 (CHead x0 (Bind b) t))).(\lambda (H6: (clear
+(CHead x0 (Bind b) t) (CHead d1 (Bind Abst) u))).(let H7 \def (f_equal C C
+(\lambda (e: C).(match e in C return (\lambda (_: C).C) with [(CSort _)
+\Rightarrow d1 | (CHead c _ _) \Rightarrow c])) (CHead d1 (Bind Abst) u)
+(CHead x0 (Bind b) t) (clear_gen_bind b x0 (CHead d1 (Bind Abst) u) t H6)) in
+((let H8 \def (f_equal C B (\lambda (e: C).(match e in C return (\lambda (_:
+C).B) with [(CSort _) \Rightarrow Abst | (CHead _ k0 _) \Rightarrow (match k0
+in K return (\lambda (_: K).B) with [(Bind b0) \Rightarrow b0 | (Flat _)
\Rightarrow Abst])])) (CHead d1 (Bind Abst) u) (CHead x0 (Bind b) t)
(clear_gen_bind b x0 (CHead d1 (Bind Abst) u) t H6)) in ((let H9 \def
(f_equal C T (\lambda (e: C).(match e in C return (\lambda (_: C).T) with
(eq_ind_r B b (\lambda (b0: B).(drop i O c1 (CHead x0 (Bind b0) u))) H13 Abst
H10) in (let H15 \def (eq_ind_r C x0 (\lambda (c: C).(drop i O c1 (CHead c
(Bind Abst) u))) H14 d1 H11) in (let H16 \def (csuba_drop_abst_rev i c1 d1 u
-H15 g c2 H12) in (ex2_ind C (\lambda (d2: C).(drop i O c2 (CHead d2 (Bind
-Abst) u))) (\lambda (d2: C).(csuba g d2 d1)) (ex2 C (\lambda (d2: C).(getl i
-c2 (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (\lambda
-(x1: C).(\lambda (H17: (drop i O c2 (CHead x1 (Bind Abst) u))).(\lambda (H18:
-(csuba g x1 d1)).(ex_intro2 C (\lambda (d2: C).(getl i c2 (CHead d2 (Bind
-Abst) u))) (\lambda (d2: C).(csuba g d2 d1)) x1 (getl_intro i c2 (CHead x1
-(Bind Abst) u) (CHead x1 (Bind Abst) u) H17 (clear_bind Abst x1 u)) H18))))
-H16)))))))))) H8)) H7))))) (\lambda (f: F).(\lambda (H5: (drop i O c1 (CHead
-x0 (Flat f) t))).(\lambda (H6: (clear (CHead x0 (Flat f) t) (CHead d1 (Bind
-Abst) u))).(let H7 \def H5 in (unintro C c1 (\lambda (c: C).((drop i O c
-(CHead x0 (Flat f) t)) \to (\forall (c2: C).((csuba g c2 c) \to (ex2 C
-(\lambda (d2: C).(getl i c2 (CHead d2 (Bind Abst) u))) (\lambda (d2:
-C).(csuba g d2 d1))))))) (nat_ind (\lambda (n: nat).(\forall (x1: C).((drop n
-O x1 (CHead x0 (Flat f) t)) \to (\forall (c2: C).((csuba g c2 x1) \to (ex2 C
-(\lambda (d2: C).(getl n c2 (CHead d2 (Bind Abst) u))) (\lambda (d2:
-C).(csuba g d2 d1)))))))) (\lambda (x1: C).(\lambda (H8: (drop O O x1 (CHead
-x0 (Flat f) t))).(\lambda (c2: C).(\lambda (H9: (csuba g c2 x1)).(let H10
-\def (eq_ind C x1 (\lambda (c: C).(csuba g c2 c)) H9 (CHead x0 (Flat f) t)
-(drop_gen_refl x1 (CHead x0 (Flat f) t) H8)) in (let H_y \def (clear_flat x0
-(CHead d1 (Bind Abst) u) (clear_gen_flat f x0 (CHead d1 (Bind Abst) u) t H6)
-f t) in (let H11 \def (csuba_clear_trans g (CHead x0 (Flat f) t) c2 H10
-(CHead d1 (Bind Abst) u) H_y) in (ex2_ind C (\lambda (e2: C).(csuba g e2
-(CHead d1 (Bind Abst) u))) (\lambda (e2: C).(clear c2 e2)) (ex2 C (\lambda
-(d2: C).(getl O c2 (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2
-d1))) (\lambda (x2: C).(\lambda (H12: (csuba g x2 (CHead d1 (Bind Abst)
-u))).(\lambda (H13: (clear c2 x2)).(let H_x \def (csuba_gen_abst_rev g d1 x2
-u H12) in (let H14 \def H_x in (ex2_ind C (\lambda (d2: C).(eq C x2 (CHead d2
-(Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1)) (ex2 C (\lambda (d2:
-C).(getl O c2 (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1)))
-(\lambda (x3: C).(\lambda (H15: (eq C x2 (CHead x3 (Bind Abst) u))).(\lambda
-(H16: (csuba g x3 d1)).(let H17 \def (eq_ind C x2 (\lambda (c: C).(clear c2
-c)) H13 (CHead x3 (Bind Abst) u) H15) in (ex_intro2 C (\lambda (d2: C).(getl
-O c2 (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1)) x3
-(getl_intro O c2 (CHead x3 (Bind Abst) u) c2 (drop_refl c2) H17) H16)))))
-H14)))))) H11)))))))) (\lambda (n: nat).(\lambda (H8: ((\forall (x1:
-C).((drop n O x1 (CHead x0 (Flat f) t)) \to (\forall (c2: C).((csuba g c2 x1)
-\to (ex2 C (\lambda (d2: C).(getl n c2 (CHead d2 (Bind Abst) u))) (\lambda
-(d2: C).(csuba g d2 d1))))))))).(\lambda (x1: C).(\lambda (H9: (drop (S n) O
-x1 (CHead x0 (Flat f) t))).(\lambda (c2: C).(\lambda (H10: (csuba g c2
-x1)).(let H11 \def (drop_clear x1 (CHead x0 (Flat f) t) n H9) in (ex2_3_ind B
-C T (\lambda (b: B).(\lambda (e: C).(\lambda (v: T).(clear x1 (CHead e (Bind
-b) v))))) (\lambda (_: B).(\lambda (e: C).(\lambda (_: T).(drop n O e (CHead
-x0 (Flat f) t))))) (ex2 C (\lambda (d2: C).(getl (S n) c2 (CHead d2 (Bind
-Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (\lambda (x2: B).(\lambda (x3:
-C).(\lambda (x4: T).(\lambda (H12: (clear x1 (CHead x3 (Bind x2)
-x4))).(\lambda (H13: (drop n O x3 (CHead x0 (Flat f) t))).(let H14 \def
+H15 g c2 H12) in (or_ind (ex2 C (\lambda (d2: C).(drop i O c2 (CHead d2 (Bind
+Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2:
+C).(\lambda (u2: T).(drop i O c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2:
+C).(\lambda (_: T).(csuba g d2 d1)))) (or (ex2 C (\lambda (d2: C).(getl i c2
+(CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T
+(\lambda (d2: C).(\lambda (u2: T).(getl i c2 (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda (H17: (ex2 C
+(\lambda (d2: C).(drop i O c2 (CHead d2 (Bind Abst) u))) (\lambda (d2:
+C).(csuba g d2 d1)))).(ex2_ind C (\lambda (d2: C).(drop i O c2 (CHead d2
+(Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1)) (or (ex2 C (\lambda (d2:
+C).(getl i c2 (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1)))
+(ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(getl i c2 (CHead d2 (Bind Void)
+u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda (x1:
+C).(\lambda (H18: (drop i O c2 (CHead x1 (Bind Abst) u))).(\lambda (H19:
+(csuba g x1 d1)).(or_introl (ex2 C (\lambda (d2: C).(getl i c2 (CHead d2
+(Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2:
+C).(\lambda (u2: T).(getl i c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2:
+C).(\lambda (_: T).(csuba g d2 d1)))) (ex_intro2 C (\lambda (d2: C).(getl i
+c2 (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1)) x1
+(getl_intro i c2 (CHead x1 (Bind Abst) u) (CHead x1 (Bind Abst) u) H18
+(clear_bind Abst x1 u)) H19))))) H17)) (\lambda (H17: (ex2_2 C T (\lambda
+(d2: C).(\lambda (u2: T).(drop i O c2 (CHead d2 (Bind Void) u2)))) (\lambda
+(d2: C).(\lambda (_: T).(csuba g d2 d1))))).(ex2_2_ind C T (\lambda (d2:
+C).(\lambda (u2: T).(drop i O c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2:
+C).(\lambda (_: T).(csuba g d2 d1))) (or (ex2 C (\lambda (d2: C).(getl i c2
+(CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T
+(\lambda (d2: C).(\lambda (u2: T).(getl i c2 (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda (x1:
+C).(\lambda (x2: T).(\lambda (H18: (drop i O c2 (CHead x1 (Bind Void)
+x2))).(\lambda (H19: (csuba g x1 d1)).(or_intror (ex2 C (\lambda (d2:
+C).(getl i c2 (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1)))
+(ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(getl i c2 (CHead d2 (Bind Void)
+u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1)))) (ex2_2_intro C T
+(\lambda (d2: C).(\lambda (u2: T).(getl i c2 (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))) x1 x2 (getl_intro i c2
+(CHead x1 (Bind Void) x2) (CHead x1 (Bind Void) x2) H18 (clear_bind Void x1
+x2)) H19)))))) H17)) H16)))))))))) H8)) H7))))) (\lambda (f: F).(\lambda (H5:
+(drop i O c1 (CHead x0 (Flat f) t))).(\lambda (H6: (clear (CHead x0 (Flat f)
+t) (CHead d1 (Bind Abst) u))).(let H7 \def H5 in (unintro C c1 (\lambda (c:
+C).((drop i O c (CHead x0 (Flat f) t)) \to (\forall (c2: C).((csuba g c2 c)
+\to (or (ex2 C (\lambda (d2: C).(getl i c2 (CHead d2 (Bind Abst) u)))
+(\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(getl i c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_:
+T).(csuba g d2 d1))))))))) (nat_ind (\lambda (n: nat).(\forall (x1: C).((drop
+n O x1 (CHead x0 (Flat f) t)) \to (\forall (c2: C).((csuba g c2 x1) \to (or
+(ex2 C (\lambda (d2: C).(getl n c2 (CHead d2 (Bind Abst) u))) (\lambda (d2:
+C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(getl n c2
+(CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+d1)))))))))) (\lambda (x1: C).(\lambda (H8: (drop O O x1 (CHead x0 (Flat f)
+t))).(\lambda (c2: C).(\lambda (H9: (csuba g c2 x1)).(let H10 \def (eq_ind C
+x1 (\lambda (c: C).(csuba g c2 c)) H9 (CHead x0 (Flat f) t) (drop_gen_refl x1
+(CHead x0 (Flat f) t) H8)) in (let H_y \def (clear_flat x0 (CHead d1 (Bind
+Abst) u) (clear_gen_flat f x0 (CHead d1 (Bind Abst) u) t H6) f t) in (let H11
+\def (csuba_clear_trans g (CHead x0 (Flat f) t) c2 H10 (CHead d1 (Bind Abst)
+u) H_y) in (ex2_ind C (\lambda (e2: C).(csuba g e2 (CHead d1 (Bind Abst) u)))
+(\lambda (e2: C).(clear c2 e2)) (or (ex2 C (\lambda (d2: C).(getl O c2 (CHead
+d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T (\lambda
+(d2: C).(\lambda (u2: T).(getl O c2 (CHead d2 (Bind Void) u2)))) (\lambda
+(d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda (x2: C).(\lambda (H12:
+(csuba g x2 (CHead d1 (Bind Abst) u))).(\lambda (H13: (clear c2 x2)).(let H_x
+\def (csuba_gen_abst_rev g d1 x2 u H12) in (let H14 \def H_x in (or_ind (ex2
+C (\lambda (d2: C).(eq C x2 (CHead d2 (Bind Abst) u))) (\lambda (d2:
+C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(eq C x2
+(CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+d1)))) (or (ex2 C (\lambda (d2: C).(getl O c2 (CHead d2 (Bind Abst) u)))
+(\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(getl O c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_:
+T).(csuba g d2 d1))))) (\lambda (H15: (ex2 C (\lambda (d2: C).(eq C x2 (CHead
+d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1)))).(ex2_ind C (\lambda
+(d2: C).(eq C x2 (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1))
+(or (ex2 C (\lambda (d2: C).(getl O c2 (CHead d2 (Bind Abst) u))) (\lambda
+(d2: C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(getl
+O c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g
+d2 d1))))) (\lambda (x3: C).(\lambda (H16: (eq C x2 (CHead x3 (Bind Abst)
+u))).(\lambda (H17: (csuba g x3 d1)).(let H18 \def (eq_ind C x2 (\lambda (c:
+C).(clear c2 c)) H13 (CHead x3 (Bind Abst) u) H16) in (or_introl (ex2 C
+(\lambda (d2: C).(getl O c2 (CHead d2 (Bind Abst) u))) (\lambda (d2:
+C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(getl O c2
+(CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+d1)))) (ex_intro2 C (\lambda (d2: C).(getl O c2 (CHead d2 (Bind Abst) u)))
+(\lambda (d2: C).(csuba g d2 d1)) x3 (getl_intro O c2 (CHead x3 (Bind Abst)
+u) c2 (drop_refl c2) H18) H17)))))) H15)) (\lambda (H15: (ex2_2 C T (\lambda
+(d2: C).(\lambda (u2: T).(eq C x2 (CHead d2 (Bind Void) u2)))) (\lambda (d2:
+C).(\lambda (_: T).(csuba g d2 d1))))).(ex2_2_ind C T (\lambda (d2:
+C).(\lambda (u2: T).(eq C x2 (CHead d2 (Bind Void) u2)))) (\lambda (d2:
+C).(\lambda (_: T).(csuba g d2 d1))) (or (ex2 C (\lambda (d2: C).(getl O c2
+(CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T
+(\lambda (d2: C).(\lambda (u2: T).(getl O c2 (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda (x3:
+C).(\lambda (x4: T).(\lambda (H16: (eq C x2 (CHead x3 (Bind Void)
+x4))).(\lambda (H17: (csuba g x3 d1)).(let H18 \def (eq_ind C x2 (\lambda (c:
+C).(clear c2 c)) H13 (CHead x3 (Bind Void) x4) H16) in (or_intror (ex2 C
+(\lambda (d2: C).(getl O c2 (CHead d2 (Bind Abst) u))) (\lambda (d2:
+C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(getl O c2
+(CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+d1)))) (ex2_2_intro C T (\lambda (d2: C).(\lambda (u2: T).(getl O c2 (CHead
+d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))) x3
+x4 (getl_intro O c2 (CHead x3 (Bind Void) x4) c2 (drop_refl c2) H18)
+H17))))))) H15)) H14)))))) H11)))))))) (\lambda (n: nat).(\lambda (H8:
+((\forall (x1: C).((drop n O x1 (CHead x0 (Flat f) t)) \to (\forall (c2:
+C).((csuba g c2 x1) \to (or (ex2 C (\lambda (d2: C).(getl n c2 (CHead d2
+(Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2:
+C).(\lambda (u2: T).(getl n c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2:
+C).(\lambda (_: T).(csuba g d2 d1))))))))))).(\lambda (x1: C).(\lambda (H9:
+(drop (S n) O x1 (CHead x0 (Flat f) t))).(\lambda (c2: C).(\lambda (H10:
+(csuba g c2 x1)).(let H11 \def (drop_clear x1 (CHead x0 (Flat f) t) n H9) in
+(ex2_3_ind B C T (\lambda (b: B).(\lambda (e: C).(\lambda (v: T).(clear x1
+(CHead e (Bind b) v))))) (\lambda (_: B).(\lambda (e: C).(\lambda (_:
+T).(drop n O e (CHead x0 (Flat f) t))))) (or (ex2 C (\lambda (d2: C).(getl (S
+n) c2 (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C
+T (\lambda (d2: C).(\lambda (u2: T).(getl (S n) c2 (CHead d2 (Bind Void)
+u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda (x2:
+B).(\lambda (x3: C).(\lambda (x4: T).(\lambda (H12: (clear x1 (CHead x3 (Bind
+x2) x4))).(\lambda (H13: (drop n O x3 (CHead x0 (Flat f) t))).(let H14 \def
(csuba_clear_trans g x1 c2 H10 (CHead x3 (Bind x2) x4) H12) in (ex2_ind C
(\lambda (e2: C).(csuba g e2 (CHead x3 (Bind x2) x4))) (\lambda (e2:
-C).(clear c2 e2)) (ex2 C (\lambda (d2: C).(getl (S n) c2 (CHead d2 (Bind
-Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (\lambda (x5: C).(\lambda (H15:
-(csuba g x5 (CHead x3 (Bind x2) x4))).(\lambda (H16: (clear c2 x5)).(let H_x
-\def (csuba_gen_bind_rev g x2 x3 x5 x4 H15) in (let H17 \def H_x in
-(ex2_3_ind B C T (\lambda (b2: B).(\lambda (e2: C).(\lambda (v2: T).(eq C x5
-(CHead e2 (Bind b2) v2))))) (\lambda (_: B).(\lambda (e2: C).(\lambda (_:
-T).(csuba g e2 x3)))) (ex2 C (\lambda (d2: C).(getl (S n) c2 (CHead d2 (Bind
-Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (\lambda (x6: B).(\lambda (x7:
-C).(\lambda (x8: T).(\lambda (H18: (eq C x5 (CHead x7 (Bind x6)
-x8))).(\lambda (H19: (csuba g x7 x3)).(let H20 \def (eq_ind C x5 (\lambda (c:
-C).(clear c2 c)) H16 (CHead x7 (Bind x6) x8) H18) in (let H21 \def (H8 x3 H13
-x7 H19) in (ex2_ind C (\lambda (d2: C).(getl n x7 (CHead d2 (Bind Abst) u)))
-(\lambda (d2: C).(csuba g d2 d1)) (ex2 C (\lambda (d2: C).(getl (S n) c2
-(CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (\lambda (x9:
-C).(\lambda (H22: (getl n x7 (CHead x9 (Bind Abst) u))).(\lambda (H23: (csuba
-g x9 d1)).(ex_intro2 C (\lambda (d2: C).(getl (S n) c2 (CHead d2 (Bind Abst)
-u))) (\lambda (d2: C).(csuba g d2 d1)) x9 (getl_clear_bind x6 c2 x7 x8 H20
-(CHead x9 (Bind Abst) u) n H22) H23)))) H21)))))))) H17)))))) H14)))))))
-H11)))))))) i) H7))))) k H3 H4))))))) x H1 H2)))) H0))))))).
+C).(clear c2 e2)) (or (ex2 C (\lambda (d2: C).(getl (S n) c2 (CHead d2 (Bind
+Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2:
+C).(\lambda (u2: T).(getl (S n) c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2:
+C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda (x5: C).(\lambda (H15: (csuba
+g x5 (CHead x3 (Bind x2) x4))).(\lambda (H16: (clear c2 x5)).(let H_x \def
+(csuba_gen_bind_rev g x2 x3 x5 x4 H15) in (let H17 \def H_x in (ex2_3_ind B C
+T (\lambda (b2: B).(\lambda (e2: C).(\lambda (v2: T).(eq C x5 (CHead e2 (Bind
+b2) v2))))) (\lambda (_: B).(\lambda (e2: C).(\lambda (_: T).(csuba g e2
+x3)))) (or (ex2 C (\lambda (d2: C).(getl (S n) c2 (CHead d2 (Bind Abst) u)))
+(\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(getl (S n) c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_:
+T).(csuba g d2 d1))))) (\lambda (x6: B).(\lambda (x7: C).(\lambda (x8:
+T).(\lambda (H18: (eq C x5 (CHead x7 (Bind x6) x8))).(\lambda (H19: (csuba g
+x7 x3)).(let H20 \def (eq_ind C x5 (\lambda (c: C).(clear c2 c)) H16 (CHead
+x7 (Bind x6) x8) H18) in (let H21 \def (H8 x3 H13 x7 H19) in (or_ind (ex2 C
+(\lambda (d2: C).(getl n x7 (CHead d2 (Bind Abst) u))) (\lambda (d2:
+C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(getl n x7
+(CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+d1)))) (or (ex2 C (\lambda (d2: C).(getl (S n) c2 (CHead d2 (Bind Abst) u)))
+(\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(getl (S n) c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_:
+T).(csuba g d2 d1))))) (\lambda (H22: (ex2 C (\lambda (d2: C).(getl n x7
+(CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1)))).(ex2_ind C
+(\lambda (d2: C).(getl n x7 (CHead d2 (Bind Abst) u))) (\lambda (d2:
+C).(csuba g d2 d1)) (or (ex2 C (\lambda (d2: C).(getl (S n) c2 (CHead d2
+(Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2:
+C).(\lambda (u2: T).(getl (S n) c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2:
+C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda (x9: C).(\lambda (H23: (getl
+n x7 (CHead x9 (Bind Abst) u))).(\lambda (H24: (csuba g x9 d1)).(or_introl
+(ex2 C (\lambda (d2: C).(getl (S n) c2 (CHead d2 (Bind Abst) u))) (\lambda
+(d2: C).(csuba g d2 d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(getl
+(S n) c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba
+g d2 d1)))) (ex_intro2 C (\lambda (d2: C).(getl (S n) c2 (CHead d2 (Bind
+Abst) u))) (\lambda (d2: C).(csuba g d2 d1)) x9 (getl_clear_bind x6 c2 x7 x8
+H20 (CHead x9 (Bind Abst) u) n H23) H24))))) H22)) (\lambda (H22: (ex2_2 C T
+(\lambda (d2: C).(\lambda (u2: T).(getl n x7 (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))).(ex2_2_ind C T (\lambda
+(d2: C).(\lambda (u2: T).(getl n x7 (CHead d2 (Bind Void) u2)))) (\lambda
+(d2: C).(\lambda (_: T).(csuba g d2 d1))) (or (ex2 C (\lambda (d2: C).(getl
+(S n) c2 (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2 d1))) (ex2_2
+C T (\lambda (d2: C).(\lambda (u2: T).(getl (S n) c2 (CHead d2 (Bind Void)
+u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda (x9:
+C).(\lambda (x10: T).(\lambda (H23: (getl n x7 (CHead x9 (Bind Void)
+x10))).(\lambda (H24: (csuba g x9 d1)).(or_intror (ex2 C (\lambda (d2:
+C).(getl (S n) c2 (CHead d2 (Bind Abst) u))) (\lambda (d2: C).(csuba g d2
+d1))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(getl (S n) c2 (CHead d2
+(Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))
+(ex2_2_intro C T (\lambda (d2: C).(\lambda (u2: T).(getl (S n) c2 (CHead d2
+(Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))) x9 x10
+(getl_clear_bind x6 c2 x7 x8 H20 (CHead x9 (Bind Void) x10) n H23) H24))))))
+H22)) H21)))))))) H17)))))) H14))))))) H11)))))))) i) H7))))) k H3 H4)))))))
+x H1 H2)))) H0))))))).
theorem csuba_getl_abbr_rev:
\forall (g: G).(\forall (c1: C).(\forall (d1: C).(\forall (u1: T).(\forall
(i: nat).((getl i c1 (CHead d1 (Bind Abbr) u1)) \to (\forall (c2: C).((csuba
-g c2 c1) \to (or (ex2 C (\lambda (d2: C).(getl i c2 (CHead d2 (Bind Abbr)
+g c2 c1) \to (or3 (ex2 C (\lambda (d2: C).(getl i c2 (CHead d2 (Bind Abbr)
u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2:
C).(\lambda (u2: T).(\lambda (_: A).(getl i c2 (CHead d2 (Bind Abst) u2)))))
(\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda
(d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a)))))
-(\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))))))))))))
+(\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex2_2
+C T (\lambda (d2: C).(\lambda (u2: T).(getl i c2 (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))))))))))
\def
\lambda (g: G).(\lambda (c1: C).(\lambda (d1: C).(\lambda (u1: T).(\lambda
(i: nat).(\lambda (H: (getl i c1 (CHead d1 (Bind Abbr) u1))).(let H0 \def
(getl_gen_all c1 (CHead d1 (Bind Abbr) u1) i H) in (ex2_ind C (\lambda (e:
C).(drop i O c1 e)) (\lambda (e: C).(clear e (CHead d1 (Bind Abbr) u1)))
-(\forall (c2: C).((csuba g c2 c1) \to (or (ex2 C (\lambda (d2: C).(getl i c2
+(\forall (c2: C).((csuba g c2 c1) \to (or3 (ex2 C (\lambda (d2: C).(getl i c2
(CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A
(\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(getl i c2 (CHead d2 (Bind
Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2
d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2
(asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1
-u1 a)))))))) (\lambda (x: C).(\lambda (H1: (drop i O c1 x)).(\lambda (H2:
-(clear x (CHead d1 (Bind Abbr) u1))).(C_ind (\lambda (c: C).((drop i O c1 c)
-\to ((clear c (CHead d1 (Bind Abbr) u1)) \to (\forall (c2: C).((csuba g c2
-c1) \to (or (ex2 C (\lambda (d2: C).(getl i c2 (CHead d2 (Bind Abbr) u1)))
-(\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda
-(u2: T).(\lambda (_: A).(getl i c2 (CHead d2 (Bind Abst) u2))))) (\lambda
-(d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2:
-C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda
-(_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a))))))))))) (\lambda
-(n: nat).(\lambda (_: (drop i O c1 (CSort n))).(\lambda (H4: (clear (CSort n)
-(CHead d1 (Bind Abbr) u1))).(clear_gen_sort (CHead d1 (Bind Abbr) u1) n H4
-(\forall (c2: C).((csuba g c2 c1) \to (or (ex2 C (\lambda (d2: C).(getl i c2
-(CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A
-(\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(getl i c2 (CHead d2 (Bind
-Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2
-d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2
-(asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1
-u1 a)))))))))))) (\lambda (x0: C).(\lambda (_: (((drop i O c1 x0) \to ((clear
-x0 (CHead d1 (Bind Abbr) u1)) \to (\forall (c2: C).((csuba g c2 c1) \to (or
+u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(getl i c2 (CHead d2
+(Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1)))))))
+(\lambda (x: C).(\lambda (H1: (drop i O c1 x)).(\lambda (H2: (clear x (CHead
+d1 (Bind Abbr) u1))).(C_ind (\lambda (c: C).((drop i O c1 c) \to ((clear c
+(CHead d1 (Bind Abbr) u1)) \to (\forall (c2: C).((csuba g c2 c1) \to (or3
(ex2 C (\lambda (d2: C).(getl i c2 (CHead d2 (Bind Abbr) u1))) (\lambda (d2:
C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda
(_: A).(getl i c2 (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_:
T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2:
T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda
-(_: T).(\lambda (a: A).(arity g d1 u1 a)))))))))))).(\lambda (k: K).(\lambda
-(t: T).(\lambda (H3: (drop i O c1 (CHead x0 k t))).(\lambda (H4: (clear
-(CHead x0 k t) (CHead d1 (Bind Abbr) u1))).(K_ind (\lambda (k0: K).((drop i O
-c1 (CHead x0 k0 t)) \to ((clear (CHead x0 k0 t) (CHead d1 (Bind Abbr) u1))
-\to (\forall (c2: C).((csuba g c2 c1) \to (or (ex2 C (\lambda (d2: C).(getl i
-c2 (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T
-A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(getl i c2 (CHead d2
+(_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2:
+C).(\lambda (u2: T).(getl i c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2:
+C).(\lambda (_: T).(csuba g d2 d1)))))))))) (\lambda (n: nat).(\lambda (_:
+(drop i O c1 (CSort n))).(\lambda (H4: (clear (CSort n) (CHead d1 (Bind Abbr)
+u1))).(clear_gen_sort (CHead d1 (Bind Abbr) u1) n H4 (\forall (c2: C).((csuba
+g c2 c1) \to (or3 (ex2 C (\lambda (d2: C).(getl i c2 (CHead d2 (Bind Abbr)
+u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2:
+C).(\lambda (u2: T).(\lambda (_: A).(getl i c2 (CHead d2 (Bind Abst) u2)))))
+(\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda
+(d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a)))))
+(\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex2_2
+C T (\lambda (d2: C).(\lambda (u2: T).(getl i c2 (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))))))))) (\lambda (x0:
+C).(\lambda (_: (((drop i O c1 x0) \to ((clear x0 (CHead d1 (Bind Abbr) u1))
+\to (\forall (c2: C).((csuba g c2 c1) \to (or3 (ex2 C (\lambda (d2: C).(getl
+i c2 (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C
+T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(getl i c2 (CHead d2
(Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g
d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2
(asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1
-u1 a))))))))))) (\lambda (b: B).(\lambda (H5: (drop i O c1 (CHead x0 (Bind b)
-t))).(\lambda (H6: (clear (CHead x0 (Bind b) t) (CHead d1 (Bind Abbr)
-u1))).(let H7 \def (f_equal C C (\lambda (e: C).(match e in C return (\lambda
-(_: C).C) with [(CSort _) \Rightarrow d1 | (CHead c _ _) \Rightarrow c]))
-(CHead d1 (Bind Abbr) u1) (CHead x0 (Bind b) t) (clear_gen_bind b x0 (CHead
-d1 (Bind Abbr) u1) t H6)) in ((let H8 \def (f_equal C B (\lambda (e:
-C).(match e in C return (\lambda (_: C).B) with [(CSort _) \Rightarrow Abbr |
-(CHead _ k0 _) \Rightarrow (match k0 in K return (\lambda (_: K).B) with
-[(Bind b0) \Rightarrow b0 | (Flat _) \Rightarrow Abbr])])) (CHead d1 (Bind
-Abbr) u1) (CHead x0 (Bind b) t) (clear_gen_bind b x0 (CHead d1 (Bind Abbr)
-u1) t H6)) in ((let H9 \def (f_equal C T (\lambda (e: C).(match e in C return
-(\lambda (_: C).T) with [(CSort _) \Rightarrow u1 | (CHead _ _ t0)
-\Rightarrow t0])) (CHead d1 (Bind Abbr) u1) (CHead x0 (Bind b) t)
-(clear_gen_bind b x0 (CHead d1 (Bind Abbr) u1) t H6)) in (\lambda (H10: (eq B
-Abbr b)).(\lambda (H11: (eq C d1 x0)).(\lambda (c2: C).(\lambda (H12: (csuba
-g c2 c1)).(let H13 \def (eq_ind_r T t (\lambda (t0: T).(drop i O c1 (CHead x0
-(Bind b) t0))) H5 u1 H9) in (let H14 \def (eq_ind_r B b (\lambda (b0:
-B).(drop i O c1 (CHead x0 (Bind b0) u1))) H13 Abbr H10) in (let H15 \def
-(eq_ind_r C x0 (\lambda (c: C).(drop i O c1 (CHead c (Bind Abbr) u1))) H14 d1
-H11) in (let H16 \def (csuba_drop_abbr_rev i c1 d1 u1 H15 g c2 H12) in
-(or_ind (ex2 C (\lambda (d2: C).(drop i O c2 (CHead d2 (Bind Abbr) u1)))
+u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(getl i c2 (CHead d2
+(Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2
+d1))))))))))).(\lambda (k: K).(\lambda (t: T).(\lambda (H3: (drop i O c1
+(CHead x0 k t))).(\lambda (H4: (clear (CHead x0 k t) (CHead d1 (Bind Abbr)
+u1))).(K_ind (\lambda (k0: K).((drop i O c1 (CHead x0 k0 t)) \to ((clear
+(CHead x0 k0 t) (CHead d1 (Bind Abbr) u1)) \to (\forall (c2: C).((csuba g c2
+c1) \to (or3 (ex2 C (\lambda (d2: C).(getl i c2 (CHead d2 (Bind Abbr) u1)))
(\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda
-(u2: T).(\lambda (_: A).(drop i O c2 (CHead d2 (Bind Abst) u2))))) (\lambda
+(u2: T).(\lambda (_: A).(getl i c2 (CHead d2 (Bind Abst) u2))))) (\lambda
(d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2:
C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda
-(_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a))))) (or (ex2 C
-(\lambda (d2: C).(getl i c2 (CHead d2 (Bind Abbr) u1))) (\lambda (d2:
-C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda
-(_: A).(getl i c2 (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_:
-T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2:
-T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda
-(_: T).(\lambda (a: A).(arity g d1 u1 a)))))) (\lambda (H17: (ex2 C (\lambda
+(_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex2_2 C T
+(\lambda (d2: C).(\lambda (u2: T).(getl i c2 (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1)))))))))) (\lambda (b:
+B).(\lambda (H5: (drop i O c1 (CHead x0 (Bind b) t))).(\lambda (H6: (clear
+(CHead x0 (Bind b) t) (CHead d1 (Bind Abbr) u1))).(let H7 \def (f_equal C C
+(\lambda (e: C).(match e in C return (\lambda (_: C).C) with [(CSort _)
+\Rightarrow d1 | (CHead c _ _) \Rightarrow c])) (CHead d1 (Bind Abbr) u1)
+(CHead x0 (Bind b) t) (clear_gen_bind b x0 (CHead d1 (Bind Abbr) u1) t H6))
+in ((let H8 \def (f_equal C B (\lambda (e: C).(match e in C return (\lambda
+(_: C).B) with [(CSort _) \Rightarrow Abbr | (CHead _ k0 _) \Rightarrow
+(match k0 in K return (\lambda (_: K).B) with [(Bind b0) \Rightarrow b0 |
+(Flat _) \Rightarrow Abbr])])) (CHead d1 (Bind Abbr) u1) (CHead x0 (Bind b)
+t) (clear_gen_bind b x0 (CHead d1 (Bind Abbr) u1) t H6)) in ((let H9 \def
+(f_equal C T (\lambda (e: C).(match e in C return (\lambda (_: C).T) with
+[(CSort _) \Rightarrow u1 | (CHead _ _ t0) \Rightarrow t0])) (CHead d1 (Bind
+Abbr) u1) (CHead x0 (Bind b) t) (clear_gen_bind b x0 (CHead d1 (Bind Abbr)
+u1) t H6)) in (\lambda (H10: (eq B Abbr b)).(\lambda (H11: (eq C d1
+x0)).(\lambda (c2: C).(\lambda (H12: (csuba g c2 c1)).(let H13 \def (eq_ind_r
+T t (\lambda (t0: T).(drop i O c1 (CHead x0 (Bind b) t0))) H5 u1 H9) in (let
+H14 \def (eq_ind_r B b (\lambda (b0: B).(drop i O c1 (CHead x0 (Bind b0)
+u1))) H13 Abbr H10) in (let H15 \def (eq_ind_r C x0 (\lambda (c: C).(drop i O
+c1 (CHead c (Bind Abbr) u1))) H14 d1 H11) in (let H16 \def
+(csuba_drop_abbr_rev i c1 d1 u1 H15 g c2 H12) in (or3_ind (ex2 C (\lambda
(d2: C).(drop i O c2 (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2
-d1)))).(ex2_ind C (\lambda (d2: C).(drop i O c2 (CHead d2 (Bind Abbr) u1)))
-(\lambda (d2: C).(csuba g d2 d1)) (or (ex2 C (\lambda (d2: C).(getl i c2
-(CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A
-(\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(getl i c2 (CHead d2 (Bind
-Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2
-d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2
-(asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1
-u1 a)))))) (\lambda (x1: C).(\lambda (H18: (drop i O c2 (CHead x1 (Bind Abbr)
-u1))).(\lambda (H19: (csuba g x1 d1)).(or_introl (ex2 C (\lambda (d2:
+d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(drop i
+O c2 (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda
+(_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
+A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda
+(a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(drop i O c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_:
+T).(csuba g d2 d1)))) (or3 (ex2 C (\lambda (d2: C).(getl i c2 (CHead d2 (Bind
+Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2:
+C).(\lambda (u2: T).(\lambda (_: A).(getl i c2 (CHead d2 (Bind Abst) u2)))))
+(\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda
+(d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a)))))
+(\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex2_2
+C T (\lambda (d2: C).(\lambda (u2: T).(getl i c2 (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda (H17: (ex2 C
+(\lambda (d2: C).(drop i O c2 (CHead d2 (Bind Abbr) u1))) (\lambda (d2:
+C).(csuba g d2 d1)))).(ex2_ind C (\lambda (d2: C).(drop i O c2 (CHead d2
+(Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1)) (or3 (ex2 C (\lambda (d2:
C).(getl i c2 (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1)))
(ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(getl i c2
(CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_:
A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda
-(a: A).(arity g d1 u1 a))))) (ex_intro2 C (\lambda (d2: C).(getl i c2 (CHead
-d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1)) x1 (getl_intro i c2
+(a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(getl i c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_:
+T).(csuba g d2 d1))))) (\lambda (x1: C).(\lambda (H18: (drop i O c2 (CHead x1
+(Bind Abbr) u1))).(\lambda (H19: (csuba g x1 d1)).(or3_intro0 (ex2 C (\lambda
+(d2: C).(getl i c2 (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2
+d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(getl i
+c2 (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda
+(_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
+A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda
+(a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(getl i c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_:
+T).(csuba g d2 d1)))) (ex_intro2 C (\lambda (d2: C).(getl i c2 (CHead d2
+(Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1)) x1 (getl_intro i c2
(CHead x1 (Bind Abbr) u1) (CHead x1 (Bind Abbr) u1) H18 (clear_bind Abbr x1
u1)) H19))))) H17)) (\lambda (H17: (ex4_3 C T A (\lambda (d2: C).(\lambda
(u2: T).(\lambda (_: A).(drop i O c2 (CHead d2 (Bind Abst) u2))))) (\lambda
(Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g
d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2
(asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1
-u1 a)))) (or (ex2 C (\lambda (d2: C).(getl i c2 (CHead d2 (Bind Abbr) u1)))
+u1 a)))) (or3 (ex2 C (\lambda (d2: C).(getl i c2 (CHead d2 (Bind Abbr) u1)))
(\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda
(u2: T).(\lambda (_: A).(getl i c2 (CHead d2 (Bind Abst) u2))))) (\lambda
(d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2:
C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda
-(_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))))) (\lambda (x1:
+(_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex2_2 C T
+(\lambda (d2: C).(\lambda (u2: T).(getl i c2 (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda (x1:
C).(\lambda (x2: T).(\lambda (x3: A).(\lambda (H18: (drop i O c2 (CHead x1
(Bind Abst) x2))).(\lambda (H19: (csuba g x1 d1)).(\lambda (H20: (arity g x1
-x2 (asucc g x3))).(\lambda (H21: (arity g d1 u1 x3)).(or_intror (ex2 C
+x2 (asucc g x3))).(\lambda (H21: (arity g d1 u1 x3)).(or3_intro1 (ex2 C
(\lambda (d2: C).(getl i c2 (CHead d2 (Bind Abbr) u1))) (\lambda (d2:
C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda
(_: A).(getl i c2 (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_:
T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2:
T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda
-(_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex4_3_intro C T A (\lambda (d2:
+(_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2:
+C).(\lambda (u2: T).(getl i c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2:
+C).(\lambda (_: T).(csuba g d2 d1)))) (ex4_3_intro C T A (\lambda (d2:
C).(\lambda (u2: T).(\lambda (_: A).(getl i c2 (CHead d2 (Bind Abst) u2)))))
(\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda
(d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a)))))
(\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))) x1 x2 x3
(getl_intro i c2 (CHead x1 (Bind Abst) x2) (CHead x1 (Bind Abst) x2) H18
-(clear_bind Abst x1 x2)) H19 H20 H21))))))))) H17)) H16)))))))))) H8))
-H7))))) (\lambda (f: F).(\lambda (H5: (drop i O c1 (CHead x0 (Flat f)
+(clear_bind Abst x1 x2)) H19 H20 H21))))))))) H17)) (\lambda (H17: (ex2_2 C T
+(\lambda (d2: C).(\lambda (u2: T).(drop i O c2 (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))).(ex2_2_ind C T (\lambda
+(d2: C).(\lambda (u2: T).(drop i O c2 (CHead d2 (Bind Void) u2)))) (\lambda
+(d2: C).(\lambda (_: T).(csuba g d2 d1))) (or3 (ex2 C (\lambda (d2: C).(getl
+i c2 (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C
+T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(getl i c2 (CHead d2
+(Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g
+d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2
+(asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1
+u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(getl i c2 (CHead d2
+(Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1)))))
+(\lambda (x1: C).(\lambda (x2: T).(\lambda (H18: (drop i O c2 (CHead x1 (Bind
+Void) x2))).(\lambda (H19: (csuba g x1 d1)).(or3_intro2 (ex2 C (\lambda (d2:
+C).(getl i c2 (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1)))
+(ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(getl i c2
+(CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_:
+A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
+A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda
+(a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(getl i c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_:
+T).(csuba g d2 d1)))) (ex2_2_intro C T (\lambda (d2: C).(\lambda (u2:
+T).(getl i c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_:
+T).(csuba g d2 d1))) x1 x2 (getl_intro i c2 (CHead x1 (Bind Void) x2) (CHead
+x1 (Bind Void) x2) H18 (clear_bind Void x1 x2)) H19)))))) H17)) H16))))))))))
+H8)) H7))))) (\lambda (f: F).(\lambda (H5: (drop i O c1 (CHead x0 (Flat f)
t))).(\lambda (H6: (clear (CHead x0 (Flat f) t) (CHead d1 (Bind Abbr)
u1))).(let H7 \def H5 in (unintro C c1 (\lambda (c: C).((drop i O c (CHead x0
-(Flat f) t)) \to (\forall (c2: C).((csuba g c2 c) \to (or (ex2 C (\lambda
+(Flat f) t)) \to (\forall (c2: C).((csuba g c2 c) \to (or3 (ex2 C (\lambda
(d2: C).(getl i c2 (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2
d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(getl i
c2 (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda
(_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda
-(a: A).(arity g d1 u1 a)))))))))) (nat_ind (\lambda (n: nat).(\forall (x1:
-C).((drop n O x1 (CHead x0 (Flat f) t)) \to (\forall (c2: C).((csuba g c2 x1)
-\to (or (ex2 C (\lambda (d2: C).(getl n c2 (CHead d2 (Bind Abbr) u1)))
-(\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda
-(u2: T).(\lambda (_: A).(getl n c2 (CHead d2 (Bind Abst) u2))))) (\lambda
-(d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2:
-C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda
-(_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a))))))))))) (\lambda
-(x1: C).(\lambda (H8: (drop O O x1 (CHead x0 (Flat f) t))).(\lambda (c2:
-C).(\lambda (H9: (csuba g c2 x1)).(let H10 \def (eq_ind C x1 (\lambda (c:
-C).(csuba g c2 c)) H9 (CHead x0 (Flat f) t) (drop_gen_refl x1 (CHead x0 (Flat
-f) t) H8)) in (let H_y \def (clear_flat x0 (CHead d1 (Bind Abbr) u1)
-(clear_gen_flat f x0 (CHead d1 (Bind Abbr) u1) t H6) f t) in (let H11 \def
-(csuba_clear_trans g (CHead x0 (Flat f) t) c2 H10 (CHead d1 (Bind Abbr) u1)
-H_y) in (ex2_ind C (\lambda (e2: C).(csuba g e2 (CHead d1 (Bind Abbr) u1)))
-(\lambda (e2: C).(clear c2 e2)) (or (ex2 C (\lambda (d2: C).(getl O c2 (CHead
-d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda
-(d2: C).(\lambda (u2: T).(\lambda (_: A).(getl O c2 (CHead d2 (Bind Abst)
-u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1))))
-(\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g
-a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a))))))
-(\lambda (x2: C).(\lambda (H12: (csuba g x2 (CHead d1 (Bind Abbr)
-u1))).(\lambda (H13: (clear c2 x2)).(let H_x \def (csuba_gen_abbr_rev g d1 x2
-u1 H12) in (let H14 \def H_x in (or_ind (ex2 C (\lambda (d2: C).(eq C x2
-(CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A
-(\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(eq C x2 (CHead d2 (Bind
-Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2
-d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2
-(asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1
-u1 a))))) (or (ex2 C (\lambda (d2: C).(getl O c2 (CHead d2 (Bind Abbr) u1)))
-(\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda
-(u2: T).(\lambda (_: A).(getl O c2 (CHead d2 (Bind Abst) u2))))) (\lambda
-(d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2:
+(a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(getl i c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_:
+T).(csuba g d2 d1))))))))) (nat_ind (\lambda (n: nat).(\forall (x1: C).((drop
+n O x1 (CHead x0 (Flat f) t)) \to (\forall (c2: C).((csuba g c2 x1) \to (or3
+(ex2 C (\lambda (d2: C).(getl n c2 (CHead d2 (Bind Abbr) u1))) (\lambda (d2:
+C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda
+(_: A).(getl n c2 (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_:
+T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2:
+T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda
+(_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2:
+C).(\lambda (u2: T).(getl n c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2:
+C).(\lambda (_: T).(csuba g d2 d1)))))))))) (\lambda (x1: C).(\lambda (H8:
+(drop O O x1 (CHead x0 (Flat f) t))).(\lambda (c2: C).(\lambda (H9: (csuba g
+c2 x1)).(let H10 \def (eq_ind C x1 (\lambda (c: C).(csuba g c2 c)) H9 (CHead
+x0 (Flat f) t) (drop_gen_refl x1 (CHead x0 (Flat f) t) H8)) in (let H_y \def
+(clear_flat x0 (CHead d1 (Bind Abbr) u1) (clear_gen_flat f x0 (CHead d1 (Bind
+Abbr) u1) t H6) f t) in (let H11 \def (csuba_clear_trans g (CHead x0 (Flat f)
+t) c2 H10 (CHead d1 (Bind Abbr) u1) H_y) in (ex2_ind C (\lambda (e2:
+C).(csuba g e2 (CHead d1 (Bind Abbr) u1))) (\lambda (e2: C).(clear c2 e2))
+(or3 (ex2 C (\lambda (d2: C).(getl O c2 (CHead d2 (Bind Abbr) u1))) (\lambda
+(d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2:
+T).(\lambda (_: A).(getl O c2 (CHead d2 (Bind Abst) u2))))) (\lambda (d2:
+C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2:
C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda
-(_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))))) (\lambda (H15:
-(ex2 C (\lambda (d2: C).(eq C x2 (CHead d2 (Bind Abbr) u1))) (\lambda (d2:
-C).(csuba g d2 d1)))).(ex2_ind C (\lambda (d2: C).(eq C x2 (CHead d2 (Bind
-Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1)) (or (ex2 C (\lambda (d2:
+(_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex2_2 C T
+(\lambda (d2: C).(\lambda (u2: T).(getl O c2 (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda (x2:
+C).(\lambda (H12: (csuba g x2 (CHead d1 (Bind Abbr) u1))).(\lambda (H13:
+(clear c2 x2)).(let H_x \def (csuba_gen_abbr_rev g d1 x2 u1 H12) in (let H14
+\def H_x in (or3_ind (ex2 C (\lambda (d2: C).(eq C x2 (CHead d2 (Bind Abbr)
+u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2:
+C).(\lambda (u2: T).(\lambda (_: A).(eq C x2 (CHead d2 (Bind Abst) u2)))))
+(\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda
+(d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a)))))
+(\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex2_2
+C T (\lambda (d2: C).(\lambda (u2: T).(eq C x2 (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1)))) (or3 (ex2 C (\lambda (d2:
C).(getl O c2 (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1)))
(ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(getl O c2
(CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_:
A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda
-(a: A).(arity g d1 u1 a)))))) (\lambda (x3: C).(\lambda (H16: (eq C x2 (CHead
-x3 (Bind Abbr) u1))).(\lambda (H17: (csuba g x3 d1)).(let H18 \def (eq_ind C
-x2 (\lambda (c: C).(clear c2 c)) H13 (CHead x3 (Bind Abbr) u1) H16) in
-(or_introl (ex2 C (\lambda (d2: C).(getl O c2 (CHead d2 (Bind Abbr) u1)))
+(a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(getl O c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_:
+T).(csuba g d2 d1))))) (\lambda (H15: (ex2 C (\lambda (d2: C).(eq C x2 (CHead
+d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1)))).(ex2_ind C (\lambda
+(d2: C).(eq C x2 (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2
+d1)) (or3 (ex2 C (\lambda (d2: C).(getl O c2 (CHead d2 (Bind Abbr) u1)))
(\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda
(u2: T).(\lambda (_: A).(getl O c2 (CHead d2 (Bind Abst) u2))))) (\lambda
(d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2:
C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda
-(_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex_intro2 C
-(\lambda (d2: C).(getl O c2 (CHead d2 (Bind Abbr) u1))) (\lambda (d2:
-C).(csuba g d2 d1)) x3 (getl_intro O c2 (CHead x3 (Bind Abbr) u1) c2
+(_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex2_2 C T
+(\lambda (d2: C).(\lambda (u2: T).(getl O c2 (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda (x3:
+C).(\lambda (H16: (eq C x2 (CHead x3 (Bind Abbr) u1))).(\lambda (H17: (csuba
+g x3 d1)).(let H18 \def (eq_ind C x2 (\lambda (c: C).(clear c2 c)) H13 (CHead
+x3 (Bind Abbr) u1) H16) in (or3_intro0 (ex2 C (\lambda (d2: C).(getl O c2
+(CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A
+(\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(getl O c2 (CHead d2 (Bind
+Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2
+d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2
+(asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1
+u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(getl O c2 (CHead d2
+(Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))
+(ex_intro2 C (\lambda (d2: C).(getl O c2 (CHead d2 (Bind Abbr) u1))) (\lambda
+(d2: C).(csuba g d2 d1)) x3 (getl_intro O c2 (CHead x3 (Bind Abbr) u1) c2
(drop_refl c2) H18) H17)))))) H15)) (\lambda (H15: (ex4_3 C T A (\lambda (d2:
C).(\lambda (u2: T).(\lambda (_: A).(eq C x2 (CHead d2 (Bind Abst) u2)))))
(\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda
A).(eq C x2 (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_:
T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2:
T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda
-(_: T).(\lambda (a: A).(arity g d1 u1 a)))) (or (ex2 C (\lambda (d2: C).(getl
-O c2 (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C
-T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(getl O c2 (CHead d2
+(_: T).(\lambda (a: A).(arity g d1 u1 a)))) (or3 (ex2 C (\lambda (d2:
+C).(getl O c2 (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1)))
+(ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(getl O c2
+(CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_:
+A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
+A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda
+(a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(getl O c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_:
+T).(csuba g d2 d1))))) (\lambda (x3: C).(\lambda (x4: T).(\lambda (x5:
+A).(\lambda (H16: (eq C x2 (CHead x3 (Bind Abst) x4))).(\lambda (H17: (csuba
+g x3 d1)).(\lambda (H18: (arity g x3 x4 (asucc g x5))).(\lambda (H19: (arity
+g d1 u1 x5)).(let H20 \def (eq_ind C x2 (\lambda (c: C).(clear c2 c)) H13
+(CHead x3 (Bind Abst) x4) H16) in (or3_intro1 (ex2 C (\lambda (d2: C).(getl O
+c2 (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T
+A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(getl O c2 (CHead d2
(Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g
d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2
(asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1
-u1 a)))))) (\lambda (x3: C).(\lambda (x4: T).(\lambda (x5: A).(\lambda (H16:
-(eq C x2 (CHead x3 (Bind Abst) x4))).(\lambda (H17: (csuba g x3 d1)).(\lambda
-(H18: (arity g x3 x4 (asucc g x5))).(\lambda (H19: (arity g d1 u1 x5)).(let
-H20 \def (eq_ind C x2 (\lambda (c: C).(clear c2 c)) H13 (CHead x3 (Bind Abst)
-x4) H16) in (or_intror (ex2 C (\lambda (d2: C).(getl O c2 (CHead d2 (Bind
-Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2:
-C).(\lambda (u2: T).(\lambda (_: A).(getl O c2 (CHead d2 (Bind Abst) u2)))))
-(\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda
-(d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a)))))
-(\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))))
+u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(getl O c2 (CHead d2
+(Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))
(ex4_3_intro C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(getl O
c2 (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda
(_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda
(a: A).(arity g d1 u1 a)))) x3 x4 x5 (getl_intro O c2 (CHead x3 (Bind Abst)
-x4) c2 (drop_refl c2) H20) H17 H18 H19)))))))))) H15)) H14)))))) H11))))))))
+x4) c2 (drop_refl c2) H20) H17 H18 H19)))))))))) H15)) (\lambda (H15: (ex2_2
+C T (\lambda (d2: C).(\lambda (u2: T).(eq C x2 (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))).(ex2_2_ind C T (\lambda
+(d2: C).(\lambda (u2: T).(eq C x2 (CHead d2 (Bind Void) u2)))) (\lambda (d2:
+C).(\lambda (_: T).(csuba g d2 d1))) (or3 (ex2 C (\lambda (d2: C).(getl O c2
+(CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A
+(\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(getl O c2 (CHead d2 (Bind
+Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2
+d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2
+(asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1
+u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(getl O c2 (CHead d2
+(Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1)))))
+(\lambda (x3: C).(\lambda (x4: T).(\lambda (H16: (eq C x2 (CHead x3 (Bind
+Void) x4))).(\lambda (H17: (csuba g x3 d1)).(let H18 \def (eq_ind C x2
+(\lambda (c: C).(clear c2 c)) H13 (CHead x3 (Bind Void) x4) H16) in
+(or3_intro2 (ex2 C (\lambda (d2: C).(getl O c2 (CHead d2 (Bind Abbr) u1)))
+(\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda
+(u2: T).(\lambda (_: A).(getl O c2 (CHead d2 (Bind Abst) u2))))) (\lambda
+(d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2:
+C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda
+(_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex2_2 C T
+(\lambda (d2: C).(\lambda (u2: T).(getl O c2 (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1)))) (ex2_2_intro C T (\lambda
+(d2: C).(\lambda (u2: T).(getl O c2 (CHead d2 (Bind Void) u2)))) (\lambda
+(d2: C).(\lambda (_: T).(csuba g d2 d1))) x3 x4 (getl_intro O c2 (CHead x3
+(Bind Void) x4) c2 (drop_refl c2) H18) H17))))))) H15)) H14)))))) H11))))))))
(\lambda (n: nat).(\lambda (H8: ((\forall (x1: C).((drop n O x1 (CHead x0
-(Flat f) t)) \to (\forall (c2: C).((csuba g c2 x1) \to (or (ex2 C (\lambda
+(Flat f) t)) \to (\forall (c2: C).((csuba g c2 x1) \to (or3 (ex2 C (\lambda
(d2: C).(getl n c2 (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2
d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(getl n
c2 (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda
(_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda
-(a: A).(arity g d1 u1 a)))))))))))).(\lambda (x1: C).(\lambda (H9: (drop (S
-n) O x1 (CHead x0 (Flat f) t))).(\lambda (c2: C).(\lambda (H10: (csuba g c2
-x1)).(let H11 \def (drop_clear x1 (CHead x0 (Flat f) t) n H9) in (ex2_3_ind B
-C T (\lambda (b: B).(\lambda (e: C).(\lambda (v: T).(clear x1 (CHead e (Bind
-b) v))))) (\lambda (_: B).(\lambda (e: C).(\lambda (_: T).(drop n O e (CHead
-x0 (Flat f) t))))) (or (ex2 C (\lambda (d2: C).(getl (S n) c2 (CHead d2 (Bind
+(a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(getl n c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_:
+T).(csuba g d2 d1))))))))))).(\lambda (x1: C).(\lambda (H9: (drop (S n) O x1
+(CHead x0 (Flat f) t))).(\lambda (c2: C).(\lambda (H10: (csuba g c2 x1)).(let
+H11 \def (drop_clear x1 (CHead x0 (Flat f) t) n H9) in (ex2_3_ind B C T
+(\lambda (b: B).(\lambda (e: C).(\lambda (v: T).(clear x1 (CHead e (Bind b)
+v))))) (\lambda (_: B).(\lambda (e: C).(\lambda (_: T).(drop n O e (CHead x0
+(Flat f) t))))) (or3 (ex2 C (\lambda (d2: C).(getl (S n) c2 (CHead d2 (Bind
Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2:
C).(\lambda (u2: T).(\lambda (_: A).(getl (S n) c2 (CHead d2 (Bind Abst)
u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1))))
(\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g
-a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a))))))
-(\lambda (x2: B).(\lambda (x3: C).(\lambda (x4: T).(\lambda (H12: (clear x1
-(CHead x3 (Bind x2) x4))).(\lambda (H13: (drop n O x3 (CHead x0 (Flat f)
-t))).(let H14 \def (csuba_clear_trans g x1 c2 H10 (CHead x3 (Bind x2) x4)
-H12) in (ex2_ind C (\lambda (e2: C).(csuba g e2 (CHead x3 (Bind x2) x4)))
-(\lambda (e2: C).(clear c2 e2)) (or (ex2 C (\lambda (d2: C).(getl (S n) c2
-(CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A
-(\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(getl (S n) c2 (CHead d2
-(Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g
-d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2
-(asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1
-u1 a)))))) (\lambda (x5: C).(\lambda (H15: (csuba g x5 (CHead x3 (Bind x2)
-x4))).(\lambda (H16: (clear c2 x5)).(let H_x \def (csuba_gen_bind_rev g x2 x3
-x5 x4 H15) in (let H17 \def H_x in (ex2_3_ind B C T (\lambda (b2: B).(\lambda
-(e2: C).(\lambda (v2: T).(eq C x5 (CHead e2 (Bind b2) v2))))) (\lambda (_:
-B).(\lambda (e2: C).(\lambda (_: T).(csuba g e2 x3)))) (or (ex2 C (\lambda
-(d2: C).(getl (S n) c2 (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g
-d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(getl
-(S n) c2 (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_:
+a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))))
+(ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(getl (S n) c2 (CHead d2 (Bind
+Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda
+(x2: B).(\lambda (x3: C).(\lambda (x4: T).(\lambda (H12: (clear x1 (CHead x3
+(Bind x2) x4))).(\lambda (H13: (drop n O x3 (CHead x0 (Flat f) t))).(let H14
+\def (csuba_clear_trans g x1 c2 H10 (CHead x3 (Bind x2) x4) H12) in (ex2_ind
+C (\lambda (e2: C).(csuba g e2 (CHead x3 (Bind x2) x4))) (\lambda (e2:
+C).(clear c2 e2)) (or3 (ex2 C (\lambda (d2: C).(getl (S n) c2 (CHead d2 (Bind
+Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2:
+C).(\lambda (u2: T).(\lambda (_: A).(getl (S n) c2 (CHead d2 (Bind Abst)
+u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1))))
+(\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g
+a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))))
+(ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(getl (S n) c2 (CHead d2 (Bind
+Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda
+(x5: C).(\lambda (H15: (csuba g x5 (CHead x3 (Bind x2) x4))).(\lambda (H16:
+(clear c2 x5)).(let H_x \def (csuba_gen_bind_rev g x2 x3 x5 x4 H15) in (let
+H17 \def H_x in (ex2_3_ind B C T (\lambda (b2: B).(\lambda (e2: C).(\lambda
+(v2: T).(eq C x5 (CHead e2 (Bind b2) v2))))) (\lambda (_: B).(\lambda (e2:
+C).(\lambda (_: T).(csuba g e2 x3)))) (or3 (ex2 C (\lambda (d2: C).(getl (S
+n) c2 (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C
+T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(getl (S n) c2 (CHead
+d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_:
+A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
+A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda
+(a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(getl (S n) c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_:
+T).(csuba g d2 d1))))) (\lambda (x6: B).(\lambda (x7: C).(\lambda (x8:
+T).(\lambda (H18: (eq C x5 (CHead x7 (Bind x6) x8))).(\lambda (H19: (csuba g
+x7 x3)).(let H20 \def (eq_ind C x5 (\lambda (c: C).(clear c2 c)) H16 (CHead
+x7 (Bind x6) x8) H18) in (let H21 \def (H8 x3 H13 x7 H19) in (or3_ind (ex2 C
+(\lambda (d2: C).(getl n x7 (CHead d2 (Bind Abbr) u1))) (\lambda (d2:
+C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda
+(_: A).(getl n x7 (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_:
T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2:
T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda
-(_: T).(\lambda (a: A).(arity g d1 u1 a)))))) (\lambda (x6: B).(\lambda (x7:
-C).(\lambda (x8: T).(\lambda (H18: (eq C x5 (CHead x7 (Bind x6)
-x8))).(\lambda (H19: (csuba g x7 x3)).(let H20 \def (eq_ind C x5 (\lambda (c:
-C).(clear c2 c)) H16 (CHead x7 (Bind x6) x8) H18) in (let H21 \def (H8 x3 H13
-x7 H19) in (or_ind (ex2 C (\lambda (d2: C).(getl n x7 (CHead d2 (Bind Abbr)
-u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2:
+(_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2:
+C).(\lambda (u2: T).(getl n x7 (CHead d2 (Bind Void) u2)))) (\lambda (d2:
+C).(\lambda (_: T).(csuba g d2 d1)))) (or3 (ex2 C (\lambda (d2: C).(getl (S
+n) c2 (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C
+T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(getl (S n) c2 (CHead
+d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_:
+A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
+A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda
+(a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(getl (S n) c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_:
+T).(csuba g d2 d1))))) (\lambda (H22: (ex2 C (\lambda (d2: C).(getl n x7
+(CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1)))).(ex2_ind C
+(\lambda (d2: C).(getl n x7 (CHead d2 (Bind Abbr) u1))) (\lambda (d2:
+C).(csuba g d2 d1)) (or3 (ex2 C (\lambda (d2: C).(getl (S n) c2 (CHead d2
+(Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda
+(d2: C).(\lambda (u2: T).(\lambda (_: A).(getl (S n) c2 (CHead d2 (Bind Abst)
+u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1))))
+(\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g
+a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))))
+(ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(getl (S n) c2 (CHead d2 (Bind
+Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))) (\lambda
+(x9: C).(\lambda (H23: (getl n x7 (CHead x9 (Bind Abbr) u1))).(\lambda (H24:
+(csuba g x9 d1)).(or3_intro0 (ex2 C (\lambda (d2: C).(getl (S n) c2 (CHead d2
+(Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda
+(d2: C).(\lambda (u2: T).(\lambda (_: A).(getl (S n) c2 (CHead d2 (Bind Abst)
+u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1))))
+(\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g
+a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))))
+(ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(getl (S n) c2 (CHead d2 (Bind
+Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1)))) (ex_intro2 C
+(\lambda (d2: C).(getl (S n) c2 (CHead d2 (Bind Abbr) u1))) (\lambda (d2:
+C).(csuba g d2 d1)) x9 (getl_clear_bind x6 c2 x7 x8 H20 (CHead x9 (Bind Abbr)
+u1) n H23) H24))))) H22)) (\lambda (H22: (ex4_3 C T A (\lambda (d2:
C).(\lambda (u2: T).(\lambda (_: A).(getl n x7 (CHead d2 (Bind Abst) u2)))))
(\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda
(d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a)))))
-(\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a))))) (or
-(ex2 C (\lambda (d2: C).(getl (S n) c2 (CHead d2 (Bind Abbr) u1))) (\lambda
-(d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2:
-T).(\lambda (_: A).(getl (S n) c2 (CHead d2 (Bind Abst) u2))))) (\lambda (d2:
-C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2:
-C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda
-(_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))))) (\lambda (H22:
-(ex2 C (\lambda (d2: C).(getl n x7 (CHead d2 (Bind Abbr) u1))) (\lambda (d2:
-C).(csuba g d2 d1)))).(ex2_ind C (\lambda (d2: C).(getl n x7 (CHead d2 (Bind
-Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1)) (or (ex2 C (\lambda (d2:
+(\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1
+a)))))).(ex4_3_ind C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_:
+A).(getl n x7 (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_:
+T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2:
+T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda
+(_: T).(\lambda (a: A).(arity g d1 u1 a)))) (or3 (ex2 C (\lambda (d2:
C).(getl (S n) c2 (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2
d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(getl (S
n) c2 (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda
(_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda
-(a: A).(arity g d1 u1 a)))))) (\lambda (x9: C).(\lambda (H23: (getl n x7
-(CHead x9 (Bind Abbr) u1))).(\lambda (H24: (csuba g x9 d1)).(or_introl (ex2 C
-(\lambda (d2: C).(getl (S n) c2 (CHead d2 (Bind Abbr) u1))) (\lambda (d2:
-C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda
-(_: A).(getl (S n) c2 (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda
-(_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2:
-T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda
-(_: T).(\lambda (a: A).(arity g d1 u1 a))))) (ex_intro2 C (\lambda (d2:
-C).(getl (S n) c2 (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2
-d1)) x9 (getl_clear_bind x6 c2 x7 x8 H20 (CHead x9 (Bind Abbr) u1) n H23)
-H24))))) H22)) (\lambda (H22: (ex4_3 C T A (\lambda (d2: C).(\lambda (u2:
-T).(\lambda (_: A).(getl n x7 (CHead d2 (Bind Abst) u2))))) (\lambda (d2:
-C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1)))) (\lambda (d2:
-C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g a))))) (\lambda
-(_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))))).(ex4_3_ind C T
-A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(getl n x7 (CHead d2
+(a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(getl (S n) c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_:
+T).(csuba g d2 d1))))) (\lambda (x9: C).(\lambda (x10: T).(\lambda (x11:
+A).(\lambda (H23: (getl n x7 (CHead x9 (Bind Abst) x10))).(\lambda (H24:
+(csuba g x9 d1)).(\lambda (H25: (arity g x9 x10 (asucc g x11))).(\lambda
+(H26: (arity g d1 u1 x11)).(or3_intro1 (ex2 C (\lambda (d2: C).(getl (S n) c2
+(CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A
+(\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(getl (S n) c2 (CHead d2
(Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g
d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2
(asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1
-u1 a)))) (or (ex2 C (\lambda (d2: C).(getl (S n) c2 (CHead d2 (Bind Abbr)
-u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2:
-C).(\lambda (u2: T).(\lambda (_: A).(getl (S n) c2 (CHead d2 (Bind Abst)
-u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1))))
-(\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g
-a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a))))))
-(\lambda (x9: C).(\lambda (x10: T).(\lambda (x11: A).(\lambda (H23: (getl n
-x7 (CHead x9 (Bind Abst) x10))).(\lambda (H24: (csuba g x9 d1)).(\lambda
-(H25: (arity g x9 x10 (asucc g x11))).(\lambda (H26: (arity g d1 u1
-x11)).(or_intror (ex2 C (\lambda (d2: C).(getl (S n) c2 (CHead d2 (Bind Abbr)
-u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2:
-C).(\lambda (u2: T).(\lambda (_: A).(getl (S n) c2 (CHead d2 (Bind Abst)
-u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1))))
-(\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g
-a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))))
+u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(getl (S n) c2 (CHead
+d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))
(ex4_3_intro C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(getl (S
n) c2 (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda
(_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda
(a: A).(arity g d1 u1 a)))) x9 x10 x11 (getl_clear_bind x6 c2 x7 x8 H20
-(CHead x9 (Bind Abst) x10) n H23) H24 H25 H26))))))))) H22)) H21))))))))
-H17)))))) H14))))))) H11)))))))) i) H7))))) k H3 H4))))))) x H1 H2))))
-H0))))))).
+(CHead x9 (Bind Abst) x10) n H23) H24 H25 H26))))))))) H22)) (\lambda (H22:
+(ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(getl n x7 (CHead d2 (Bind Void)
+u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))))).(ex2_2_ind C T
+(\lambda (d2: C).(\lambda (u2: T).(getl n x7 (CHead d2 (Bind Void) u2))))
+(\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))) (or3 (ex2 C (\lambda (d2:
+C).(getl (S n) c2 (CHead d2 (Bind Abbr) u1))) (\lambda (d2: C).(csuba g d2
+d1))) (ex4_3 C T A (\lambda (d2: C).(\lambda (u2: T).(\lambda (_: A).(getl (S
+n) c2 (CHead d2 (Bind Abst) u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda
+(_: A).(csuba g d2 d1)))) (\lambda (d2: C).(\lambda (u2: T).(\lambda (a:
+A).(arity g d2 u2 (asucc g a))))) (\lambda (_: C).(\lambda (_: T).(\lambda
+(a: A).(arity g d1 u1 a))))) (ex2_2 C T (\lambda (d2: C).(\lambda (u2:
+T).(getl (S n) c2 (CHead d2 (Bind Void) u2)))) (\lambda (d2: C).(\lambda (_:
+T).(csuba g d2 d1))))) (\lambda (x9: C).(\lambda (x10: T).(\lambda (H23:
+(getl n x7 (CHead x9 (Bind Void) x10))).(\lambda (H24: (csuba g x9
+d1)).(or3_intro2 (ex2 C (\lambda (d2: C).(getl (S n) c2 (CHead d2 (Bind Abbr)
+u1))) (\lambda (d2: C).(csuba g d2 d1))) (ex4_3 C T A (\lambda (d2:
+C).(\lambda (u2: T).(\lambda (_: A).(getl (S n) c2 (CHead d2 (Bind Abst)
+u2))))) (\lambda (d2: C).(\lambda (_: T).(\lambda (_: A).(csuba g d2 d1))))
+(\lambda (d2: C).(\lambda (u2: T).(\lambda (a: A).(arity g d2 u2 (asucc g
+a))))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(arity g d1 u1 a)))))
+(ex2_2 C T (\lambda (d2: C).(\lambda (u2: T).(getl (S n) c2 (CHead d2 (Bind
+Void) u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1)))) (ex2_2_intro
+C T (\lambda (d2: C).(\lambda (u2: T).(getl (S n) c2 (CHead d2 (Bind Void)
+u2)))) (\lambda (d2: C).(\lambda (_: T).(csuba g d2 d1))) x9 x10
+(getl_clear_bind x6 c2 x7 x8 H20 (CHead x9 (Bind Void) x10) n H23) H24))))))
+H22)) H21)))))))) H17)))))) H14))))))) H11)))))))) i) H7))))) k H3 H4)))))))
+x H1 H2)))) H0))))))).
theorem csubc_arity_trans:
\forall (g: G).(\forall (c1: C).(\forall (c2: C).((csubc g c1 c2) \to
-(\forall (t: T).(\forall (a: A).((arity g c2 t a) \to (arity g c1 t a)))))))
+((csubv c1 c2) \to (\forall (t: T).(\forall (a: A).((arity g c2 t a) \to
+(arity g c1 t a))))))))
\def
\lambda (g: G).(\lambda (c1: C).(\lambda (c2: C).(\lambda (H: (csubc g c1
-c2)).(\lambda (t: T).(\lambda (a: A).(\lambda (H0: (arity g c2 t
-a)).(csuba_arity_rev g c2 t a H0 c1 (csubc_csuba g c1 c2 H)))))))).
+c2)).(\lambda (H0: (csubv c1 c2)).(\lambda (t: T).(\lambda (a: A).(\lambda
+(H1: (arity g c2 t a)).(csuba_arity_rev g c2 t a H1 c1 (csubc_csuba g c1 c2
+H) H0)))))))).
c2) \to (ex2 C (\lambda (e2: C).(clear c2 e2)) (\lambda (e2: C).(csubc g c0
e2))))))) (\lambda (b: B).(\lambda (e: C).(\lambda (u: T).(\lambda (c2:
C).(\lambda (H0: (csubc g (CHead e (Bind b) u) c2)).(let H_x \def
-(csubc_gen_head_l g e c2 u (Bind b) H0) in (let H1 \def H_x in (or_ind (ex2 C
-(\lambda (c3: C).(eq C c2 (CHead c3 (Bind b) u))) (\lambda (c3: C).(csubc g e
-c3))) (ex5_3 C T A (\lambda (_: C).(\lambda (_: T).(\lambda (_: A).(eq K
+(csubc_gen_head_l g e c2 u (Bind b) H0) in (let H1 \def H_x in (or3_ind (ex2
+C (\lambda (c3: C).(eq C c2 (CHead c3 (Bind b) u))) (\lambda (c3: C).(csubc g
+e c3))) (ex5_3 C T A (\lambda (_: C).(\lambda (_: T).(\lambda (_: A).(eq K
(Bind b) (Bind Abst))))) (\lambda (c3: C).(\lambda (w: T).(\lambda (_: A).(eq
C c2 (CHead c3 (Bind Abbr) w))))) (\lambda (c3: C).(\lambda (_: T).(\lambda
(_: A).(csubc g e c3)))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(sc3
g (asucc g a) e u)))) (\lambda (c3: C).(\lambda (w: T).(\lambda (a: A).(sc3 g
-a c3 w))))) (ex2 C (\lambda (e2: C).(clear c2 e2)) (\lambda (e2: C).(csubc g
-(CHead e (Bind b) u) e2))) (\lambda (H2: (ex2 C (\lambda (c3: C).(eq C c2
-(CHead c3 (Bind b) u))) (\lambda (c3: C).(csubc g e c3)))).(ex2_ind C
+a c3 w))))) (ex4_3 B C T (\lambda (b0: B).(\lambda (c3: C).(\lambda (v2:
+T).(eq C c2 (CHead c3 (Bind b0) v2))))) (\lambda (_: B).(\lambda (_:
+C).(\lambda (_: T).(eq K (Bind b) (Bind Void))))) (\lambda (b0: B).(\lambda
+(_: C).(\lambda (_: T).(not (eq B b0 Void))))) (\lambda (_: B).(\lambda (c3:
+C).(\lambda (_: T).(csubc g e c3))))) (ex2 C (\lambda (e2: C).(clear c2 e2))
+(\lambda (e2: C).(csubc g (CHead e (Bind b) u) e2))) (\lambda (H2: (ex2 C
(\lambda (c3: C).(eq C c2 (CHead c3 (Bind b) u))) (\lambda (c3: C).(csubc g e
-c3)) (ex2 C (\lambda (e2: C).(clear c2 e2)) (\lambda (e2: C).(csubc g (CHead
-e (Bind b) u) e2))) (\lambda (x: C).(\lambda (H3: (eq C c2 (CHead x (Bind b)
-u))).(\lambda (H4: (csubc g e x)).(eq_ind_r C (CHead x (Bind b) u) (\lambda
-(c: C).(ex2 C (\lambda (e2: C).(clear c e2)) (\lambda (e2: C).(csubc g (CHead
-e (Bind b) u) e2)))) (ex_intro2 C (\lambda (e2: C).(clear (CHead x (Bind b)
-u) e2)) (\lambda (e2: C).(csubc g (CHead e (Bind b) u) e2)) (CHead x (Bind b)
-u) (clear_bind b x u) (csubc_head g e x H4 (Bind b) u)) c2 H3)))) H2))
-(\lambda (H2: (ex5_3 C T A (\lambda (_: C).(\lambda (_: T).(\lambda (_:
-A).(eq K (Bind b) (Bind Abst))))) (\lambda (c3: C).(\lambda (w: T).(\lambda
-(_: A).(eq C c2 (CHead c3 (Bind Abbr) w))))) (\lambda (c3: C).(\lambda (_:
-T).(\lambda (_: A).(csubc g e c3)))) (\lambda (_: C).(\lambda (_: T).(\lambda
-(a: A).(sc3 g (asucc g a) e u)))) (\lambda (c3: C).(\lambda (w: T).(\lambda
-(a: A).(sc3 g a c3 w)))))).(ex5_3_ind C T A (\lambda (_: C).(\lambda (_:
+c3)))).(ex2_ind C (\lambda (c3: C).(eq C c2 (CHead c3 (Bind b) u))) (\lambda
+(c3: C).(csubc g e c3)) (ex2 C (\lambda (e2: C).(clear c2 e2)) (\lambda (e2:
+C).(csubc g (CHead e (Bind b) u) e2))) (\lambda (x: C).(\lambda (H3: (eq C c2
+(CHead x (Bind b) u))).(\lambda (H4: (csubc g e x)).(eq_ind_r C (CHead x
+(Bind b) u) (\lambda (c: C).(ex2 C (\lambda (e2: C).(clear c e2)) (\lambda
+(e2: C).(csubc g (CHead e (Bind b) u) e2)))) (ex_intro2 C (\lambda (e2:
+C).(clear (CHead x (Bind b) u) e2)) (\lambda (e2: C).(csubc g (CHead e (Bind
+b) u) e2)) (CHead x (Bind b) u) (clear_bind b x u) (csubc_head g e x H4 (Bind
+b) u)) c2 H3)))) H2)) (\lambda (H2: (ex5_3 C T A (\lambda (_: C).(\lambda (_:
T).(\lambda (_: A).(eq K (Bind b) (Bind Abst))))) (\lambda (c3: C).(\lambda
(w: T).(\lambda (_: A).(eq C c2 (CHead c3 (Bind Abbr) w))))) (\lambda (c3:
C).(\lambda (_: T).(\lambda (_: A).(csubc g e c3)))) (\lambda (_: C).(\lambda
(_: T).(\lambda (a: A).(sc3 g (asucc g a) e u)))) (\lambda (c3: C).(\lambda
-(w: T).(\lambda (a: A).(sc3 g a c3 w)))) (ex2 C (\lambda (e2: C).(clear c2
-e2)) (\lambda (e2: C).(csubc g (CHead e (Bind b) u) e2))) (\lambda (x0:
-C).(\lambda (x1: T).(\lambda (x2: A).(\lambda (H3: (eq K (Bind b) (Bind
-Abst))).(\lambda (H4: (eq C c2 (CHead x0 (Bind Abbr) x1))).(\lambda (H5:
-(csubc g e x0)).(\lambda (H6: (sc3 g (asucc g x2) e u)).(\lambda (H7: (sc3 g
-x2 x0 x1)).(eq_ind_r C (CHead x0 (Bind Abbr) x1) (\lambda (c: C).(ex2 C
-(\lambda (e2: C).(clear c e2)) (\lambda (e2: C).(csubc g (CHead e (Bind b) u)
-e2)))) (let H8 \def (f_equal K B (\lambda (e0: K).(match e0 in K return
+(w: T).(\lambda (a: A).(sc3 g a c3 w)))))).(ex5_3_ind C T A (\lambda (_:
+C).(\lambda (_: T).(\lambda (_: A).(eq K (Bind b) (Bind Abst))))) (\lambda
+(c3: C).(\lambda (w: T).(\lambda (_: A).(eq C c2 (CHead c3 (Bind Abbr) w)))))
+(\lambda (c3: C).(\lambda (_: T).(\lambda (_: A).(csubc g e c3)))) (\lambda
+(_: C).(\lambda (_: T).(\lambda (a: A).(sc3 g (asucc g a) e u)))) (\lambda
+(c3: C).(\lambda (w: T).(\lambda (a: A).(sc3 g a c3 w)))) (ex2 C (\lambda
+(e2: C).(clear c2 e2)) (\lambda (e2: C).(csubc g (CHead e (Bind b) u) e2)))
+(\lambda (x0: C).(\lambda (x1: T).(\lambda (x2: A).(\lambda (H3: (eq K (Bind
+b) (Bind Abst))).(\lambda (H4: (eq C c2 (CHead x0 (Bind Abbr) x1))).(\lambda
+(H5: (csubc g e x0)).(\lambda (H6: (sc3 g (asucc g x2) e u)).(\lambda (H7:
+(sc3 g x2 x0 x1)).(eq_ind_r C (CHead x0 (Bind Abbr) x1) (\lambda (c: C).(ex2
+C (\lambda (e2: C).(clear c e2)) (\lambda (e2: C).(csubc g (CHead e (Bind b)
+u) e2)))) (let H8 \def (f_equal K B (\lambda (e0: K).(match e0 in K return
(\lambda (_: K).B) with [(Bind b0) \Rightarrow b0 | (Flat _) \Rightarrow b]))
(Bind b) (Bind Abst) H3) in (eq_ind_r B Abst (\lambda (b0: B).(ex2 C (\lambda
(e2: C).(clear (CHead x0 (Bind Abbr) x1) e2)) (\lambda (e2: C).(csubc g
(CHead e (Bind b0) u) e2)))) (ex_intro2 C (\lambda (e2: C).(clear (CHead x0
(Bind Abbr) x1) e2)) (\lambda (e2: C).(csubc g (CHead e (Bind Abst) u) e2))
(CHead x0 (Bind Abbr) x1) (clear_bind Abbr x0 x1) (csubc_abst g e x0 H5 u x2
-H6 x1 H7)) b H8)) c2 H4))))))))) H2)) H1)))))))) (\lambda (e: C).(\lambda (c:
-C).(\lambda (_: (clear e c)).(\lambda (H1: ((\forall (c2: C).((csubc g e c2)
-\to (ex2 C (\lambda (e2: C).(clear c2 e2)) (\lambda (e2: C).(csubc g c
-e2))))))).(\lambda (f: F).(\lambda (u: T).(\lambda (c2: C).(\lambda (H2:
-(csubc g (CHead e (Flat f) u) c2)).(let H_x \def (csubc_gen_head_l g e c2 u
-(Flat f) H2) in (let H3 \def H_x in (or_ind (ex2 C (\lambda (c3: C).(eq C c2
-(CHead c3 (Flat f) u))) (\lambda (c3: C).(csubc g e c3))) (ex5_3 C T A
-(\lambda (_: C).(\lambda (_: T).(\lambda (_: A).(eq K (Flat f) (Bind
-Abst))))) (\lambda (c3: C).(\lambda (w: T).(\lambda (_: A).(eq C c2 (CHead c3
-(Bind Abbr) w))))) (\lambda (c3: C).(\lambda (_: T).(\lambda (_: A).(csubc g
-e c3)))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(sc3 g (asucc g a) e
-u)))) (\lambda (c3: C).(\lambda (w: T).(\lambda (a: A).(sc3 g a c3 w)))))
-(ex2 C (\lambda (e2: C).(clear c2 e2)) (\lambda (e2: C).(csubc g c e2)))
-(\lambda (H4: (ex2 C (\lambda (c3: C).(eq C c2 (CHead c3 (Flat f) u)))
-(\lambda (c3: C).(csubc g e c3)))).(ex2_ind C (\lambda (c3: C).(eq C c2
-(CHead c3 (Flat f) u))) (\lambda (c3: C).(csubc g e c3)) (ex2 C (\lambda (e2:
-C).(clear c2 e2)) (\lambda (e2: C).(csubc g c e2))) (\lambda (x: C).(\lambda
-(H5: (eq C c2 (CHead x (Flat f) u))).(\lambda (H6: (csubc g e x)).(eq_ind_r C
-(CHead x (Flat f) u) (\lambda (c0: C).(ex2 C (\lambda (e2: C).(clear c0 e2))
-(\lambda (e2: C).(csubc g c e2)))) (let H_x0 \def (H1 x H6) in (let H7 \def
-H_x0 in (ex2_ind C (\lambda (e2: C).(clear x e2)) (\lambda (e2: C).(csubc g c
-e2)) (ex2 C (\lambda (e2: C).(clear (CHead x (Flat f) u) e2)) (\lambda (e2:
-C).(csubc g c e2))) (\lambda (x0: C).(\lambda (H8: (clear x x0)).(\lambda
-(H9: (csubc g c x0)).(ex_intro2 C (\lambda (e2: C).(clear (CHead x (Flat f)
-u) e2)) (\lambda (e2: C).(csubc g c e2)) x0 (clear_flat x x0 H8 f u) H9))))
-H7))) c2 H5)))) H4)) (\lambda (H4: (ex5_3 C T A (\lambda (_: C).(\lambda (_:
+H6 x1 H7)) b H8)) c2 H4))))))))) H2)) (\lambda (H2: (ex4_3 B C T (\lambda
+(b0: B).(\lambda (c3: C).(\lambda (v2: T).(eq C c2 (CHead c3 (Bind b0)
+v2))))) (\lambda (_: B).(\lambda (_: C).(\lambda (_: T).(eq K (Bind b) (Bind
+Void))))) (\lambda (b0: B).(\lambda (_: C).(\lambda (_: T).(not (eq B b0
+Void))))) (\lambda (_: B).(\lambda (c3: C).(\lambda (_: T).(csubc g e
+c3)))))).(ex4_3_ind B C T (\lambda (b0: B).(\lambda (c3: C).(\lambda (v2:
+T).(eq C c2 (CHead c3 (Bind b0) v2))))) (\lambda (_: B).(\lambda (_:
+C).(\lambda (_: T).(eq K (Bind b) (Bind Void))))) (\lambda (b0: B).(\lambda
+(_: C).(\lambda (_: T).(not (eq B b0 Void))))) (\lambda (_: B).(\lambda (c3:
+C).(\lambda (_: T).(csubc g e c3)))) (ex2 C (\lambda (e2: C).(clear c2 e2))
+(\lambda (e2: C).(csubc g (CHead e (Bind b) u) e2))) (\lambda (x0:
+B).(\lambda (x1: C).(\lambda (x2: T).(\lambda (H3: (eq C c2 (CHead x1 (Bind
+x0) x2))).(\lambda (H4: (eq K (Bind b) (Bind Void))).(\lambda (H5: (not (eq B
+x0 Void))).(\lambda (H6: (csubc g e x1)).(eq_ind_r C (CHead x1 (Bind x0) x2)
+(\lambda (c: C).(ex2 C (\lambda (e2: C).(clear c e2)) (\lambda (e2: C).(csubc
+g (CHead e (Bind b) u) e2)))) (let H7 \def (f_equal K B (\lambda (e0:
+K).(match e0 in K return (\lambda (_: K).B) with [(Bind b0) \Rightarrow b0 |
+(Flat _) \Rightarrow b])) (Bind b) (Bind Void) H4) in (eq_ind_r B Void
+(\lambda (b0: B).(ex2 C (\lambda (e2: C).(clear (CHead x1 (Bind x0) x2) e2))
+(\lambda (e2: C).(csubc g (CHead e (Bind b0) u) e2)))) (ex_intro2 C (\lambda
+(e2: C).(clear (CHead x1 (Bind x0) x2) e2)) (\lambda (e2: C).(csubc g (CHead
+e (Bind Void) u) e2)) (CHead x1 (Bind x0) x2) (clear_bind x0 x1 x2)
+(csubc_void g e x1 H6 x0 H5 u x2)) b H7)) c2 H3)))))))) H2)) H1))))))))
+(\lambda (e: C).(\lambda (c: C).(\lambda (_: (clear e c)).(\lambda (H1:
+((\forall (c2: C).((csubc g e c2) \to (ex2 C (\lambda (e2: C).(clear c2 e2))
+(\lambda (e2: C).(csubc g c e2))))))).(\lambda (f: F).(\lambda (u:
+T).(\lambda (c2: C).(\lambda (H2: (csubc g (CHead e (Flat f) u) c2)).(let H_x
+\def (csubc_gen_head_l g e c2 u (Flat f) H2) in (let H3 \def H_x in (or3_ind
+(ex2 C (\lambda (c3: C).(eq C c2 (CHead c3 (Flat f) u))) (\lambda (c3:
+C).(csubc g e c3))) (ex5_3 C T A (\lambda (_: C).(\lambda (_: T).(\lambda (_:
+A).(eq K (Flat f) (Bind Abst))))) (\lambda (c3: C).(\lambda (w: T).(\lambda
+(_: A).(eq C c2 (CHead c3 (Bind Abbr) w))))) (\lambda (c3: C).(\lambda (_:
+T).(\lambda (_: A).(csubc g e c3)))) (\lambda (_: C).(\lambda (_: T).(\lambda
+(a: A).(sc3 g (asucc g a) e u)))) (\lambda (c3: C).(\lambda (w: T).(\lambda
+(a: A).(sc3 g a c3 w))))) (ex4_3 B C T (\lambda (b: B).(\lambda (c3:
+C).(\lambda (v2: T).(eq C c2 (CHead c3 (Bind b) v2))))) (\lambda (_:
+B).(\lambda (_: C).(\lambda (_: T).(eq K (Flat f) (Bind Void))))) (\lambda
+(b: B).(\lambda (_: C).(\lambda (_: T).(not (eq B b Void))))) (\lambda (_:
+B).(\lambda (c3: C).(\lambda (_: T).(csubc g e c3))))) (ex2 C (\lambda (e2:
+C).(clear c2 e2)) (\lambda (e2: C).(csubc g c e2))) (\lambda (H4: (ex2 C
+(\lambda (c3: C).(eq C c2 (CHead c3 (Flat f) u))) (\lambda (c3: C).(csubc g e
+c3)))).(ex2_ind C (\lambda (c3: C).(eq C c2 (CHead c3 (Flat f) u))) (\lambda
+(c3: C).(csubc g e c3)) (ex2 C (\lambda (e2: C).(clear c2 e2)) (\lambda (e2:
+C).(csubc g c e2))) (\lambda (x: C).(\lambda (H5: (eq C c2 (CHead x (Flat f)
+u))).(\lambda (H6: (csubc g e x)).(eq_ind_r C (CHead x (Flat f) u) (\lambda
+(c0: C).(ex2 C (\lambda (e2: C).(clear c0 e2)) (\lambda (e2: C).(csubc g c
+e2)))) (let H_x0 \def (H1 x H6) in (let H7 \def H_x0 in (ex2_ind C (\lambda
+(e2: C).(clear x e2)) (\lambda (e2: C).(csubc g c e2)) (ex2 C (\lambda (e2:
+C).(clear (CHead x (Flat f) u) e2)) (\lambda (e2: C).(csubc g c e2)))
+(\lambda (x0: C).(\lambda (H8: (clear x x0)).(\lambda (H9: (csubc g c
+x0)).(ex_intro2 C (\lambda (e2: C).(clear (CHead x (Flat f) u) e2)) (\lambda
+(e2: C).(csubc g c e2)) x0 (clear_flat x x0 H8 f u) H9)))) H7))) c2 H5))))
+H4)) (\lambda (H4: (ex5_3 C T A (\lambda (_: C).(\lambda (_: T).(\lambda (_:
+A).(eq K (Flat f) (Bind Abst))))) (\lambda (c3: C).(\lambda (w: T).(\lambda
+(_: A).(eq C c2 (CHead c3 (Bind Abbr) w))))) (\lambda (c3: C).(\lambda (_:
+T).(\lambda (_: A).(csubc g e c3)))) (\lambda (_: C).(\lambda (_: T).(\lambda
+(a: A).(sc3 g (asucc g a) e u)))) (\lambda (c3: C).(\lambda (w: T).(\lambda
+(a: A).(sc3 g a c3 w)))))).(ex5_3_ind C T A (\lambda (_: C).(\lambda (_:
T).(\lambda (_: A).(eq K (Flat f) (Bind Abst))))) (\lambda (c3: C).(\lambda
(w: T).(\lambda (_: A).(eq C c2 (CHead c3 (Bind Abbr) w))))) (\lambda (c3:
C).(\lambda (_: T).(\lambda (_: A).(csubc g e c3)))) (\lambda (_: C).(\lambda
(_: T).(\lambda (a: A).(sc3 g (asucc g a) e u)))) (\lambda (c3: C).(\lambda
-(w: T).(\lambda (a: A).(sc3 g a c3 w)))))).(ex5_3_ind C T A (\lambda (_:
-C).(\lambda (_: T).(\lambda (_: A).(eq K (Flat f) (Bind Abst))))) (\lambda
-(c3: C).(\lambda (w: T).(\lambda (_: A).(eq C c2 (CHead c3 (Bind Abbr) w)))))
-(\lambda (c3: C).(\lambda (_: T).(\lambda (_: A).(csubc g e c3)))) (\lambda
-(_: C).(\lambda (_: T).(\lambda (a: A).(sc3 g (asucc g a) e u)))) (\lambda
-(c3: C).(\lambda (w: T).(\lambda (a: A).(sc3 g a c3 w)))) (ex2 C (\lambda
-(e2: C).(clear c2 e2)) (\lambda (e2: C).(csubc g c e2))) (\lambda (x0:
-C).(\lambda (x1: T).(\lambda (x2: A).(\lambda (H5: (eq K (Flat f) (Bind
-Abst))).(\lambda (H6: (eq C c2 (CHead x0 (Bind Abbr) x1))).(\lambda (_:
-(csubc g e x0)).(\lambda (_: (sc3 g (asucc g x2) e u)).(\lambda (_: (sc3 g x2
-x0 x1)).(eq_ind_r C (CHead x0 (Bind Abbr) x1) (\lambda (c0: C).(ex2 C
-(\lambda (e2: C).(clear c0 e2)) (\lambda (e2: C).(csubc g c e2)))) (let H10
-\def (eq_ind K (Flat f) (\lambda (ee: K).(match ee in K return (\lambda (_:
-K).Prop) with [(Bind _) \Rightarrow False | (Flat _) \Rightarrow True])) I
-(Bind Abst) H5) in (False_ind (ex2 C (\lambda (e2: C).(clear (CHead x0 (Bind
-Abbr) x1) e2)) (\lambda (e2: C).(csubc g c e2))) H10)) c2 H6))))))))) H4))
-H3))))))))))) c1 e1 H)))).
+(w: T).(\lambda (a: A).(sc3 g a c3 w)))) (ex2 C (\lambda (e2: C).(clear c2
+e2)) (\lambda (e2: C).(csubc g c e2))) (\lambda (x0: C).(\lambda (x1:
+T).(\lambda (x2: A).(\lambda (H5: (eq K (Flat f) (Bind Abst))).(\lambda (H6:
+(eq C c2 (CHead x0 (Bind Abbr) x1))).(\lambda (_: (csubc g e x0)).(\lambda
+(_: (sc3 g (asucc g x2) e u)).(\lambda (_: (sc3 g x2 x0 x1)).(eq_ind_r C
+(CHead x0 (Bind Abbr) x1) (\lambda (c0: C).(ex2 C (\lambda (e2: C).(clear c0
+e2)) (\lambda (e2: C).(csubc g c e2)))) (let H10 \def (eq_ind K (Flat f)
+(\lambda (ee: K).(match ee in K return (\lambda (_: K).Prop) with [(Bind _)
+\Rightarrow False | (Flat _) \Rightarrow True])) I (Bind Abst) H5) in
+(False_ind (ex2 C (\lambda (e2: C).(clear (CHead x0 (Bind Abbr) x1) e2))
+(\lambda (e2: C).(csubc g c e2))) H10)) c2 H6))))))))) H4)) (\lambda (H4:
+(ex4_3 B C T (\lambda (b: B).(\lambda (c3: C).(\lambda (v2: T).(eq C c2
+(CHead c3 (Bind b) v2))))) (\lambda (_: B).(\lambda (_: C).(\lambda (_:
+T).(eq K (Flat f) (Bind Void))))) (\lambda (b: B).(\lambda (_: C).(\lambda
+(_: T).(not (eq B b Void))))) (\lambda (_: B).(\lambda (c3: C).(\lambda (_:
+T).(csubc g e c3)))))).(ex4_3_ind B C T (\lambda (b: B).(\lambda (c3:
+C).(\lambda (v2: T).(eq C c2 (CHead c3 (Bind b) v2))))) (\lambda (_:
+B).(\lambda (_: C).(\lambda (_: T).(eq K (Flat f) (Bind Void))))) (\lambda
+(b: B).(\lambda (_: C).(\lambda (_: T).(not (eq B b Void))))) (\lambda (_:
+B).(\lambda (c3: C).(\lambda (_: T).(csubc g e c3)))) (ex2 C (\lambda (e2:
+C).(clear c2 e2)) (\lambda (e2: C).(csubc g c e2))) (\lambda (x0: B).(\lambda
+(x1: C).(\lambda (x2: T).(\lambda (H5: (eq C c2 (CHead x1 (Bind x0)
+x2))).(\lambda (H6: (eq K (Flat f) (Bind Void))).(\lambda (_: (not (eq B x0
+Void))).(\lambda (_: (csubc g e x1)).(eq_ind_r C (CHead x1 (Bind x0) x2)
+(\lambda (c0: C).(ex2 C (\lambda (e2: C).(clear c0 e2)) (\lambda (e2:
+C).(csubc g c e2)))) (let H9 \def (eq_ind K (Flat f) (\lambda (ee: K).(match
+ee in K return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow False | (Flat
+_) \Rightarrow True])) I (Bind Void) H6) in (False_ind (ex2 C (\lambda (e2:
+C).(clear (CHead x1 (Bind x0) x2) e2)) (\lambda (e2: C).(csubc g c e2))) H9))
+c2 H5)))))))) H4)) H3))))))))))) c1 e1 H)))).
(n: nat).(csuba_refl g (CSort n))) (\lambda (c3: C).(\lambda (c4: C).(\lambda
(_: (csubc g c3 c4)).(\lambda (H1: (csuba g c3 c4)).(\lambda (k: K).(\lambda
(v: T).(csuba_head g c3 c4 H1 k v))))))) (\lambda (c3: C).(\lambda (c4:
+C).(\lambda (_: (csubc g c3 c4)).(\lambda (H1: (csuba g c3 c4)).(\lambda (b:
+B).(\lambda (H2: (not (eq B b Void))).(\lambda (u1: T).(\lambda (u2:
+T).(csuba_void g c3 c4 H1 b H2 u1 u2))))))))) (\lambda (c3: C).(\lambda (c4:
C).(\lambda (_: (csubc g c3 c4)).(\lambda (H1: (csuba g c3 c4)).(\lambda (v:
T).(\lambda (a: A).(\lambda (H2: (sc3 g (asucc g a) c3 v)).(\lambda (w:
T).(\lambda (H3: (sc3 g a c4 w)).(csuba_abst g c3 c4 H1 v a (sc3_arity_gen g
| csubc_sort: \forall (n: nat).(csubc g (CSort n) (CSort n))
| csubc_head: \forall (c1: C).(\forall (c2: C).((csubc g c1 c2) \to (\forall
(k: K).(\forall (v: T).(csubc g (CHead c1 k v) (CHead c2 k v))))))
+| csubc_void: \forall (c1: C).(\forall (c2: C).((csubc g c1 c2) \to (\forall
+(b: B).((not (eq B b Void)) \to (\forall (u1: T).(\forall (u2: T).(csubc g
+(CHead c1 (Bind Void) u1) (CHead c2 (Bind b) u2))))))))
| csubc_abst: \forall (c1: C).(\forall (c2: C).((csubc g c1 c2) \to (\forall
(v: T).(\forall (a: A).((sc3 g (asucc g a) c1 v) \to (\forall (w: T).((sc3 g
a c2 w) \to (csubc g (CHead c1 (Bind Abst) v) (CHead c2 (Bind Abbr)
c2) \to (ex2 C (\lambda (e2: C).(drop n O c2 e2)) (\lambda (e2: C).(csubc g
e1 e2)))))))).(\lambda (H1: (drop (S n) O (CHead c k t) e1)).(\lambda (c2:
C).(\lambda (H2: (csubc g (CHead c k t) c2)).(let H_x \def (csubc_gen_head_l
-g c c2 t k H2) in (let H3 \def H_x in (or_ind (ex2 C (\lambda (c3: C).(eq C
+g c c2 t k H2) in (let H3 \def H_x in (or3_ind (ex2 C (\lambda (c3: C).(eq C
c2 (CHead c3 k t))) (\lambda (c3: C).(csubc g c c3))) (ex5_3 C T A (\lambda
(_: C).(\lambda (_: T).(\lambda (_: A).(eq K k (Bind Abst))))) (\lambda (c3:
C).(\lambda (w: T).(\lambda (_: A).(eq C c2 (CHead c3 (Bind Abbr) w)))))
(\lambda (c3: C).(\lambda (_: T).(\lambda (_: A).(csubc g c c3)))) (\lambda
(_: C).(\lambda (_: T).(\lambda (a: A).(sc3 g (asucc g a) c t)))) (\lambda
-(c3: C).(\lambda (w: T).(\lambda (a: A).(sc3 g a c3 w))))) (ex2 C (\lambda
-(e2: C).(drop (S n) O c2 e2)) (\lambda (e2: C).(csubc g e1 e2))) (\lambda
-(H4: (ex2 C (\lambda (c3: C).(eq C c2 (CHead c3 k t))) (\lambda (c3:
-C).(csubc g c c3)))).(ex2_ind C (\lambda (c3: C).(eq C c2 (CHead c3 k t)))
-(\lambda (c3: C).(csubc g c c3)) (ex2 C (\lambda (e2: C).(drop (S n) O c2
-e2)) (\lambda (e2: C).(csubc g e1 e2))) (\lambda (x: C).(\lambda (H5: (eq C
-c2 (CHead x k t))).(\lambda (H6: (csubc g c x)).(eq_ind_r C (CHead x k t)
-(\lambda (c0: C).(ex2 C (\lambda (e2: C).(drop (S n) O c0 e2)) (\lambda (e2:
-C).(csubc g e1 e2)))) (let H_x0 \def (H e1 (r k n) (drop_gen_drop k c e1 t n
-H1) x H6) in (let H7 \def H_x0 in (ex2_ind C (\lambda (e2: C).(drop (r k n) O
-x e2)) (\lambda (e2: C).(csubc g e1 e2)) (ex2 C (\lambda (e2: C).(drop (S n)
-O (CHead x k t) e2)) (\lambda (e2: C).(csubc g e1 e2))) (\lambda (x0:
-C).(\lambda (H8: (drop (r k n) O x x0)).(\lambda (H9: (csubc g e1
-x0)).(ex_intro2 C (\lambda (e2: C).(drop (S n) O (CHead x k t) e2)) (\lambda
-(e2: C).(csubc g e1 e2)) x0 (drop_drop k n x x0 H8 t) H9)))) H7))) c2 H5))))
-H4)) (\lambda (H4: (ex5_3 C T A (\lambda (_: C).(\lambda (_: T).(\lambda (_:
-A).(eq K k (Bind Abst))))) (\lambda (c3: C).(\lambda (w: T).(\lambda (_:
-A).(eq C c2 (CHead c3 (Bind Abbr) w))))) (\lambda (c3: C).(\lambda (_:
-T).(\lambda (_: A).(csubc g c c3)))) (\lambda (_: C).(\lambda (_: T).(\lambda
-(a: A).(sc3 g (asucc g a) c t)))) (\lambda (c3: C).(\lambda (w: T).(\lambda
-(a: A).(sc3 g a c3 w)))))).(ex5_3_ind C T A (\lambda (_: C).(\lambda (_:
-T).(\lambda (_: A).(eq K k (Bind Abst))))) (\lambda (c3: C).(\lambda (w:
-T).(\lambda (_: A).(eq C c2 (CHead c3 (Bind Abbr) w))))) (\lambda (c3:
-C).(\lambda (_: T).(\lambda (_: A).(csubc g c c3)))) (\lambda (_: C).(\lambda
-(_: T).(\lambda (a: A).(sc3 g (asucc g a) c t)))) (\lambda (c3: C).(\lambda
-(w: T).(\lambda (a: A).(sc3 g a c3 w)))) (ex2 C (\lambda (e2: C).(drop (S n)
-O c2 e2)) (\lambda (e2: C).(csubc g e1 e2))) (\lambda (x0: C).(\lambda (x1:
-T).(\lambda (x2: A).(\lambda (H5: (eq K k (Bind Abst))).(\lambda (H6: (eq C
-c2 (CHead x0 (Bind Abbr) x1))).(\lambda (H7: (csubc g c x0)).(\lambda (_:
-(sc3 g (asucc g x2) c t)).(\lambda (_: (sc3 g x2 x0 x1)).(eq_ind_r C (CHead
-x0 (Bind Abbr) x1) (\lambda (c0: C).(ex2 C (\lambda (e2: C).(drop (S n) O c0
-e2)) (\lambda (e2: C).(csubc g e1 e2)))) (let H10 \def (eq_ind K k (\lambda
-(k0: K).(drop (r k0 n) O c e1)) (drop_gen_drop k c e1 t n H1) (Bind Abst) H5)
-in (let H11 \def (eq_ind K k (\lambda (k0: K).((drop n O (CHead c k0 t) e1)
-\to (\forall (c3: C).((csubc g (CHead c k0 t) c3) \to (ex2 C (\lambda (e2:
-C).(drop n O c3 e2)) (\lambda (e2: C).(csubc g e1 e2))))))) H0 (Bind Abst)
-H5) in (let H_x0 \def (H e1 (r (Bind Abst) n) H10 x0 H7) in (let H12 \def
-H_x0 in (ex2_ind C (\lambda (e2: C).(drop n O x0 e2)) (\lambda (e2: C).(csubc
-g e1 e2)) (ex2 C (\lambda (e2: C).(drop (S n) O (CHead x0 (Bind Abbr) x1)
-e2)) (\lambda (e2: C).(csubc g e1 e2))) (\lambda (x: C).(\lambda (H13: (drop
-n O x0 x)).(\lambda (H14: (csubc g e1 x)).(ex_intro2 C (\lambda (e2: C).(drop
-(S n) O (CHead x0 (Bind Abbr) x1) e2)) (\lambda (e2: C).(csubc g e1 e2)) x
-(drop_drop (Bind Abbr) n x0 x H13 x1) H14)))) H12))))) c2 H6))))))))) H4))
-H3)))))))) h))))))) c1)).
+(c3: C).(\lambda (w: T).(\lambda (a: A).(sc3 g a c3 w))))) (ex4_3 B C T
+(\lambda (b: B).(\lambda (c3: C).(\lambda (v2: T).(eq C c2 (CHead c3 (Bind b)
+v2))))) (\lambda (_: B).(\lambda (_: C).(\lambda (_: T).(eq K k (Bind
+Void))))) (\lambda (b: B).(\lambda (_: C).(\lambda (_: T).(not (eq B b
+Void))))) (\lambda (_: B).(\lambda (c3: C).(\lambda (_: T).(csubc g c c3)))))
+(ex2 C (\lambda (e2: C).(drop (S n) O c2 e2)) (\lambda (e2: C).(csubc g e1
+e2))) (\lambda (H4: (ex2 C (\lambda (c3: C).(eq C c2 (CHead c3 k t)))
+(\lambda (c3: C).(csubc g c c3)))).(ex2_ind C (\lambda (c3: C).(eq C c2
+(CHead c3 k t))) (\lambda (c3: C).(csubc g c c3)) (ex2 C (\lambda (e2:
+C).(drop (S n) O c2 e2)) (\lambda (e2: C).(csubc g e1 e2))) (\lambda (x:
+C).(\lambda (H5: (eq C c2 (CHead x k t))).(\lambda (H6: (csubc g c
+x)).(eq_ind_r C (CHead x k t) (\lambda (c0: C).(ex2 C (\lambda (e2: C).(drop
+(S n) O c0 e2)) (\lambda (e2: C).(csubc g e1 e2)))) (let H_x0 \def (H e1 (r k
+n) (drop_gen_drop k c e1 t n H1) x H6) in (let H7 \def H_x0 in (ex2_ind C
+(\lambda (e2: C).(drop (r k n) O x e2)) (\lambda (e2: C).(csubc g e1 e2))
+(ex2 C (\lambda (e2: C).(drop (S n) O (CHead x k t) e2)) (\lambda (e2:
+C).(csubc g e1 e2))) (\lambda (x0: C).(\lambda (H8: (drop (r k n) O x
+x0)).(\lambda (H9: (csubc g e1 x0)).(ex_intro2 C (\lambda (e2: C).(drop (S n)
+O (CHead x k t) e2)) (\lambda (e2: C).(csubc g e1 e2)) x0 (drop_drop k n x x0
+H8 t) H9)))) H7))) c2 H5)))) H4)) (\lambda (H4: (ex5_3 C T A (\lambda (_:
+C).(\lambda (_: T).(\lambda (_: A).(eq K k (Bind Abst))))) (\lambda (c3:
+C).(\lambda (w: T).(\lambda (_: A).(eq C c2 (CHead c3 (Bind Abbr) w)))))
+(\lambda (c3: C).(\lambda (_: T).(\lambda (_: A).(csubc g c c3)))) (\lambda
+(_: C).(\lambda (_: T).(\lambda (a: A).(sc3 g (asucc g a) c t)))) (\lambda
+(c3: C).(\lambda (w: T).(\lambda (a: A).(sc3 g a c3 w)))))).(ex5_3_ind C T A
+(\lambda (_: C).(\lambda (_: T).(\lambda (_: A).(eq K k (Bind Abst)))))
+(\lambda (c3: C).(\lambda (w: T).(\lambda (_: A).(eq C c2 (CHead c3 (Bind
+Abbr) w))))) (\lambda (c3: C).(\lambda (_: T).(\lambda (_: A).(csubc g c
+c3)))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(sc3 g (asucc g a) c
+t)))) (\lambda (c3: C).(\lambda (w: T).(\lambda (a: A).(sc3 g a c3 w)))) (ex2
+C (\lambda (e2: C).(drop (S n) O c2 e2)) (\lambda (e2: C).(csubc g e1 e2)))
+(\lambda (x0: C).(\lambda (x1: T).(\lambda (x2: A).(\lambda (H5: (eq K k
+(Bind Abst))).(\lambda (H6: (eq C c2 (CHead x0 (Bind Abbr) x1))).(\lambda
+(H7: (csubc g c x0)).(\lambda (_: (sc3 g (asucc g x2) c t)).(\lambda (_: (sc3
+g x2 x0 x1)).(eq_ind_r C (CHead x0 (Bind Abbr) x1) (\lambda (c0: C).(ex2 C
+(\lambda (e2: C).(drop (S n) O c0 e2)) (\lambda (e2: C).(csubc g e1 e2))))
+(let H10 \def (eq_ind K k (\lambda (k0: K).(drop (r k0 n) O c e1))
+(drop_gen_drop k c e1 t n H1) (Bind Abst) H5) in (let H11 \def (eq_ind K k
+(\lambda (k0: K).((drop n O (CHead c k0 t) e1) \to (\forall (c3: C).((csubc g
+(CHead c k0 t) c3) \to (ex2 C (\lambda (e2: C).(drop n O c3 e2)) (\lambda
+(e2: C).(csubc g e1 e2))))))) H0 (Bind Abst) H5) in (let H_x0 \def (H e1 (r
+(Bind Abst) n) H10 x0 H7) in (let H12 \def H_x0 in (ex2_ind C (\lambda (e2:
+C).(drop n O x0 e2)) (\lambda (e2: C).(csubc g e1 e2)) (ex2 C (\lambda (e2:
+C).(drop (S n) O (CHead x0 (Bind Abbr) x1) e2)) (\lambda (e2: C).(csubc g e1
+e2))) (\lambda (x: C).(\lambda (H13: (drop n O x0 x)).(\lambda (H14: (csubc g
+e1 x)).(ex_intro2 C (\lambda (e2: C).(drop (S n) O (CHead x0 (Bind Abbr) x1)
+e2)) (\lambda (e2: C).(csubc g e1 e2)) x (drop_drop (Bind Abbr) n x0 x H13
+x1) H14)))) H12))))) c2 H6))))))))) H4)) (\lambda (H4: (ex4_3 B C T (\lambda
+(b: B).(\lambda (c3: C).(\lambda (v2: T).(eq C c2 (CHead c3 (Bind b) v2)))))
+(\lambda (_: B).(\lambda (_: C).(\lambda (_: T).(eq K k (Bind Void)))))
+(\lambda (b: B).(\lambda (_: C).(\lambda (_: T).(not (eq B b Void)))))
+(\lambda (_: B).(\lambda (c3: C).(\lambda (_: T).(csubc g c
+c3)))))).(ex4_3_ind B C T (\lambda (b: B).(\lambda (c3: C).(\lambda (v2:
+T).(eq C c2 (CHead c3 (Bind b) v2))))) (\lambda (_: B).(\lambda (_:
+C).(\lambda (_: T).(eq K k (Bind Void))))) (\lambda (b: B).(\lambda (_:
+C).(\lambda (_: T).(not (eq B b Void))))) (\lambda (_: B).(\lambda (c3:
+C).(\lambda (_: T).(csubc g c c3)))) (ex2 C (\lambda (e2: C).(drop (S n) O c2
+e2)) (\lambda (e2: C).(csubc g e1 e2))) (\lambda (x0: B).(\lambda (x1:
+C).(\lambda (x2: T).(\lambda (H5: (eq C c2 (CHead x1 (Bind x0) x2))).(\lambda
+(H6: (eq K k (Bind Void))).(\lambda (_: (not (eq B x0 Void))).(\lambda (H8:
+(csubc g c x1)).(eq_ind_r C (CHead x1 (Bind x0) x2) (\lambda (c0: C).(ex2 C
+(\lambda (e2: C).(drop (S n) O c0 e2)) (\lambda (e2: C).(csubc g e1 e2))))
+(let H9 \def (eq_ind K k (\lambda (k0: K).(drop (r k0 n) O c e1))
+(drop_gen_drop k c e1 t n H1) (Bind Void) H6) in (let H10 \def (eq_ind K k
+(\lambda (k0: K).((drop n O (CHead c k0 t) e1) \to (\forall (c3: C).((csubc g
+(CHead c k0 t) c3) \to (ex2 C (\lambda (e2: C).(drop n O c3 e2)) (\lambda
+(e2: C).(csubc g e1 e2))))))) H0 (Bind Void) H6) in (let H_x0 \def (H e1 (r
+(Bind Void) n) H9 x1 H8) in (let H11 \def H_x0 in (ex2_ind C (\lambda (e2:
+C).(drop n O x1 e2)) (\lambda (e2: C).(csubc g e1 e2)) (ex2 C (\lambda (e2:
+C).(drop (S n) O (CHead x1 (Bind x0) x2) e2)) (\lambda (e2: C).(csubc g e1
+e2))) (\lambda (x: C).(\lambda (H12: (drop n O x1 x)).(\lambda (H13: (csubc g
+e1 x)).(ex_intro2 C (\lambda (e2: C).(drop (S n) O (CHead x1 (Bind x0) x2)
+e2)) (\lambda (e2: C).(csubc g e1 e2)) x (drop_drop (Bind x0) n x1 x H12 x2)
+H13)))) H11))))) c2 H5)))))))) H4)) H3)))))))) h))))))) c1)).
theorem drop_csubc_trans:
\forall (g: G).(\forall (c2: C).(\forall (e2: C).(\forall (d: nat).(\forall
C).(csubc g (CHead c k t0) c1)))))))) H7 (lift h (r k n) x1) H4) in (eq_ind_r
T (lift h (r k n) x1) (\lambda (t0: T).(ex2 C (\lambda (c1: C).(drop h (S n)
c1 e1)) (\lambda (c1: C).(csubc g (CHead c k t0) c1)))) (let H_x \def
-(csubc_gen_head_l g x0 e1 x1 k H6) in (let H9 \def H_x in (or_ind (ex2 C
+(csubc_gen_head_l g x0 e1 x1 k H6) in (let H9 \def H_x in (or3_ind (ex2 C
(\lambda (c3: C).(eq C e1 (CHead c3 k x1))) (\lambda (c3: C).(csubc g x0
c3))) (ex5_3 C T A (\lambda (_: C).(\lambda (_: T).(\lambda (_: A).(eq K k
(Bind Abst))))) (\lambda (c3: C).(\lambda (w: T).(\lambda (_: A).(eq C e1
(CHead c3 (Bind Abbr) w))))) (\lambda (c3: C).(\lambda (_: T).(\lambda (_:
A).(csubc g x0 c3)))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(sc3 g
(asucc g a) x0 x1)))) (\lambda (c3: C).(\lambda (w: T).(\lambda (a: A).(sc3 g
-a c3 w))))) (ex2 C (\lambda (c1: C).(drop h (S n) c1 e1)) (\lambda (c1:
-C).(csubc g (CHead c k (lift h (r k n) x1)) c1))) (\lambda (H10: (ex2 C
-(\lambda (c3: C).(eq C e1 (CHead c3 k x1))) (\lambda (c3: C).(csubc g x0
-c3)))).(ex2_ind C (\lambda (c3: C).(eq C e1 (CHead c3 k x1))) (\lambda (c3:
-C).(csubc g x0 c3)) (ex2 C (\lambda (c1: C).(drop h (S n) c1 e1)) (\lambda
-(c1: C).(csubc g (CHead c k (lift h (r k n) x1)) c1))) (\lambda (x:
-C).(\lambda (H11: (eq C e1 (CHead x k x1))).(\lambda (H12: (csubc g x0
-x)).(eq_ind_r C (CHead x k x1) (\lambda (c0: C).(ex2 C (\lambda (c1: C).(drop
-h (S n) c1 c0)) (\lambda (c1: C).(csubc g (CHead c k (lift h (r k n) x1))
-c1)))) (let H_x0 \def (H x0 (r k n) h H5 x H12) in (let H13 \def H_x0 in
-(ex2_ind C (\lambda (c1: C).(drop h (r k n) c1 x)) (\lambda (c1: C).(csubc g
-c c1)) (ex2 C (\lambda (c1: C).(drop h (S n) c1 (CHead x k x1))) (\lambda
-(c1: C).(csubc g (CHead c k (lift h (r k n) x1)) c1))) (\lambda (x2:
+a c3 w))))) (ex4_3 B C T (\lambda (b: B).(\lambda (c3: C).(\lambda (v2:
+T).(eq C e1 (CHead c3 (Bind b) v2))))) (\lambda (_: B).(\lambda (_:
+C).(\lambda (_: T).(eq K k (Bind Void))))) (\lambda (b: B).(\lambda (_:
+C).(\lambda (_: T).(not (eq B b Void))))) (\lambda (_: B).(\lambda (c3:
+C).(\lambda (_: T).(csubc g x0 c3))))) (ex2 C (\lambda (c1: C).(drop h (S n)
+c1 e1)) (\lambda (c1: C).(csubc g (CHead c k (lift h (r k n) x1)) c1)))
+(\lambda (H10: (ex2 C (\lambda (c3: C).(eq C e1 (CHead c3 k x1))) (\lambda
+(c3: C).(csubc g x0 c3)))).(ex2_ind C (\lambda (c3: C).(eq C e1 (CHead c3 k
+x1))) (\lambda (c3: C).(csubc g x0 c3)) (ex2 C (\lambda (c1: C).(drop h (S n)
+c1 e1)) (\lambda (c1: C).(csubc g (CHead c k (lift h (r k n) x1)) c1)))
+(\lambda (x: C).(\lambda (H11: (eq C e1 (CHead x k x1))).(\lambda (H12:
+(csubc g x0 x)).(eq_ind_r C (CHead x k x1) (\lambda (c0: C).(ex2 C (\lambda
+(c1: C).(drop h (S n) c1 c0)) (\lambda (c1: C).(csubc g (CHead c k (lift h (r
+k n) x1)) c1)))) (let H_x0 \def (H x0 (r k n) h H5 x H12) in (let H13 \def
+H_x0 in (ex2_ind C (\lambda (c1: C).(drop h (r k n) c1 x)) (\lambda (c1:
+C).(csubc g c c1)) (ex2 C (\lambda (c1: C).(drop h (S n) c1 (CHead x k x1)))
+(\lambda (c1: C).(csubc g (CHead c k (lift h (r k n) x1)) c1))) (\lambda (x2:
C).(\lambda (H14: (drop h (r k n) x2 x)).(\lambda (H15: (csubc g c
x2)).(ex_intro2 C (\lambda (c1: C).(drop h (S n) c1 (CHead x k x1))) (\lambda
(c1: C).(csubc g (CHead c k (lift h (r k n) x1)) c1)) (CHead x2 k (lift h (r
n) x1)) c1)) (CHead x (Bind Abbr) (lift h n x3)) (drop_skip_bind h n x x2 H19
Abbr x3) (csubc_abst g c x H20 (lift h (r (Bind Abst) n) x1) x4 (sc3_lift g
(asucc g x4) x0 x1 H14 c h (r (Bind Abst) n) H17) (lift h n x3) (sc3_lift g
-x4 x2 x3 H15 x h n H19)))))) H18))) k H11))) e1 H12))))))))) H10)) H9))) t
-H4))))))))) (drop_gen_skip_l c e2 t h n k H1)))))))) d))))))) c2)).
+x4 x2 x3 H15 x h n H19)))))) H18))) k H11))) e1 H12))))))))) H10)) (\lambda
+(H10: (ex4_3 B C T (\lambda (b: B).(\lambda (c3: C).(\lambda (v2: T).(eq C e1
+(CHead c3 (Bind b) v2))))) (\lambda (_: B).(\lambda (_: C).(\lambda (_:
+T).(eq K k (Bind Void))))) (\lambda (b: B).(\lambda (_: C).(\lambda (_:
+T).(not (eq B b Void))))) (\lambda (_: B).(\lambda (c3: C).(\lambda (_:
+T).(csubc g x0 c3)))))).(ex4_3_ind B C T (\lambda (b: B).(\lambda (c3:
+C).(\lambda (v2: T).(eq C e1 (CHead c3 (Bind b) v2))))) (\lambda (_:
+B).(\lambda (_: C).(\lambda (_: T).(eq K k (Bind Void))))) (\lambda (b:
+B).(\lambda (_: C).(\lambda (_: T).(not (eq B b Void))))) (\lambda (_:
+B).(\lambda (c3: C).(\lambda (_: T).(csubc g x0 c3)))) (ex2 C (\lambda (c1:
+C).(drop h (S n) c1 e1)) (\lambda (c1: C).(csubc g (CHead c k (lift h (r k n)
+x1)) c1))) (\lambda (x2: B).(\lambda (x3: C).(\lambda (x4: T).(\lambda (H11:
+(eq C e1 (CHead x3 (Bind x2) x4))).(\lambda (H12: (eq K k (Bind
+Void))).(\lambda (H13: (not (eq B x2 Void))).(\lambda (H14: (csubc g x0
+x3)).(eq_ind_r C (CHead x3 (Bind x2) x4) (\lambda (c0: C).(ex2 C (\lambda
+(c1: C).(drop h (S n) c1 c0)) (\lambda (c1: C).(csubc g (CHead c k (lift h (r
+k n) x1)) c1)))) (let H15 \def (eq_ind K k (\lambda (k0: K).(\forall (h0:
+nat).((drop h0 n (CHead c k0 (lift h (r k0 n) x1)) (CHead x0 k0 x1)) \to
+(\forall (e3: C).((csubc g (CHead x0 k0 x1) e3) \to (ex2 C (\lambda (c1:
+C).(drop h0 n c1 e3)) (\lambda (c1: C).(csubc g (CHead c k0 (lift h (r k0 n)
+x1)) c1)))))))) H8 (Bind Void) H12) in (let H16 \def (eq_ind K k (\lambda
+(k0: K).(drop h (r k0 n) c x0)) H5 (Bind Void) H12) in (eq_ind_r K (Bind
+Void) (\lambda (k0: K).(ex2 C (\lambda (c1: C).(drop h (S n) c1 (CHead x3
+(Bind x2) x4))) (\lambda (c1: C).(csubc g (CHead c k0 (lift h (r k0 n) x1))
+c1)))) (let H_x0 \def (H x0 (r (Bind Void) n) h H16 x3 H14) in (let H17 \def
+H_x0 in (ex2_ind C (\lambda (c1: C).(drop h n c1 x3)) (\lambda (c1: C).(csubc
+g c c1)) (ex2 C (\lambda (c1: C).(drop h (S n) c1 (CHead x3 (Bind x2) x4)))
+(\lambda (c1: C).(csubc g (CHead c (Bind Void) (lift h (r (Bind Void) n) x1))
+c1))) (\lambda (x: C).(\lambda (H18: (drop h n x x3)).(\lambda (H19: (csubc g
+c x)).(ex_intro2 C (\lambda (c1: C).(drop h (S n) c1 (CHead x3 (Bind x2)
+x4))) (\lambda (c1: C).(csubc g (CHead c (Bind Void) (lift h (r (Bind Void)
+n) x1)) c1)) (CHead x (Bind x2) (lift h n x4)) (drop_skip_bind h n x x3 H18
+x2 x4) (csubc_void g c x H19 x2 H13 (lift h (r (Bind Void) n) x1) (lift h n
+x4)))))) H17))) k H12))) e1 H11)))))))) H10)) H9))) t H4)))))))))
+(drop_gen_skip_l c e2 t h n k H1)))))))) d))))))) c2)).
theorem csubc_drop_conf_rev:
\forall (g: G).(\forall (c2: C).(\forall (e2: C).(\forall (d: nat).(\forall
g c1 (CHead c k t0))))))))) H7 (lift h (r k n) x1) H4) in (eq_ind_r T (lift h
(r k n) x1) (\lambda (t0: T).(ex2 C (\lambda (c1: C).(drop h (S n) c1 e1))
(\lambda (c1: C).(csubc g c1 (CHead c k t0))))) (let H_x \def
-(csubc_gen_head_r g x0 e1 x1 k H6) in (let H9 \def H_x in (or_ind (ex2 C
+(csubc_gen_head_r g x0 e1 x1 k H6) in (let H9 \def H_x in (or3_ind (ex2 C
(\lambda (c1: C).(eq C e1 (CHead c1 k x1))) (\lambda (c1: C).(csubc g c1
x0))) (ex5_3 C T A (\lambda (_: C).(\lambda (_: T).(\lambda (_: A).(eq K k
(Bind Abbr))))) (\lambda (c1: C).(\lambda (v: T).(\lambda (_: A).(eq C e1
(CHead c1 (Bind Abst) v))))) (\lambda (c1: C).(\lambda (_: T).(\lambda (_:
A).(csubc g c1 x0)))) (\lambda (c1: C).(\lambda (v: T).(\lambda (a: A).(sc3 g
(asucc g a) c1 v)))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(sc3 g a
-x0 x1))))) (ex2 C (\lambda (c1: C).(drop h (S n) c1 e1)) (\lambda (c1:
-C).(csubc g c1 (CHead c k (lift h (r k n) x1))))) (\lambda (H10: (ex2 C
+x0 x1))))) (ex4_3 B C T (\lambda (_: B).(\lambda (c1: C).(\lambda (v1: T).(eq
+C e1 (CHead c1 (Bind Void) v1))))) (\lambda (b: B).(\lambda (_: C).(\lambda
+(_: T).(eq K k (Bind b))))) (\lambda (b: B).(\lambda (_: C).(\lambda (_:
+T).(not (eq B b Void))))) (\lambda (_: B).(\lambda (c1: C).(\lambda (_:
+T).(csubc g c1 x0))))) (ex2 C (\lambda (c1: C).(drop h (S n) c1 e1)) (\lambda
+(c1: C).(csubc g c1 (CHead c k (lift h (r k n) x1))))) (\lambda (H10: (ex2 C
(\lambda (c1: C).(eq C e1 (CHead c1 k x1))) (\lambda (c1: C).(csubc g c1
x0)))).(ex2_ind C (\lambda (c1: C).(eq C e1 (CHead c1 k x1))) (\lambda (c1:
C).(csubc g c1 x0)) (ex2 C (\lambda (c1: C).(drop h (S n) c1 e1)) (\lambda
(Bind Abst) (lift h n x3)) (drop_skip_bind h n x x2 H19 Abst x3) (csubc_abst
g x c H20 (lift h n x3) x4 (sc3_lift g (asucc g x4) x2 x3 H14 x h n H19)
(lift h (r (Bind Abbr) n) x1) (sc3_lift g x4 x0 x1 H15 c h (r (Bind Abbr) n)
-H17)))))) H18))) k H11))) e1 H12))))))))) H10)) H9))) t H4)))))))))
-(drop_gen_skip_l c e2 t h n k H1)))))))) d))))))) c2)).
+H17)))))) H18))) k H11))) e1 H12))))))))) H10)) (\lambda (H10: (ex4_3 B C T
+(\lambda (_: B).(\lambda (c1: C).(\lambda (v1: T).(eq C e1 (CHead c1 (Bind
+Void) v1))))) (\lambda (b: B).(\lambda (_: C).(\lambda (_: T).(eq K k (Bind
+b))))) (\lambda (b: B).(\lambda (_: C).(\lambda (_: T).(not (eq B b Void)))))
+(\lambda (_: B).(\lambda (c1: C).(\lambda (_: T).(csubc g c1
+x0)))))).(ex4_3_ind B C T (\lambda (_: B).(\lambda (c1: C).(\lambda (v1:
+T).(eq C e1 (CHead c1 (Bind Void) v1))))) (\lambda (b: B).(\lambda (_:
+C).(\lambda (_: T).(eq K k (Bind b))))) (\lambda (b: B).(\lambda (_:
+C).(\lambda (_: T).(not (eq B b Void))))) (\lambda (_: B).(\lambda (c1:
+C).(\lambda (_: T).(csubc g c1 x0)))) (ex2 C (\lambda (c1: C).(drop h (S n)
+c1 e1)) (\lambda (c1: C).(csubc g c1 (CHead c k (lift h (r k n) x1)))))
+(\lambda (x2: B).(\lambda (x3: C).(\lambda (x4: T).(\lambda (H11: (eq C e1
+(CHead x3 (Bind Void) x4))).(\lambda (H12: (eq K k (Bind x2))).(\lambda (H13:
+(not (eq B x2 Void))).(\lambda (H14: (csubc g x3 x0)).(eq_ind_r C (CHead x3
+(Bind Void) x4) (\lambda (c0: C).(ex2 C (\lambda (c1: C).(drop h (S n) c1
+c0)) (\lambda (c1: C).(csubc g c1 (CHead c k (lift h (r k n) x1)))))) (let
+H15 \def (eq_ind K k (\lambda (k0: K).(\forall (h0: nat).((drop h0 n (CHead c
+k0 (lift h (r k0 n) x1)) (CHead x0 k0 x1)) \to (\forall (e3: C).((csubc g e3
+(CHead x0 k0 x1)) \to (ex2 C (\lambda (c1: C).(drop h0 n c1 e3)) (\lambda
+(c1: C).(csubc g c1 (CHead c k0 (lift h (r k0 n) x1)))))))))) H8 (Bind x2)
+H12) in (let H16 \def (eq_ind K k (\lambda (k0: K).(drop h (r k0 n) c x0)) H5
+(Bind x2) H12) in (eq_ind_r K (Bind x2) (\lambda (k0: K).(ex2 C (\lambda (c1:
+C).(drop h (S n) c1 (CHead x3 (Bind Void) x4))) (\lambda (c1: C).(csubc g c1
+(CHead c k0 (lift h (r k0 n) x1)))))) (let H_x0 \def (H x0 (r (Bind x2) n) h
+H16 x3 H14) in (let H17 \def H_x0 in (ex2_ind C (\lambda (c1: C).(drop h n c1
+x3)) (\lambda (c1: C).(csubc g c1 c)) (ex2 C (\lambda (c1: C).(drop h (S n)
+c1 (CHead x3 (Bind Void) x4))) (\lambda (c1: C).(csubc g c1 (CHead c (Bind
+x2) (lift h (r (Bind x2) n) x1))))) (\lambda (x: C).(\lambda (H18: (drop h n
+x x3)).(\lambda (H19: (csubc g x c)).(ex_intro2 C (\lambda (c1: C).(drop h (S
+n) c1 (CHead x3 (Bind Void) x4))) (\lambda (c1: C).(csubc g c1 (CHead c (Bind
+x2) (lift h (r (Bind x2) n) x1)))) (CHead x (Bind Void) (lift h n x4))
+(drop_skip_bind h n x x3 H18 Void x4) (csubc_void g x c H19 x2 H13 (lift h n
+x4) (lift h (r (Bind x2) n) x1)))))) H17))) k H12))) e1 H11)))))))) H10))
+H9))) t H4))))))))) (drop_gen_skip_l c e2 t h n k H1)))))))) d))))))) c2)).
_ _ _) \Rightarrow True])) I (CSort n) H3) in (False_ind (eq C (CHead c2 k v)
(CHead c1 k v)) H4))))))))) (\lambda (c1: C).(\lambda (c2: C).(\lambda (_:
(csubc g c1 c2)).(\lambda (_: (((eq C c1 (CSort n)) \to (eq C c2
-c1)))).(\lambda (v: T).(\lambda (a: A).(\lambda (_: (sc3 g (asucc g a) c1
-v)).(\lambda (w: T).(\lambda (_: (sc3 g a c2 w)).(\lambda (H5: (eq C (CHead
-c1 (Bind Abst) v) (CSort n))).(let H6 \def (eq_ind C (CHead c1 (Bind Abst) v)
-(\lambda (ee: C).(match ee in C return (\lambda (_: C).Prop) with [(CSort _)
-\Rightarrow False | (CHead _ _ _) \Rightarrow True])) I (CSort n) H5) in
-(False_ind (eq C (CHead c2 (Bind Abbr) w) (CHead c1 (Bind Abst) v))
-H6)))))))))))) y x H0))) H)))).
+c1)))).(\lambda (b: B).(\lambda (_: (not (eq B b Void))).(\lambda (u1:
+T).(\lambda (u2: T).(\lambda (H4: (eq C (CHead c1 (Bind Void) u1) (CSort
+n))).(let H5 \def (eq_ind C (CHead c1 (Bind Void) u1) (\lambda (ee: C).(match
+ee in C return (\lambda (_: C).Prop) with [(CSort _) \Rightarrow False |
+(CHead _ _ _) \Rightarrow True])) I (CSort n) H4) in (False_ind (eq C (CHead
+c2 (Bind b) u2) (CHead c1 (Bind Void) u1)) H5))))))))))) (\lambda (c1:
+C).(\lambda (c2: C).(\lambda (_: (csubc g c1 c2)).(\lambda (_: (((eq C c1
+(CSort n)) \to (eq C c2 c1)))).(\lambda (v: T).(\lambda (a: A).(\lambda (_:
+(sc3 g (asucc g a) c1 v)).(\lambda (w: T).(\lambda (_: (sc3 g a c2
+w)).(\lambda (H5: (eq C (CHead c1 (Bind Abst) v) (CSort n))).(let H6 \def
+(eq_ind C (CHead c1 (Bind Abst) v) (\lambda (ee: C).(match ee in C return
+(\lambda (_: C).Prop) with [(CSort _) \Rightarrow False | (CHead _ _ _)
+\Rightarrow True])) I (CSort n) H5) in (False_ind (eq C (CHead c2 (Bind Abbr)
+w) (CHead c1 (Bind Abst) v)) H6)))))))))))) y x H0))) H)))).
theorem csubc_gen_head_l:
\forall (g: G).(\forall (c1: C).(\forall (x: C).(\forall (v: T).(\forall (k:
-K).((csubc g (CHead c1 k v) x) \to (or (ex2 C (\lambda (c2: C).(eq C x (CHead
-c2 k v))) (\lambda (c2: C).(csubc g c1 c2))) (ex5_3 C T A (\lambda (_:
+K).((csubc g (CHead c1 k v) x) \to (or3 (ex2 C (\lambda (c2: C).(eq C x
+(CHead c2 k v))) (\lambda (c2: C).(csubc g c1 c2))) (ex5_3 C T A (\lambda (_:
C).(\lambda (_: T).(\lambda (_: A).(eq K k (Bind Abst))))) (\lambda (c2:
C).(\lambda (w: T).(\lambda (_: A).(eq C x (CHead c2 (Bind Abbr) w)))))
(\lambda (c2: C).(\lambda (_: T).(\lambda (_: A).(csubc g c1 c2)))) (\lambda
(_: C).(\lambda (_: T).(\lambda (a: A).(sc3 g (asucc g a) c1 v)))) (\lambda
-(c2: C).(\lambda (w: T).(\lambda (a: A).(sc3 g a c2 w)))))))))))
+(c2: C).(\lambda (w: T).(\lambda (a: A).(sc3 g a c2 w))))) (ex4_3 B C T
+(\lambda (b: B).(\lambda (c2: C).(\lambda (v2: T).(eq C x (CHead c2 (Bind b)
+v2))))) (\lambda (_: B).(\lambda (_: C).(\lambda (_: T).(eq K k (Bind
+Void))))) (\lambda (b: B).(\lambda (_: C).(\lambda (_: T).(not (eq B b
+Void))))) (\lambda (_: B).(\lambda (c2: C).(\lambda (_: T).(csubc g c1
+c2)))))))))))
\def
\lambda (g: G).(\lambda (c1: C).(\lambda (x: C).(\lambda (v: T).(\lambda (k:
K).(\lambda (H: (csubc g (CHead c1 k v) x)).(insert_eq C (CHead c1 k v)
-(\lambda (c: C).(csubc g c x)) (\lambda (_: C).(or (ex2 C (\lambda (c2:
+(\lambda (c: C).(csubc g c x)) (\lambda (_: C).(or3 (ex2 C (\lambda (c2:
C).(eq C x (CHead c2 k v))) (\lambda (c2: C).(csubc g c1 c2))) (ex5_3 C T A
(\lambda (_: C).(\lambda (_: T).(\lambda (_: A).(eq K k (Bind Abst)))))
(\lambda (c2: C).(\lambda (w: T).(\lambda (_: A).(eq C x (CHead c2 (Bind
Abbr) w))))) (\lambda (c2: C).(\lambda (_: T).(\lambda (_: A).(csubc g c1
c2)))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(sc3 g (asucc g a) c1
-v)))) (\lambda (c2: C).(\lambda (w: T).(\lambda (a: A).(sc3 g a c2 w)))))))
-(\lambda (y: C).(\lambda (H0: (csubc g y x)).(csubc_ind g (\lambda (c:
-C).(\lambda (c0: C).((eq C c (CHead c1 k v)) \to (or (ex2 C (\lambda (c2:
-C).(eq C c0 (CHead c2 k v))) (\lambda (c2: C).(csubc g c1 c2))) (ex5_3 C T A
-(\lambda (_: C).(\lambda (_: T).(\lambda (_: A).(eq K k (Bind Abst)))))
+v)))) (\lambda (c2: C).(\lambda (w: T).(\lambda (a: A).(sc3 g a c2 w)))))
+(ex4_3 B C T (\lambda (b: B).(\lambda (c2: C).(\lambda (v2: T).(eq C x (CHead
+c2 (Bind b) v2))))) (\lambda (_: B).(\lambda (_: C).(\lambda (_: T).(eq K k
+(Bind Void))))) (\lambda (b: B).(\lambda (_: C).(\lambda (_: T).(not (eq B b
+Void))))) (\lambda (_: B).(\lambda (c2: C).(\lambda (_: T).(csubc g c1
+c2))))))) (\lambda (y: C).(\lambda (H0: (csubc g y x)).(csubc_ind g (\lambda
+(c: C).(\lambda (c0: C).((eq C c (CHead c1 k v)) \to (or3 (ex2 C (\lambda
+(c2: C).(eq C c0 (CHead c2 k v))) (\lambda (c2: C).(csubc g c1 c2))) (ex5_3 C
+T A (\lambda (_: C).(\lambda (_: T).(\lambda (_: A).(eq K k (Bind Abst)))))
(\lambda (c2: C).(\lambda (w: T).(\lambda (_: A).(eq C c0 (CHead c2 (Bind
Abbr) w))))) (\lambda (c2: C).(\lambda (_: T).(\lambda (_: A).(csubc g c1
c2)))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(sc3 g (asucc g a) c1
-v)))) (\lambda (c2: C).(\lambda (w: T).(\lambda (a: A).(sc3 g a c2 w)))))))))
-(\lambda (n: nat).(\lambda (H1: (eq C (CSort n) (CHead c1 k v))).(let H2 \def
-(eq_ind C (CSort n) (\lambda (ee: C).(match ee in C return (\lambda (_:
-C).Prop) with [(CSort _) \Rightarrow True | (CHead _ _ _) \Rightarrow
-False])) I (CHead c1 k v) H1) in (False_ind (or (ex2 C (\lambda (c2: C).(eq C
-(CSort n) (CHead c2 k v))) (\lambda (c2: C).(csubc g c1 c2))) (ex5_3 C T A
-(\lambda (_: C).(\lambda (_: T).(\lambda (_: A).(eq K k (Bind Abst)))))
-(\lambda (c2: C).(\lambda (w: T).(\lambda (_: A).(eq C (CSort n) (CHead c2
-(Bind Abbr) w))))) (\lambda (c2: C).(\lambda (_: T).(\lambda (_: A).(csubc g
-c1 c2)))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(sc3 g (asucc g a)
-c1 v)))) (\lambda (c2: C).(\lambda (w: T).(\lambda (a: A).(sc3 g a c2 w))))))
-H2)))) (\lambda (c0: C).(\lambda (c2: C).(\lambda (H1: (csubc g c0
-c2)).(\lambda (H2: (((eq C c0 (CHead c1 k v)) \to (or (ex2 C (\lambda (c3:
-C).(eq C c2 (CHead c3 k v))) (\lambda (c3: C).(csubc g c1 c3))) (ex5_3 C T A
-(\lambda (_: C).(\lambda (_: T).(\lambda (_: A).(eq K k (Bind Abst)))))
-(\lambda (c3: C).(\lambda (w: T).(\lambda (_: A).(eq C c2 (CHead c3 (Bind
-Abbr) w))))) (\lambda (c3: C).(\lambda (_: T).(\lambda (_: A).(csubc g c1
-c3)))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(sc3 g (asucc g a) c1
-v)))) (\lambda (c3: C).(\lambda (w: T).(\lambda (a: A).(sc3 g a c3
-w))))))))).(\lambda (k0: K).(\lambda (v0: T).(\lambda (H3: (eq C (CHead c0 k0
-v0) (CHead c1 k v))).(let H4 \def (f_equal C C (\lambda (e: C).(match e in C
-return (\lambda (_: C).C) with [(CSort _) \Rightarrow c0 | (CHead c _ _)
-\Rightarrow c])) (CHead c0 k0 v0) (CHead c1 k v) H3) in ((let H5 \def
-(f_equal C K (\lambda (e: C).(match e in C return (\lambda (_: C).K) with
-[(CSort _) \Rightarrow k0 | (CHead _ k1 _) \Rightarrow k1])) (CHead c0 k0 v0)
-(CHead c1 k v) H3) in ((let H6 \def (f_equal C T (\lambda (e: C).(match e in
-C return (\lambda (_: C).T) with [(CSort _) \Rightarrow v0 | (CHead _ _ t)
-\Rightarrow t])) (CHead c0 k0 v0) (CHead c1 k v) H3) in (\lambda (H7: (eq K
-k0 k)).(\lambda (H8: (eq C c0 c1)).(eq_ind_r T v (\lambda (t: T).(or (ex2 C
-(\lambda (c3: C).(eq C (CHead c2 k0 t) (CHead c3 k v))) (\lambda (c3:
+v)))) (\lambda (c2: C).(\lambda (w: T).(\lambda (a: A).(sc3 g a c2 w)))))
+(ex4_3 B C T (\lambda (b: B).(\lambda (c2: C).(\lambda (v2: T).(eq C c0
+(CHead c2 (Bind b) v2))))) (\lambda (_: B).(\lambda (_: C).(\lambda (_:
+T).(eq K k (Bind Void))))) (\lambda (b: B).(\lambda (_: C).(\lambda (_:
+T).(not (eq B b Void))))) (\lambda (_: B).(\lambda (c2: C).(\lambda (_:
+T).(csubc g c1 c2))))))))) (\lambda (n: nat).(\lambda (H1: (eq C (CSort n)
+(CHead c1 k v))).(let H2 \def (eq_ind C (CSort n) (\lambda (ee: C).(match ee
+in C return (\lambda (_: C).Prop) with [(CSort _) \Rightarrow True | (CHead _
+_ _) \Rightarrow False])) I (CHead c1 k v) H1) in (False_ind (or3 (ex2 C
+(\lambda (c2: C).(eq C (CSort n) (CHead c2 k v))) (\lambda (c2: C).(csubc g
+c1 c2))) (ex5_3 C T A (\lambda (_: C).(\lambda (_: T).(\lambda (_: A).(eq K k
+(Bind Abst))))) (\lambda (c2: C).(\lambda (w: T).(\lambda (_: A).(eq C (CSort
+n) (CHead c2 (Bind Abbr) w))))) (\lambda (c2: C).(\lambda (_: T).(\lambda (_:
+A).(csubc g c1 c2)))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(sc3 g
+(asucc g a) c1 v)))) (\lambda (c2: C).(\lambda (w: T).(\lambda (a: A).(sc3 g
+a c2 w))))) (ex4_3 B C T (\lambda (b: B).(\lambda (c2: C).(\lambda (v2:
+T).(eq C (CSort n) (CHead c2 (Bind b) v2))))) (\lambda (_: B).(\lambda (_:
+C).(\lambda (_: T).(eq K k (Bind Void))))) (\lambda (b: B).(\lambda (_:
+C).(\lambda (_: T).(not (eq B b Void))))) (\lambda (_: B).(\lambda (c2:
+C).(\lambda (_: T).(csubc g c1 c2)))))) H2)))) (\lambda (c0: C).(\lambda (c2:
+C).(\lambda (H1: (csubc g c0 c2)).(\lambda (H2: (((eq C c0 (CHead c1 k v))
+\to (or3 (ex2 C (\lambda (c3: C).(eq C c2 (CHead c3 k v))) (\lambda (c3:
C).(csubc g c1 c3))) (ex5_3 C T A (\lambda (_: C).(\lambda (_: T).(\lambda
(_: A).(eq K k (Bind Abst))))) (\lambda (c3: C).(\lambda (w: T).(\lambda (_:
-A).(eq C (CHead c2 k0 t) (CHead c3 (Bind Abbr) w))))) (\lambda (c3:
+A).(eq C c2 (CHead c3 (Bind Abbr) w))))) (\lambda (c3: C).(\lambda (_:
+T).(\lambda (_: A).(csubc g c1 c3)))) (\lambda (_: C).(\lambda (_:
+T).(\lambda (a: A).(sc3 g (asucc g a) c1 v)))) (\lambda (c3: C).(\lambda (w:
+T).(\lambda (a: A).(sc3 g a c3 w))))) (ex4_3 B C T (\lambda (b: B).(\lambda
+(c3: C).(\lambda (v2: T).(eq C c2 (CHead c3 (Bind b) v2))))) (\lambda (_:
+B).(\lambda (_: C).(\lambda (_: T).(eq K k (Bind Void))))) (\lambda (b:
+B).(\lambda (_: C).(\lambda (_: T).(not (eq B b Void))))) (\lambda (_:
+B).(\lambda (c3: C).(\lambda (_: T).(csubc g c1 c3))))))))).(\lambda (k0:
+K).(\lambda (v0: T).(\lambda (H3: (eq C (CHead c0 k0 v0) (CHead c1 k
+v))).(let H4 \def (f_equal C C (\lambda (e: C).(match e in C return (\lambda
+(_: C).C) with [(CSort _) \Rightarrow c0 | (CHead c _ _) \Rightarrow c]))
+(CHead c0 k0 v0) (CHead c1 k v) H3) in ((let H5 \def (f_equal C K (\lambda
+(e: C).(match e in C return (\lambda (_: C).K) with [(CSort _) \Rightarrow k0
+| (CHead _ k1 _) \Rightarrow k1])) (CHead c0 k0 v0) (CHead c1 k v) H3) in
+((let H6 \def (f_equal C T (\lambda (e: C).(match e in C return (\lambda (_:
+C).T) with [(CSort _) \Rightarrow v0 | (CHead _ _ t) \Rightarrow t])) (CHead
+c0 k0 v0) (CHead c1 k v) H3) in (\lambda (H7: (eq K k0 k)).(\lambda (H8: (eq
+C c0 c1)).(eq_ind_r T v (\lambda (t: T).(or3 (ex2 C (\lambda (c3: C).(eq C
+(CHead c2 k0 t) (CHead c3 k v))) (\lambda (c3: C).(csubc g c1 c3))) (ex5_3 C
+T A (\lambda (_: C).(\lambda (_: T).(\lambda (_: A).(eq K k (Bind Abst)))))
+(\lambda (c3: C).(\lambda (w: T).(\lambda (_: A).(eq C (CHead c2 k0 t) (CHead
+c3 (Bind Abbr) w))))) (\lambda (c3: C).(\lambda (_: T).(\lambda (_: A).(csubc
+g c1 c3)))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(sc3 g (asucc g
+a) c1 v)))) (\lambda (c3: C).(\lambda (w: T).(\lambda (a: A).(sc3 g a c3
+w))))) (ex4_3 B C T (\lambda (b: B).(\lambda (c3: C).(\lambda (v2: T).(eq C
+(CHead c2 k0 t) (CHead c3 (Bind b) v2))))) (\lambda (_: B).(\lambda (_:
+C).(\lambda (_: T).(eq K k (Bind Void))))) (\lambda (b: B).(\lambda (_:
+C).(\lambda (_: T).(not (eq B b Void))))) (\lambda (_: B).(\lambda (c3:
+C).(\lambda (_: T).(csubc g c1 c3))))))) (eq_ind_r K k (\lambda (k1: K).(or3
+(ex2 C (\lambda (c3: C).(eq C (CHead c2 k1 v) (CHead c3 k v))) (\lambda (c3:
+C).(csubc g c1 c3))) (ex5_3 C T A (\lambda (_: C).(\lambda (_: T).(\lambda
+(_: A).(eq K k (Bind Abst))))) (\lambda (c3: C).(\lambda (w: T).(\lambda (_:
+A).(eq C (CHead c2 k1 v) (CHead c3 (Bind Abbr) w))))) (\lambda (c3:
C).(\lambda (_: T).(\lambda (_: A).(csubc g c1 c3)))) (\lambda (_:
C).(\lambda (_: T).(\lambda (a: A).(sc3 g (asucc g a) c1 v)))) (\lambda (c3:
-C).(\lambda (w: T).(\lambda (a: A).(sc3 g a c3 w))))))) (eq_ind_r K k
-(\lambda (k1: K).(or (ex2 C (\lambda (c3: C).(eq C (CHead c2 k1 v) (CHead c3
-k v))) (\lambda (c3: C).(csubc g c1 c3))) (ex5_3 C T A (\lambda (_:
-C).(\lambda (_: T).(\lambda (_: A).(eq K k (Bind Abst))))) (\lambda (c3:
-C).(\lambda (w: T).(\lambda (_: A).(eq C (CHead c2 k1 v) (CHead c3 (Bind
-Abbr) w))))) (\lambda (c3: C).(\lambda (_: T).(\lambda (_: A).(csubc g c1
-c3)))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(sc3 g (asucc g a) c1
-v)))) (\lambda (c3: C).(\lambda (w: T).(\lambda (a: A).(sc3 g a c3 w)))))))
-(let H9 \def (eq_ind C c0 (\lambda (c: C).((eq C c (CHead c1 k v)) \to (or
-(ex2 C (\lambda (c3: C).(eq C c2 (CHead c3 k v))) (\lambda (c3: C).(csubc g
-c1 c3))) (ex5_3 C T A (\lambda (_: C).(\lambda (_: T).(\lambda (_: A).(eq K k
+C).(\lambda (w: T).(\lambda (a: A).(sc3 g a c3 w))))) (ex4_3 B C T (\lambda
+(b: B).(\lambda (c3: C).(\lambda (v2: T).(eq C (CHead c2 k1 v) (CHead c3
+(Bind b) v2))))) (\lambda (_: B).(\lambda (_: C).(\lambda (_: T).(eq K k
+(Bind Void))))) (\lambda (b: B).(\lambda (_: C).(\lambda (_: T).(not (eq B b
+Void))))) (\lambda (_: B).(\lambda (c3: C).(\lambda (_: T).(csubc g c1
+c3))))))) (let H9 \def (eq_ind C c0 (\lambda (c: C).((eq C c (CHead c1 k v))
+\to (or3 (ex2 C (\lambda (c3: C).(eq C c2 (CHead c3 k v))) (\lambda (c3:
+C).(csubc g c1 c3))) (ex5_3 C T A (\lambda (_: C).(\lambda (_: T).(\lambda
+(_: A).(eq K k (Bind Abst))))) (\lambda (c3: C).(\lambda (w: T).(\lambda (_:
+A).(eq C c2 (CHead c3 (Bind Abbr) w))))) (\lambda (c3: C).(\lambda (_:
+T).(\lambda (_: A).(csubc g c1 c3)))) (\lambda (_: C).(\lambda (_:
+T).(\lambda (a: A).(sc3 g (asucc g a) c1 v)))) (\lambda (c3: C).(\lambda (w:
+T).(\lambda (a: A).(sc3 g a c3 w))))) (ex4_3 B C T (\lambda (b: B).(\lambda
+(c3: C).(\lambda (v2: T).(eq C c2 (CHead c3 (Bind b) v2))))) (\lambda (_:
+B).(\lambda (_: C).(\lambda (_: T).(eq K k (Bind Void))))) (\lambda (b:
+B).(\lambda (_: C).(\lambda (_: T).(not (eq B b Void))))) (\lambda (_:
+B).(\lambda (c3: C).(\lambda (_: T).(csubc g c1 c3)))))))) H2 c1 H8) in (let
+H10 \def (eq_ind C c0 (\lambda (c: C).(csubc g c c2)) H1 c1 H8) in
+(or3_intro0 (ex2 C (\lambda (c3: C).(eq C (CHead c2 k v) (CHead c3 k v)))
+(\lambda (c3: C).(csubc g c1 c3))) (ex5_3 C T A (\lambda (_: C).(\lambda (_:
+T).(\lambda (_: A).(eq K k (Bind Abst))))) (\lambda (c3: C).(\lambda (w:
+T).(\lambda (_: A).(eq C (CHead c2 k v) (CHead c3 (Bind Abbr) w))))) (\lambda
+(c3: C).(\lambda (_: T).(\lambda (_: A).(csubc g c1 c3)))) (\lambda (_:
+C).(\lambda (_: T).(\lambda (a: A).(sc3 g (asucc g a) c1 v)))) (\lambda (c3:
+C).(\lambda (w: T).(\lambda (a: A).(sc3 g a c3 w))))) (ex4_3 B C T (\lambda
+(b: B).(\lambda (c3: C).(\lambda (v2: T).(eq C (CHead c2 k v) (CHead c3 (Bind
+b) v2))))) (\lambda (_: B).(\lambda (_: C).(\lambda (_: T).(eq K k (Bind
+Void))))) (\lambda (b: B).(\lambda (_: C).(\lambda (_: T).(not (eq B b
+Void))))) (\lambda (_: B).(\lambda (c3: C).(\lambda (_: T).(csubc g c1
+c3))))) (ex_intro2 C (\lambda (c3: C).(eq C (CHead c2 k v) (CHead c3 k v)))
+(\lambda (c3: C).(csubc g c1 c3)) c2 (refl_equal C (CHead c2 k v)) H10)))) k0
+H7) v0 H6)))) H5)) H4))))))))) (\lambda (c0: C).(\lambda (c2: C).(\lambda
+(H1: (csubc g c0 c2)).(\lambda (H2: (((eq C c0 (CHead c1 k v)) \to (or3 (ex2
+C (\lambda (c3: C).(eq C c2 (CHead c3 k v))) (\lambda (c3: C).(csubc g c1
+c3))) (ex5_3 C T A (\lambda (_: C).(\lambda (_: T).(\lambda (_: A).(eq K k
(Bind Abst))))) (\lambda (c3: C).(\lambda (w: T).(\lambda (_: A).(eq C c2
(CHead c3 (Bind Abbr) w))))) (\lambda (c3: C).(\lambda (_: T).(\lambda (_:
A).(csubc g c1 c3)))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(sc3 g
(asucc g a) c1 v)))) (\lambda (c3: C).(\lambda (w: T).(\lambda (a: A).(sc3 g
-a c3 w)))))))) H2 c1 H8) in (let H10 \def (eq_ind C c0 (\lambda (c: C).(csubc
-g c c2)) H1 c1 H8) in (or_introl (ex2 C (\lambda (c3: C).(eq C (CHead c2 k v)
-(CHead c3 k v))) (\lambda (c3: C).(csubc g c1 c3))) (ex5_3 C T A (\lambda (_:
+a c3 w))))) (ex4_3 B C T (\lambda (b: B).(\lambda (c3: C).(\lambda (v2:
+T).(eq C c2 (CHead c3 (Bind b) v2))))) (\lambda (_: B).(\lambda (_:
+C).(\lambda (_: T).(eq K k (Bind Void))))) (\lambda (b: B).(\lambda (_:
+C).(\lambda (_: T).(not (eq B b Void))))) (\lambda (_: B).(\lambda (c3:
+C).(\lambda (_: T).(csubc g c1 c3))))))))).(\lambda (b: B).(\lambda (H3: (not
+(eq B b Void))).(\lambda (u1: T).(\lambda (u2: T).(\lambda (H4: (eq C (CHead
+c0 (Bind Void) u1) (CHead c1 k v))).(let H5 \def (f_equal C C (\lambda (e:
+C).(match e in C return (\lambda (_: C).C) with [(CSort _) \Rightarrow c0 |
+(CHead c _ _) \Rightarrow c])) (CHead c0 (Bind Void) u1) (CHead c1 k v) H4)
+in ((let H6 \def (f_equal C K (\lambda (e: C).(match e in C return (\lambda
+(_: C).K) with [(CSort _) \Rightarrow (Bind Void) | (CHead _ k0 _)
+\Rightarrow k0])) (CHead c0 (Bind Void) u1) (CHead c1 k v) H4) in ((let H7
+\def (f_equal C T (\lambda (e: C).(match e in C return (\lambda (_: C).T)
+with [(CSort _) \Rightarrow u1 | (CHead _ _ t) \Rightarrow t])) (CHead c0
+(Bind Void) u1) (CHead c1 k v) H4) in (\lambda (H8: (eq K (Bind Void)
+k)).(\lambda (H9: (eq C c0 c1)).(let H10 \def (eq_ind C c0 (\lambda (c:
+C).((eq C c (CHead c1 k v)) \to (or3 (ex2 C (\lambda (c3: C).(eq C c2 (CHead
+c3 k v))) (\lambda (c3: C).(csubc g c1 c3))) (ex5_3 C T A (\lambda (_:
C).(\lambda (_: T).(\lambda (_: A).(eq K k (Bind Abst))))) (\lambda (c3:
-C).(\lambda (w: T).(\lambda (_: A).(eq C (CHead c2 k v) (CHead c3 (Bind Abbr)
-w))))) (\lambda (c3: C).(\lambda (_: T).(\lambda (_: A).(csubc g c1 c3))))
-(\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(sc3 g (asucc g a) c1 v))))
-(\lambda (c3: C).(\lambda (w: T).(\lambda (a: A).(sc3 g a c3 w)))))
-(ex_intro2 C (\lambda (c3: C).(eq C (CHead c2 k v) (CHead c3 k v))) (\lambda
-(c3: C).(csubc g c1 c3)) c2 (refl_equal C (CHead c2 k v)) H10)))) k0 H7) v0
-H6)))) H5)) H4))))))))) (\lambda (c0: C).(\lambda (c2: C).(\lambda (H1:
-(csubc g c0 c2)).(\lambda (H2: (((eq C c0 (CHead c1 k v)) \to (or (ex2 C
+C).(\lambda (w: T).(\lambda (_: A).(eq C c2 (CHead c3 (Bind Abbr) w)))))
+(\lambda (c3: C).(\lambda (_: T).(\lambda (_: A).(csubc g c1 c3)))) (\lambda
+(_: C).(\lambda (_: T).(\lambda (a: A).(sc3 g (asucc g a) c1 v)))) (\lambda
+(c3: C).(\lambda (w: T).(\lambda (a: A).(sc3 g a c3 w))))) (ex4_3 B C T
+(\lambda (b0: B).(\lambda (c3: C).(\lambda (v2: T).(eq C c2 (CHead c3 (Bind
+b0) v2))))) (\lambda (_: B).(\lambda (_: C).(\lambda (_: T).(eq K k (Bind
+Void))))) (\lambda (b0: B).(\lambda (_: C).(\lambda (_: T).(not (eq B b0
+Void))))) (\lambda (_: B).(\lambda (c3: C).(\lambda (_: T).(csubc g c1
+c3)))))))) H2 c1 H9) in (let H11 \def (eq_ind C c0 (\lambda (c: C).(csubc g c
+c2)) H1 c1 H9) in (let H12 \def (eq_ind_r K k (\lambda (k0: K).((eq C c1
+(CHead c1 k0 v)) \to (or3 (ex2 C (\lambda (c3: C).(eq C c2 (CHead c3 k0 v)))
+(\lambda (c3: C).(csubc g c1 c3))) (ex5_3 C T A (\lambda (_: C).(\lambda (_:
+T).(\lambda (_: A).(eq K k0 (Bind Abst))))) (\lambda (c3: C).(\lambda (w:
+T).(\lambda (_: A).(eq C c2 (CHead c3 (Bind Abbr) w))))) (\lambda (c3:
+C).(\lambda (_: T).(\lambda (_: A).(csubc g c1 c3)))) (\lambda (_:
+C).(\lambda (_: T).(\lambda (a: A).(sc3 g (asucc g a) c1 v)))) (\lambda (c3:
+C).(\lambda (w: T).(\lambda (a: A).(sc3 g a c3 w))))) (ex4_3 B C T (\lambda
+(b0: B).(\lambda (c3: C).(\lambda (v2: T).(eq C c2 (CHead c3 (Bind b0)
+v2))))) (\lambda (_: B).(\lambda (_: C).(\lambda (_: T).(eq K k0 (Bind
+Void))))) (\lambda (b0: B).(\lambda (_: C).(\lambda (_: T).(not (eq B b0
+Void))))) (\lambda (_: B).(\lambda (c3: C).(\lambda (_: T).(csubc g c1
+c3)))))))) H10 (Bind Void) H8) in (eq_ind K (Bind Void) (\lambda (k0: K).(or3
+(ex2 C (\lambda (c3: C).(eq C (CHead c2 (Bind b) u2) (CHead c3 k0 v)))
+(\lambda (c3: C).(csubc g c1 c3))) (ex5_3 C T A (\lambda (_: C).(\lambda (_:
+T).(\lambda (_: A).(eq K k0 (Bind Abst))))) (\lambda (c3: C).(\lambda (w:
+T).(\lambda (_: A).(eq C (CHead c2 (Bind b) u2) (CHead c3 (Bind Abbr) w)))))
+(\lambda (c3: C).(\lambda (_: T).(\lambda (_: A).(csubc g c1 c3)))) (\lambda
+(_: C).(\lambda (_: T).(\lambda (a: A).(sc3 g (asucc g a) c1 v)))) (\lambda
+(c3: C).(\lambda (w: T).(\lambda (a: A).(sc3 g a c3 w))))) (ex4_3 B C T
+(\lambda (b0: B).(\lambda (c3: C).(\lambda (v2: T).(eq C (CHead c2 (Bind b)
+u2) (CHead c3 (Bind b0) v2))))) (\lambda (_: B).(\lambda (_: C).(\lambda (_:
+T).(eq K k0 (Bind Void))))) (\lambda (b0: B).(\lambda (_: C).(\lambda (_:
+T).(not (eq B b0 Void))))) (\lambda (_: B).(\lambda (c3: C).(\lambda (_:
+T).(csubc g c1 c3))))))) (or3_intro2 (ex2 C (\lambda (c3: C).(eq C (CHead c2
+(Bind b) u2) (CHead c3 (Bind Void) v))) (\lambda (c3: C).(csubc g c1 c3)))
+(ex5_3 C T A (\lambda (_: C).(\lambda (_: T).(\lambda (_: A).(eq K (Bind
+Void) (Bind Abst))))) (\lambda (c3: C).(\lambda (w: T).(\lambda (_: A).(eq C
+(CHead c2 (Bind b) u2) (CHead c3 (Bind Abbr) w))))) (\lambda (c3: C).(\lambda
+(_: T).(\lambda (_: A).(csubc g c1 c3)))) (\lambda (_: C).(\lambda (_:
+T).(\lambda (a: A).(sc3 g (asucc g a) c1 v)))) (\lambda (c3: C).(\lambda (w:
+T).(\lambda (a: A).(sc3 g a c3 w))))) (ex4_3 B C T (\lambda (b0: B).(\lambda
+(c3: C).(\lambda (v2: T).(eq C (CHead c2 (Bind b) u2) (CHead c3 (Bind b0)
+v2))))) (\lambda (_: B).(\lambda (_: C).(\lambda (_: T).(eq K (Bind Void)
+(Bind Void))))) (\lambda (b0: B).(\lambda (_: C).(\lambda (_: T).(not (eq B
+b0 Void))))) (\lambda (_: B).(\lambda (c3: C).(\lambda (_: T).(csubc g c1
+c3))))) (ex4_3_intro B C T (\lambda (b0: B).(\lambda (c3: C).(\lambda (v2:
+T).(eq C (CHead c2 (Bind b) u2) (CHead c3 (Bind b0) v2))))) (\lambda (_:
+B).(\lambda (_: C).(\lambda (_: T).(eq K (Bind Void) (Bind Void))))) (\lambda
+(b0: B).(\lambda (_: C).(\lambda (_: T).(not (eq B b0 Void))))) (\lambda (_:
+B).(\lambda (c3: C).(\lambda (_: T).(csubc g c1 c3)))) b c2 u2 (refl_equal C
+(CHead c2 (Bind b) u2)) (refl_equal K (Bind Void)) H3 H11)) k H8))))))) H6))
+H5))))))))))) (\lambda (c0: C).(\lambda (c2: C).(\lambda (H1: (csubc g c0
+c2)).(\lambda (H2: (((eq C c0 (CHead c1 k v)) \to (or3 (ex2 C (\lambda (c3:
+C).(eq C c2 (CHead c3 k v))) (\lambda (c3: C).(csubc g c1 c3))) (ex5_3 C T A
+(\lambda (_: C).(\lambda (_: T).(\lambda (_: A).(eq K k (Bind Abst)))))
+(\lambda (c3: C).(\lambda (w: T).(\lambda (_: A).(eq C c2 (CHead c3 (Bind
+Abbr) w))))) (\lambda (c3: C).(\lambda (_: T).(\lambda (_: A).(csubc g c1
+c3)))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(sc3 g (asucc g a) c1
+v)))) (\lambda (c3: C).(\lambda (w: T).(\lambda (a: A).(sc3 g a c3 w)))))
+(ex4_3 B C T (\lambda (b: B).(\lambda (c3: C).(\lambda (v2: T).(eq C c2
+(CHead c3 (Bind b) v2))))) (\lambda (_: B).(\lambda (_: C).(\lambda (_:
+T).(eq K k (Bind Void))))) (\lambda (b: B).(\lambda (_: C).(\lambda (_:
+T).(not (eq B b Void))))) (\lambda (_: B).(\lambda (c3: C).(\lambda (_:
+T).(csubc g c1 c3))))))))).(\lambda (v0: T).(\lambda (a: A).(\lambda (H3:
+(sc3 g (asucc g a) c0 v0)).(\lambda (w: T).(\lambda (H4: (sc3 g a c2
+w)).(\lambda (H5: (eq C (CHead c0 (Bind Abst) v0) (CHead c1 k v))).(let H6
+\def (f_equal C C (\lambda (e: C).(match e in C return (\lambda (_: C).C)
+with [(CSort _) \Rightarrow c0 | (CHead c _ _) \Rightarrow c])) (CHead c0
+(Bind Abst) v0) (CHead c1 k v) H5) in ((let H7 \def (f_equal C K (\lambda (e:
+C).(match e in C return (\lambda (_: C).K) with [(CSort _) \Rightarrow (Bind
+Abst) | (CHead _ k0 _) \Rightarrow k0])) (CHead c0 (Bind Abst) v0) (CHead c1
+k v) H5) in ((let H8 \def (f_equal C T (\lambda (e: C).(match e in C return
+(\lambda (_: C).T) with [(CSort _) \Rightarrow v0 | (CHead _ _ t) \Rightarrow
+t])) (CHead c0 (Bind Abst) v0) (CHead c1 k v) H5) in (\lambda (H9: (eq K
+(Bind Abst) k)).(\lambda (H10: (eq C c0 c1)).(let H11 \def (eq_ind T v0
+(\lambda (t: T).(sc3 g (asucc g a) c0 t)) H3 v H8) in (let H12 \def (eq_ind C
+c0 (\lambda (c: C).(sc3 g (asucc g a) c v)) H11 c1 H10) in (let H13 \def
+(eq_ind C c0 (\lambda (c: C).((eq C c (CHead c1 k v)) \to (or3 (ex2 C
(\lambda (c3: C).(eq C c2 (CHead c3 k v))) (\lambda (c3: C).(csubc g c1 c3)))
(ex5_3 C T A (\lambda (_: C).(\lambda (_: T).(\lambda (_: A).(eq K k (Bind
-Abst))))) (\lambda (c3: C).(\lambda (w: T).(\lambda (_: A).(eq C c2 (CHead c3
-(Bind Abbr) w))))) (\lambda (c3: C).(\lambda (_: T).(\lambda (_: A).(csubc g
-c1 c3)))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(sc3 g (asucc g a)
-c1 v)))) (\lambda (c3: C).(\lambda (w: T).(\lambda (a: A).(sc3 g a c3
-w))))))))).(\lambda (v0: T).(\lambda (a: A).(\lambda (H3: (sc3 g (asucc g a)
-c0 v0)).(\lambda (w: T).(\lambda (H4: (sc3 g a c2 w)).(\lambda (H5: (eq C
-(CHead c0 (Bind Abst) v0) (CHead c1 k v))).(let H6 \def (f_equal C C (\lambda
-(e: C).(match e in C return (\lambda (_: C).C) with [(CSort _) \Rightarrow c0
-| (CHead c _ _) \Rightarrow c])) (CHead c0 (Bind Abst) v0) (CHead c1 k v) H5)
-in ((let H7 \def (f_equal C K (\lambda (e: C).(match e in C return (\lambda
-(_: C).K) with [(CSort _) \Rightarrow (Bind Abst) | (CHead _ k0 _)
-\Rightarrow k0])) (CHead c0 (Bind Abst) v0) (CHead c1 k v) H5) in ((let H8
-\def (f_equal C T (\lambda (e: C).(match e in C return (\lambda (_: C).T)
-with [(CSort _) \Rightarrow v0 | (CHead _ _ t) \Rightarrow t])) (CHead c0
-(Bind Abst) v0) (CHead c1 k v) H5) in (\lambda (H9: (eq K (Bind Abst)
-k)).(\lambda (H10: (eq C c0 c1)).(let H11 \def (eq_ind T v0 (\lambda (t:
-T).(sc3 g (asucc g a) c0 t)) H3 v H8) in (let H12 \def (eq_ind C c0 (\lambda
-(c: C).(sc3 g (asucc g a) c v)) H11 c1 H10) in (let H13 \def (eq_ind C c0
-(\lambda (c: C).((eq C c (CHead c1 k v)) \to (or (ex2 C (\lambda (c3: C).(eq
-C c2 (CHead c3 k v))) (\lambda (c3: C).(csubc g c1 c3))) (ex5_3 C T A
-(\lambda (_: C).(\lambda (_: T).(\lambda (_: A).(eq K k (Bind Abst)))))
+Abst))))) (\lambda (c3: C).(\lambda (w0: T).(\lambda (_: A).(eq C c2 (CHead
+c3 (Bind Abbr) w0))))) (\lambda (c3: C).(\lambda (_: T).(\lambda (_:
+A).(csubc g c1 c3)))) (\lambda (_: C).(\lambda (_: T).(\lambda (a0: A).(sc3 g
+(asucc g a0) c1 v)))) (\lambda (c3: C).(\lambda (w0: T).(\lambda (a0: A).(sc3
+g a0 c3 w0))))) (ex4_3 B C T (\lambda (b: B).(\lambda (c3: C).(\lambda (v2:
+T).(eq C c2 (CHead c3 (Bind b) v2))))) (\lambda (_: B).(\lambda (_:
+C).(\lambda (_: T).(eq K k (Bind Void))))) (\lambda (b: B).(\lambda (_:
+C).(\lambda (_: T).(not (eq B b Void))))) (\lambda (_: B).(\lambda (c3:
+C).(\lambda (_: T).(csubc g c1 c3)))))))) H2 c1 H10) in (let H14 \def (eq_ind
+C c0 (\lambda (c: C).(csubc g c c2)) H1 c1 H10) in (let H15 \def (eq_ind_r K
+k (\lambda (k0: K).((eq C c1 (CHead c1 k0 v)) \to (or3 (ex2 C (\lambda (c3:
+C).(eq C c2 (CHead c3 k0 v))) (\lambda (c3: C).(csubc g c1 c3))) (ex5_3 C T A
+(\lambda (_: C).(\lambda (_: T).(\lambda (_: A).(eq K k0 (Bind Abst)))))
(\lambda (c3: C).(\lambda (w0: T).(\lambda (_: A).(eq C c2 (CHead c3 (Bind
Abbr) w0))))) (\lambda (c3: C).(\lambda (_: T).(\lambda (_: A).(csubc g c1
c3)))) (\lambda (_: C).(\lambda (_: T).(\lambda (a0: A).(sc3 g (asucc g a0)
c1 v)))) (\lambda (c3: C).(\lambda (w0: T).(\lambda (a0: A).(sc3 g a0 c3
-w0)))))))) H2 c1 H10) in (let H14 \def (eq_ind C c0 (\lambda (c: C).(csubc g
-c c2)) H1 c1 H10) in (let H15 \def (eq_ind_r K k (\lambda (k0: K).((eq C c1
-(CHead c1 k0 v)) \to (or (ex2 C (\lambda (c3: C).(eq C c2 (CHead c3 k0 v)))
-(\lambda (c3: C).(csubc g c1 c3))) (ex5_3 C T A (\lambda (_: C).(\lambda (_:
-T).(\lambda (_: A).(eq K k0 (Bind Abst))))) (\lambda (c3: C).(\lambda (w0:
-T).(\lambda (_: A).(eq C c2 (CHead c3 (Bind Abbr) w0))))) (\lambda (c3:
-C).(\lambda (_: T).(\lambda (_: A).(csubc g c1 c3)))) (\lambda (_:
-C).(\lambda (_: T).(\lambda (a0: A).(sc3 g (asucc g a0) c1 v)))) (\lambda
-(c3: C).(\lambda (w0: T).(\lambda (a0: A).(sc3 g a0 c3 w0)))))))) H13 (Bind
-Abst) H9) in (eq_ind K (Bind Abst) (\lambda (k0: K).(or (ex2 C (\lambda (c3:
-C).(eq C (CHead c2 (Bind Abbr) w) (CHead c3 k0 v))) (\lambda (c3: C).(csubc g
-c1 c3))) (ex5_3 C T A (\lambda (_: C).(\lambda (_: T).(\lambda (_: A).(eq K
-k0 (Bind Abst))))) (\lambda (c3: C).(\lambda (w0: T).(\lambda (_: A).(eq C
-(CHead c2 (Bind Abbr) w) (CHead c3 (Bind Abbr) w0))))) (\lambda (c3:
-C).(\lambda (_: T).(\lambda (_: A).(csubc g c1 c3)))) (\lambda (_:
-C).(\lambda (_: T).(\lambda (a0: A).(sc3 g (asucc g a0) c1 v)))) (\lambda
-(c3: C).(\lambda (w0: T).(\lambda (a0: A).(sc3 g a0 c3 w0))))))) (or_intror
-(ex2 C (\lambda (c3: C).(eq C (CHead c2 (Bind Abbr) w) (CHead c3 (Bind Abst)
-v))) (\lambda (c3: C).(csubc g c1 c3))) (ex5_3 C T A (\lambda (_: C).(\lambda
-(_: T).(\lambda (_: A).(eq K (Bind Abst) (Bind Abst))))) (\lambda (c3:
+w0))))) (ex4_3 B C T (\lambda (b: B).(\lambda (c3: C).(\lambda (v2: T).(eq C
+c2 (CHead c3 (Bind b) v2))))) (\lambda (_: B).(\lambda (_: C).(\lambda (_:
+T).(eq K k0 (Bind Void))))) (\lambda (b: B).(\lambda (_: C).(\lambda (_:
+T).(not (eq B b Void))))) (\lambda (_: B).(\lambda (c3: C).(\lambda (_:
+T).(csubc g c1 c3)))))))) H13 (Bind Abst) H9) in (eq_ind K (Bind Abst)
+(\lambda (k0: K).(or3 (ex2 C (\lambda (c3: C).(eq C (CHead c2 (Bind Abbr) w)
+(CHead c3 k0 v))) (\lambda (c3: C).(csubc g c1 c3))) (ex5_3 C T A (\lambda
+(_: C).(\lambda (_: T).(\lambda (_: A).(eq K k0 (Bind Abst))))) (\lambda (c3:
C).(\lambda (w0: T).(\lambda (_: A).(eq C (CHead c2 (Bind Abbr) w) (CHead c3
(Bind Abbr) w0))))) (\lambda (c3: C).(\lambda (_: T).(\lambda (_: A).(csubc g
c1 c3)))) (\lambda (_: C).(\lambda (_: T).(\lambda (a0: A).(sc3 g (asucc g
a0) c1 v)))) (\lambda (c3: C).(\lambda (w0: T).(\lambda (a0: A).(sc3 g a0 c3
-w0))))) (ex5_3_intro C T A (\lambda (_: C).(\lambda (_: T).(\lambda (_:
-A).(eq K (Bind Abst) (Bind Abst))))) (\lambda (c3: C).(\lambda (w0:
+w0))))) (ex4_3 B C T (\lambda (b: B).(\lambda (c3: C).(\lambda (v2: T).(eq C
+(CHead c2 (Bind Abbr) w) (CHead c3 (Bind b) v2))))) (\lambda (_: B).(\lambda
+(_: C).(\lambda (_: T).(eq K k0 (Bind Void))))) (\lambda (b: B).(\lambda (_:
+C).(\lambda (_: T).(not (eq B b Void))))) (\lambda (_: B).(\lambda (c3:
+C).(\lambda (_: T).(csubc g c1 c3))))))) (or3_intro1 (ex2 C (\lambda (c3:
+C).(eq C (CHead c2 (Bind Abbr) w) (CHead c3 (Bind Abst) v))) (\lambda (c3:
+C).(csubc g c1 c3))) (ex5_3 C T A (\lambda (_: C).(\lambda (_: T).(\lambda
+(_: A).(eq K (Bind Abst) (Bind Abst))))) (\lambda (c3: C).(\lambda (w0:
T).(\lambda (_: A).(eq C (CHead c2 (Bind Abbr) w) (CHead c3 (Bind Abbr)
w0))))) (\lambda (c3: C).(\lambda (_: T).(\lambda (_: A).(csubc g c1 c3))))
(\lambda (_: C).(\lambda (_: T).(\lambda (a0: A).(sc3 g (asucc g a0) c1 v))))
-(\lambda (c3: C).(\lambda (w0: T).(\lambda (a0: A).(sc3 g a0 c3 w0)))) c2 w a
-(refl_equal K (Bind Abst)) (refl_equal C (CHead c2 (Bind Abbr) w)) H14 H12
-H4)) k H9))))))))) H7)) H6)))))))))))) y x H0))) H)))))).
+(\lambda (c3: C).(\lambda (w0: T).(\lambda (a0: A).(sc3 g a0 c3 w0)))))
+(ex4_3 B C T (\lambda (b: B).(\lambda (c3: C).(\lambda (v2: T).(eq C (CHead
+c2 (Bind Abbr) w) (CHead c3 (Bind b) v2))))) (\lambda (_: B).(\lambda (_:
+C).(\lambda (_: T).(eq K (Bind Abst) (Bind Void))))) (\lambda (b: B).(\lambda
+(_: C).(\lambda (_: T).(not (eq B b Void))))) (\lambda (_: B).(\lambda (c3:
+C).(\lambda (_: T).(csubc g c1 c3))))) (ex5_3_intro C T A (\lambda (_:
+C).(\lambda (_: T).(\lambda (_: A).(eq K (Bind Abst) (Bind Abst))))) (\lambda
+(c3: C).(\lambda (w0: T).(\lambda (_: A).(eq C (CHead c2 (Bind Abbr) w)
+(CHead c3 (Bind Abbr) w0))))) (\lambda (c3: C).(\lambda (_: T).(\lambda (_:
+A).(csubc g c1 c3)))) (\lambda (_: C).(\lambda (_: T).(\lambda (a0: A).(sc3 g
+(asucc g a0) c1 v)))) (\lambda (c3: C).(\lambda (w0: T).(\lambda (a0: A).(sc3
+g a0 c3 w0)))) c2 w a (refl_equal K (Bind Abst)) (refl_equal C (CHead c2
+(Bind Abbr) w)) H14 H12 H4)) k H9))))))))) H7)) H6)))))))))))) y x H0)))
+H)))))).
theorem csubc_gen_sort_r:
\forall (g: G).(\forall (x: C).(\forall (n: nat).((csubc g x (CSort n)) \to
_ _ _) \Rightarrow True])) I (CSort n) H3) in (False_ind (eq C (CHead c1 k v)
(CHead c2 k v)) H4))))))))) (\lambda (c1: C).(\lambda (c2: C).(\lambda (_:
(csubc g c1 c2)).(\lambda (_: (((eq C c2 (CSort n)) \to (eq C c1
-c2)))).(\lambda (v: T).(\lambda (a: A).(\lambda (_: (sc3 g (asucc g a) c1
-v)).(\lambda (w: T).(\lambda (_: (sc3 g a c2 w)).(\lambda (H5: (eq C (CHead
-c2 (Bind Abbr) w) (CSort n))).(let H6 \def (eq_ind C (CHead c2 (Bind Abbr) w)
-(\lambda (ee: C).(match ee in C return (\lambda (_: C).Prop) with [(CSort _)
-\Rightarrow False | (CHead _ _ _) \Rightarrow True])) I (CSort n) H5) in
-(False_ind (eq C (CHead c1 (Bind Abst) v) (CHead c2 (Bind Abbr) w))
-H6)))))))))))) x y H0))) H)))).
+c2)))).(\lambda (b: B).(\lambda (_: (not (eq B b Void))).(\lambda (u1:
+T).(\lambda (u2: T).(\lambda (H4: (eq C (CHead c2 (Bind b) u2) (CSort
+n))).(let H5 \def (eq_ind C (CHead c2 (Bind b) u2) (\lambda (ee: C).(match ee
+in C return (\lambda (_: C).Prop) with [(CSort _) \Rightarrow False | (CHead
+_ _ _) \Rightarrow True])) I (CSort n) H4) in (False_ind (eq C (CHead c1
+(Bind Void) u1) (CHead c2 (Bind b) u2)) H5))))))))))) (\lambda (c1:
+C).(\lambda (c2: C).(\lambda (_: (csubc g c1 c2)).(\lambda (_: (((eq C c2
+(CSort n)) \to (eq C c1 c2)))).(\lambda (v: T).(\lambda (a: A).(\lambda (_:
+(sc3 g (asucc g a) c1 v)).(\lambda (w: T).(\lambda (_: (sc3 g a c2
+w)).(\lambda (H5: (eq C (CHead c2 (Bind Abbr) w) (CSort n))).(let H6 \def
+(eq_ind C (CHead c2 (Bind Abbr) w) (\lambda (ee: C).(match ee in C return
+(\lambda (_: C).Prop) with [(CSort _) \Rightarrow False | (CHead _ _ _)
+\Rightarrow True])) I (CSort n) H5) in (False_ind (eq C (CHead c1 (Bind Abst)
+v) (CHead c2 (Bind Abbr) w)) H6)))))))))))) x y H0))) H)))).
theorem csubc_gen_head_r:
\forall (g: G).(\forall (c2: C).(\forall (x: C).(\forall (w: T).(\forall (k:
-K).((csubc g x (CHead c2 k w)) \to (or (ex2 C (\lambda (c1: C).(eq C x (CHead
-c1 k w))) (\lambda (c1: C).(csubc g c1 c2))) (ex5_3 C T A (\lambda (_:
+K).((csubc g x (CHead c2 k w)) \to (or3 (ex2 C (\lambda (c1: C).(eq C x
+(CHead c1 k w))) (\lambda (c1: C).(csubc g c1 c2))) (ex5_3 C T A (\lambda (_:
C).(\lambda (_: T).(\lambda (_: A).(eq K k (Bind Abbr))))) (\lambda (c1:
C).(\lambda (v: T).(\lambda (_: A).(eq C x (CHead c1 (Bind Abst) v)))))
(\lambda (c1: C).(\lambda (_: T).(\lambda (_: A).(csubc g c1 c2)))) (\lambda
(c1: C).(\lambda (v: T).(\lambda (a: A).(sc3 g (asucc g a) c1 v)))) (\lambda
-(_: C).(\lambda (_: T).(\lambda (a: A).(sc3 g a c2 w)))))))))))
+(_: C).(\lambda (_: T).(\lambda (a: A).(sc3 g a c2 w))))) (ex4_3 B C T
+(\lambda (_: B).(\lambda (c1: C).(\lambda (v1: T).(eq C x (CHead c1 (Bind
+Void) v1))))) (\lambda (b: B).(\lambda (_: C).(\lambda (_: T).(eq K k (Bind
+b))))) (\lambda (b: B).(\lambda (_: C).(\lambda (_: T).(not (eq B b Void)))))
+(\lambda (_: B).(\lambda (c1: C).(\lambda (_: T).(csubc g c1 c2)))))))))))
\def
\lambda (g: G).(\lambda (c2: C).(\lambda (x: C).(\lambda (w: T).(\lambda (k:
K).(\lambda (H: (csubc g x (CHead c2 k w))).(insert_eq C (CHead c2 k w)
-(\lambda (c: C).(csubc g x c)) (\lambda (_: C).(or (ex2 C (\lambda (c1:
+(\lambda (c: C).(csubc g x c)) (\lambda (_: C).(or3 (ex2 C (\lambda (c1:
C).(eq C x (CHead c1 k w))) (\lambda (c1: C).(csubc g c1 c2))) (ex5_3 C T A
(\lambda (_: C).(\lambda (_: T).(\lambda (_: A).(eq K k (Bind Abbr)))))
(\lambda (c1: C).(\lambda (v: T).(\lambda (_: A).(eq C x (CHead c1 (Bind
Abst) v))))) (\lambda (c1: C).(\lambda (_: T).(\lambda (_: A).(csubc g c1
c2)))) (\lambda (c1: C).(\lambda (v: T).(\lambda (a: A).(sc3 g (asucc g a) c1
-v)))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(sc3 g a c2 w)))))))
-(\lambda (y: C).(\lambda (H0: (csubc g x y)).(csubc_ind g (\lambda (c:
-C).(\lambda (c0: C).((eq C c0 (CHead c2 k w)) \to (or (ex2 C (\lambda (c1:
-C).(eq C c (CHead c1 k w))) (\lambda (c1: C).(csubc g c1 c2))) (ex5_3 C T A
-(\lambda (_: C).(\lambda (_: T).(\lambda (_: A).(eq K k (Bind Abbr)))))
+v)))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(sc3 g a c2 w)))))
+(ex4_3 B C T (\lambda (_: B).(\lambda (c1: C).(\lambda (v1: T).(eq C x (CHead
+c1 (Bind Void) v1))))) (\lambda (b: B).(\lambda (_: C).(\lambda (_: T).(eq K
+k (Bind b))))) (\lambda (b: B).(\lambda (_: C).(\lambda (_: T).(not (eq B b
+Void))))) (\lambda (_: B).(\lambda (c1: C).(\lambda (_: T).(csubc g c1
+c2))))))) (\lambda (y: C).(\lambda (H0: (csubc g x y)).(csubc_ind g (\lambda
+(c: C).(\lambda (c0: C).((eq C c0 (CHead c2 k w)) \to (or3 (ex2 C (\lambda
+(c1: C).(eq C c (CHead c1 k w))) (\lambda (c1: C).(csubc g c1 c2))) (ex5_3 C
+T A (\lambda (_: C).(\lambda (_: T).(\lambda (_: A).(eq K k (Bind Abbr)))))
(\lambda (c1: C).(\lambda (v: T).(\lambda (_: A).(eq C c (CHead c1 (Bind
Abst) v))))) (\lambda (c1: C).(\lambda (_: T).(\lambda (_: A).(csubc g c1
c2)))) (\lambda (c1: C).(\lambda (v: T).(\lambda (a: A).(sc3 g (asucc g a) c1
-v)))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(sc3 g a c2 w)))))))))
-(\lambda (n: nat).(\lambda (H1: (eq C (CSort n) (CHead c2 k w))).(let H2 \def
-(eq_ind C (CSort n) (\lambda (ee: C).(match ee in C return (\lambda (_:
-C).Prop) with [(CSort _) \Rightarrow True | (CHead _ _ _) \Rightarrow
-False])) I (CHead c2 k w) H1) in (False_ind (or (ex2 C (\lambda (c1: C).(eq C
-(CSort n) (CHead c1 k w))) (\lambda (c1: C).(csubc g c1 c2))) (ex5_3 C T A
-(\lambda (_: C).(\lambda (_: T).(\lambda (_: A).(eq K k (Bind Abbr)))))
-(\lambda (c1: C).(\lambda (v: T).(\lambda (_: A).(eq C (CSort n) (CHead c1
-(Bind Abst) v))))) (\lambda (c1: C).(\lambda (_: T).(\lambda (_: A).(csubc g
-c1 c2)))) (\lambda (c1: C).(\lambda (v: T).(\lambda (a: A).(sc3 g (asucc g a)
-c1 v)))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(sc3 g a c2 w))))))
-H2)))) (\lambda (c1: C).(\lambda (c0: C).(\lambda (H1: (csubc g c1
-c0)).(\lambda (H2: (((eq C c0 (CHead c2 k w)) \to (or (ex2 C (\lambda (c3:
-C).(eq C c1 (CHead c3 k w))) (\lambda (c3: C).(csubc g c3 c2))) (ex5_3 C T A
-(\lambda (_: C).(\lambda (_: T).(\lambda (_: A).(eq K k (Bind Abbr)))))
-(\lambda (c3: C).(\lambda (v: T).(\lambda (_: A).(eq C c1 (CHead c3 (Bind
-Abst) v))))) (\lambda (c3: C).(\lambda (_: T).(\lambda (_: A).(csubc g c3
-c2)))) (\lambda (c3: C).(\lambda (v: T).(\lambda (a: A).(sc3 g (asucc g a) c3
-v)))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(sc3 g a c2
-w))))))))).(\lambda (k0: K).(\lambda (v: T).(\lambda (H3: (eq C (CHead c0 k0
-v) (CHead c2 k w))).(let H4 \def (f_equal C C (\lambda (e: C).(match e in C
-return (\lambda (_: C).C) with [(CSort _) \Rightarrow c0 | (CHead c _ _)
-\Rightarrow c])) (CHead c0 k0 v) (CHead c2 k w) H3) in ((let H5 \def (f_equal
-C K (\lambda (e: C).(match e in C return (\lambda (_: C).K) with [(CSort _)
-\Rightarrow k0 | (CHead _ k1 _) \Rightarrow k1])) (CHead c0 k0 v) (CHead c2 k
-w) H3) in ((let H6 \def (f_equal C T (\lambda (e: C).(match e in C return
-(\lambda (_: C).T) with [(CSort _) \Rightarrow v | (CHead _ _ t) \Rightarrow
-t])) (CHead c0 k0 v) (CHead c2 k w) H3) in (\lambda (H7: (eq K k0
-k)).(\lambda (H8: (eq C c0 c2)).(eq_ind_r T w (\lambda (t: T).(or (ex2 C
-(\lambda (c3: C).(eq C (CHead c1 k0 t) (CHead c3 k w))) (\lambda (c3:
+v)))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(sc3 g a c2 w)))))
+(ex4_3 B C T (\lambda (_: B).(\lambda (c1: C).(\lambda (v1: T).(eq C c (CHead
+c1 (Bind Void) v1))))) (\lambda (b: B).(\lambda (_: C).(\lambda (_: T).(eq K
+k (Bind b))))) (\lambda (b: B).(\lambda (_: C).(\lambda (_: T).(not (eq B b
+Void))))) (\lambda (_: B).(\lambda (c1: C).(\lambda (_: T).(csubc g c1
+c2))))))))) (\lambda (n: nat).(\lambda (H1: (eq C (CSort n) (CHead c2 k
+w))).(let H2 \def (eq_ind C (CSort n) (\lambda (ee: C).(match ee in C return
+(\lambda (_: C).Prop) with [(CSort _) \Rightarrow True | (CHead _ _ _)
+\Rightarrow False])) I (CHead c2 k w) H1) in (False_ind (or3 (ex2 C (\lambda
+(c1: C).(eq C (CSort n) (CHead c1 k w))) (\lambda (c1: C).(csubc g c1 c2)))
+(ex5_3 C T A (\lambda (_: C).(\lambda (_: T).(\lambda (_: A).(eq K k (Bind
+Abbr))))) (\lambda (c1: C).(\lambda (v: T).(\lambda (_: A).(eq C (CSort n)
+(CHead c1 (Bind Abst) v))))) (\lambda (c1: C).(\lambda (_: T).(\lambda (_:
+A).(csubc g c1 c2)))) (\lambda (c1: C).(\lambda (v: T).(\lambda (a: A).(sc3 g
+(asucc g a) c1 v)))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(sc3 g a
+c2 w))))) (ex4_3 B C T (\lambda (_: B).(\lambda (c1: C).(\lambda (v1: T).(eq
+C (CSort n) (CHead c1 (Bind Void) v1))))) (\lambda (b: B).(\lambda (_:
+C).(\lambda (_: T).(eq K k (Bind b))))) (\lambda (b: B).(\lambda (_:
+C).(\lambda (_: T).(not (eq B b Void))))) (\lambda (_: B).(\lambda (c1:
+C).(\lambda (_: T).(csubc g c1 c2)))))) H2)))) (\lambda (c1: C).(\lambda (c0:
+C).(\lambda (H1: (csubc g c1 c0)).(\lambda (H2: (((eq C c0 (CHead c2 k w))
+\to (or3 (ex2 C (\lambda (c3: C).(eq C c1 (CHead c3 k w))) (\lambda (c3:
C).(csubc g c3 c2))) (ex5_3 C T A (\lambda (_: C).(\lambda (_: T).(\lambda
-(_: A).(eq K k (Bind Abbr))))) (\lambda (c3: C).(\lambda (v0: T).(\lambda (_:
-A).(eq C (CHead c1 k0 t) (CHead c3 (Bind Abst) v0))))) (\lambda (c3:
-C).(\lambda (_: T).(\lambda (_: A).(csubc g c3 c2)))) (\lambda (c3:
-C).(\lambda (v0: T).(\lambda (a: A).(sc3 g (asucc g a) c3 v0)))) (\lambda (_:
-C).(\lambda (_: T).(\lambda (a: A).(sc3 g a c2 w))))))) (eq_ind_r K k
-(\lambda (k1: K).(or (ex2 C (\lambda (c3: C).(eq C (CHead c1 k1 w) (CHead c3
+(_: A).(eq K k (Bind Abbr))))) (\lambda (c3: C).(\lambda (v: T).(\lambda (_:
+A).(eq C c1 (CHead c3 (Bind Abst) v))))) (\lambda (c3: C).(\lambda (_:
+T).(\lambda (_: A).(csubc g c3 c2)))) (\lambda (c3: C).(\lambda (v:
+T).(\lambda (a: A).(sc3 g (asucc g a) c3 v)))) (\lambda (_: C).(\lambda (_:
+T).(\lambda (a: A).(sc3 g a c2 w))))) (ex4_3 B C T (\lambda (_: B).(\lambda
+(c3: C).(\lambda (v1: T).(eq C c1 (CHead c3 (Bind Void) v1))))) (\lambda (b:
+B).(\lambda (_: C).(\lambda (_: T).(eq K k (Bind b))))) (\lambda (b:
+B).(\lambda (_: C).(\lambda (_: T).(not (eq B b Void))))) (\lambda (_:
+B).(\lambda (c3: C).(\lambda (_: T).(csubc g c3 c2))))))))).(\lambda (k0:
+K).(\lambda (v: T).(\lambda (H3: (eq C (CHead c0 k0 v) (CHead c2 k w))).(let
+H4 \def (f_equal C C (\lambda (e: C).(match e in C return (\lambda (_: C).C)
+with [(CSort _) \Rightarrow c0 | (CHead c _ _) \Rightarrow c])) (CHead c0 k0
+v) (CHead c2 k w) H3) in ((let H5 \def (f_equal C K (\lambda (e: C).(match e
+in C return (\lambda (_: C).K) with [(CSort _) \Rightarrow k0 | (CHead _ k1
+_) \Rightarrow k1])) (CHead c0 k0 v) (CHead c2 k w) H3) in ((let H6 \def
+(f_equal C T (\lambda (e: C).(match e in C return (\lambda (_: C).T) with
+[(CSort _) \Rightarrow v | (CHead _ _ t) \Rightarrow t])) (CHead c0 k0 v)
+(CHead c2 k w) H3) in (\lambda (H7: (eq K k0 k)).(\lambda (H8: (eq C c0
+c2)).(eq_ind_r T w (\lambda (t: T).(or3 (ex2 C (\lambda (c3: C).(eq C (CHead
+c1 k0 t) (CHead c3 k w))) (\lambda (c3: C).(csubc g c3 c2))) (ex5_3 C T A
+(\lambda (_: C).(\lambda (_: T).(\lambda (_: A).(eq K k (Bind Abbr)))))
+(\lambda (c3: C).(\lambda (v0: T).(\lambda (_: A).(eq C (CHead c1 k0 t)
+(CHead c3 (Bind Abst) v0))))) (\lambda (c3: C).(\lambda (_: T).(\lambda (_:
+A).(csubc g c3 c2)))) (\lambda (c3: C).(\lambda (v0: T).(\lambda (a: A).(sc3
+g (asucc g a) c3 v0)))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(sc3
+g a c2 w))))) (ex4_3 B C T (\lambda (_: B).(\lambda (c3: C).(\lambda (v1:
+T).(eq C (CHead c1 k0 t) (CHead c3 (Bind Void) v1))))) (\lambda (b:
+B).(\lambda (_: C).(\lambda (_: T).(eq K k (Bind b))))) (\lambda (b:
+B).(\lambda (_: C).(\lambda (_: T).(not (eq B b Void))))) (\lambda (_:
+B).(\lambda (c3: C).(\lambda (_: T).(csubc g c3 c2))))))) (eq_ind_r K k
+(\lambda (k1: K).(or3 (ex2 C (\lambda (c3: C).(eq C (CHead c1 k1 w) (CHead c3
k w))) (\lambda (c3: C).(csubc g c3 c2))) (ex5_3 C T A (\lambda (_:
C).(\lambda (_: T).(\lambda (_: A).(eq K k (Bind Abbr))))) (\lambda (c3:
C).(\lambda (v0: T).(\lambda (_: A).(eq C (CHead c1 k1 w) (CHead c3 (Bind
Abst) v0))))) (\lambda (c3: C).(\lambda (_: T).(\lambda (_: A).(csubc g c3
c2)))) (\lambda (c3: C).(\lambda (v0: T).(\lambda (a: A).(sc3 g (asucc g a)
-c3 v0)))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(sc3 g a c2
-w))))))) (let H9 \def (eq_ind C c0 (\lambda (c: C).((eq C c (CHead c2 k w))
-\to (or (ex2 C (\lambda (c3: C).(eq C c1 (CHead c3 k w))) (\lambda (c3:
-C).(csubc g c3 c2))) (ex5_3 C T A (\lambda (_: C).(\lambda (_: T).(\lambda
-(_: A).(eq K k (Bind Abbr))))) (\lambda (c3: C).(\lambda (v0: T).(\lambda (_:
-A).(eq C c1 (CHead c3 (Bind Abst) v0))))) (\lambda (c3: C).(\lambda (_:
-T).(\lambda (_: A).(csubc g c3 c2)))) (\lambda (c3: C).(\lambda (v0:
-T).(\lambda (a: A).(sc3 g (asucc g a) c3 v0)))) (\lambda (_: C).(\lambda (_:
-T).(\lambda (a: A).(sc3 g a c2 w)))))))) H2 c2 H8) in (let H10 \def (eq_ind C
-c0 (\lambda (c: C).(csubc g c1 c)) H1 c2 H8) in (or_introl (ex2 C (\lambda
-(c3: C).(eq C (CHead c1 k w) (CHead c3 k w))) (\lambda (c3: C).(csubc g c3
-c2))) (ex5_3 C T A (\lambda (_: C).(\lambda (_: T).(\lambda (_: A).(eq K k
-(Bind Abbr))))) (\lambda (c3: C).(\lambda (v0: T).(\lambda (_: A).(eq C
-(CHead c1 k w) (CHead c3 (Bind Abst) v0))))) (\lambda (c3: C).(\lambda (_:
-T).(\lambda (_: A).(csubc g c3 c2)))) (\lambda (c3: C).(\lambda (v0:
-T).(\lambda (a: A).(sc3 g (asucc g a) c3 v0)))) (\lambda (_: C).(\lambda (_:
-T).(\lambda (a: A).(sc3 g a c2 w))))) (ex_intro2 C (\lambda (c3: C).(eq C
-(CHead c1 k w) (CHead c3 k w))) (\lambda (c3: C).(csubc g c3 c2)) c1
-(refl_equal C (CHead c1 k w)) H10)))) k0 H7) v H6)))) H5)) H4)))))))))
-(\lambda (c1: C).(\lambda (c0: C).(\lambda (H1: (csubc g c1 c0)).(\lambda
-(H2: (((eq C c0 (CHead c2 k w)) \to (or (ex2 C (\lambda (c3: C).(eq C c1
+c3 v0)))) (\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(sc3 g a c2 w)))))
+(ex4_3 B C T (\lambda (_: B).(\lambda (c3: C).(\lambda (v1: T).(eq C (CHead
+c1 k1 w) (CHead c3 (Bind Void) v1))))) (\lambda (b: B).(\lambda (_:
+C).(\lambda (_: T).(eq K k (Bind b))))) (\lambda (b: B).(\lambda (_:
+C).(\lambda (_: T).(not (eq B b Void))))) (\lambda (_: B).(\lambda (c3:
+C).(\lambda (_: T).(csubc g c3 c2))))))) (let H9 \def (eq_ind C c0 (\lambda
+(c: C).((eq C c (CHead c2 k w)) \to (or3 (ex2 C (\lambda (c3: C).(eq C c1
(CHead c3 k w))) (\lambda (c3: C).(csubc g c3 c2))) (ex5_3 C T A (\lambda (_:
C).(\lambda (_: T).(\lambda (_: A).(eq K k (Bind Abbr))))) (\lambda (c3:
-C).(\lambda (v: T).(\lambda (_: A).(eq C c1 (CHead c3 (Bind Abst) v)))))
+C).(\lambda (v0: T).(\lambda (_: A).(eq C c1 (CHead c3 (Bind Abst) v0)))))
(\lambda (c3: C).(\lambda (_: T).(\lambda (_: A).(csubc g c3 c2)))) (\lambda
-(c3: C).(\lambda (v: T).(\lambda (a: A).(sc3 g (asucc g a) c3 v)))) (\lambda
-(_: C).(\lambda (_: T).(\lambda (a: A).(sc3 g a c2 w))))))))).(\lambda (v:
+(c3: C).(\lambda (v0: T).(\lambda (a: A).(sc3 g (asucc g a) c3 v0))))
+(\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(sc3 g a c2 w))))) (ex4_3 B C
+T (\lambda (_: B).(\lambda (c3: C).(\lambda (v1: T).(eq C c1 (CHead c3 (Bind
+Void) v1))))) (\lambda (b: B).(\lambda (_: C).(\lambda (_: T).(eq K k (Bind
+b))))) (\lambda (b: B).(\lambda (_: C).(\lambda (_: T).(not (eq B b Void)))))
+(\lambda (_: B).(\lambda (c3: C).(\lambda (_: T).(csubc g c3 c2)))))))) H2 c2
+H8) in (let H10 \def (eq_ind C c0 (\lambda (c: C).(csubc g c1 c)) H1 c2 H8)
+in (or3_intro0 (ex2 C (\lambda (c3: C).(eq C (CHead c1 k w) (CHead c3 k w)))
+(\lambda (c3: C).(csubc g c3 c2))) (ex5_3 C T A (\lambda (_: C).(\lambda (_:
+T).(\lambda (_: A).(eq K k (Bind Abbr))))) (\lambda (c3: C).(\lambda (v0:
+T).(\lambda (_: A).(eq C (CHead c1 k w) (CHead c3 (Bind Abst) v0)))))
+(\lambda (c3: C).(\lambda (_: T).(\lambda (_: A).(csubc g c3 c2)))) (\lambda
+(c3: C).(\lambda (v0: T).(\lambda (a: A).(sc3 g (asucc g a) c3 v0))))
+(\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(sc3 g a c2 w))))) (ex4_3 B C
+T (\lambda (_: B).(\lambda (c3: C).(\lambda (v1: T).(eq C (CHead c1 k w)
+(CHead c3 (Bind Void) v1))))) (\lambda (b: B).(\lambda (_: C).(\lambda (_:
+T).(eq K k (Bind b))))) (\lambda (b: B).(\lambda (_: C).(\lambda (_: T).(not
+(eq B b Void))))) (\lambda (_: B).(\lambda (c3: C).(\lambda (_: T).(csubc g
+c3 c2))))) (ex_intro2 C (\lambda (c3: C).(eq C (CHead c1 k w) (CHead c3 k
+w))) (\lambda (c3: C).(csubc g c3 c2)) c1 (refl_equal C (CHead c1 k w))
+H10)))) k0 H7) v H6)))) H5)) H4))))))))) (\lambda (c1: C).(\lambda (c0:
+C).(\lambda (H1: (csubc g c1 c0)).(\lambda (H2: (((eq C c0 (CHead c2 k w))
+\to (or3 (ex2 C (\lambda (c3: C).(eq C c1 (CHead c3 k w))) (\lambda (c3:
+C).(csubc g c3 c2))) (ex5_3 C T A (\lambda (_: C).(\lambda (_: T).(\lambda
+(_: A).(eq K k (Bind Abbr))))) (\lambda (c3: C).(\lambda (v: T).(\lambda (_:
+A).(eq C c1 (CHead c3 (Bind Abst) v))))) (\lambda (c3: C).(\lambda (_:
+T).(\lambda (_: A).(csubc g c3 c2)))) (\lambda (c3: C).(\lambda (v:
+T).(\lambda (a: A).(sc3 g (asucc g a) c3 v)))) (\lambda (_: C).(\lambda (_:
+T).(\lambda (a: A).(sc3 g a c2 w))))) (ex4_3 B C T (\lambda (_: B).(\lambda
+(c3: C).(\lambda (v1: T).(eq C c1 (CHead c3 (Bind Void) v1))))) (\lambda (b:
+B).(\lambda (_: C).(\lambda (_: T).(eq K k (Bind b))))) (\lambda (b:
+B).(\lambda (_: C).(\lambda (_: T).(not (eq B b Void))))) (\lambda (_:
+B).(\lambda (c3: C).(\lambda (_: T).(csubc g c3 c2))))))))).(\lambda (b:
+B).(\lambda (H3: (not (eq B b Void))).(\lambda (u1: T).(\lambda (u2:
+T).(\lambda (H4: (eq C (CHead c0 (Bind b) u2) (CHead c2 k w))).(let H5 \def
+(f_equal C C (\lambda (e: C).(match e in C return (\lambda (_: C).C) with
+[(CSort _) \Rightarrow c0 | (CHead c _ _) \Rightarrow c])) (CHead c0 (Bind b)
+u2) (CHead c2 k w) H4) in ((let H6 \def (f_equal C K (\lambda (e: C).(match e
+in C return (\lambda (_: C).K) with [(CSort _) \Rightarrow (Bind b) | (CHead
+_ k0 _) \Rightarrow k0])) (CHead c0 (Bind b) u2) (CHead c2 k w) H4) in ((let
+H7 \def (f_equal C T (\lambda (e: C).(match e in C return (\lambda (_: C).T)
+with [(CSort _) \Rightarrow u2 | (CHead _ _ t) \Rightarrow t])) (CHead c0
+(Bind b) u2) (CHead c2 k w) H4) in (\lambda (H8: (eq K (Bind b) k)).(\lambda
+(H9: (eq C c0 c2)).(let H10 \def (eq_ind C c0 (\lambda (c: C).((eq C c (CHead
+c2 k w)) \to (or3 (ex2 C (\lambda (c3: C).(eq C c1 (CHead c3 k w))) (\lambda
+(c3: C).(csubc g c3 c2))) (ex5_3 C T A (\lambda (_: C).(\lambda (_:
+T).(\lambda (_: A).(eq K k (Bind Abbr))))) (\lambda (c3: C).(\lambda (v:
+T).(\lambda (_: A).(eq C c1 (CHead c3 (Bind Abst) v))))) (\lambda (c3:
+C).(\lambda (_: T).(\lambda (_: A).(csubc g c3 c2)))) (\lambda (c3:
+C).(\lambda (v: T).(\lambda (a: A).(sc3 g (asucc g a) c3 v)))) (\lambda (_:
+C).(\lambda (_: T).(\lambda (a: A).(sc3 g a c2 w))))) (ex4_3 B C T (\lambda
+(_: B).(\lambda (c3: C).(\lambda (v1: T).(eq C c1 (CHead c3 (Bind Void)
+v1))))) (\lambda (b0: B).(\lambda (_: C).(\lambda (_: T).(eq K k (Bind
+b0))))) (\lambda (b0: B).(\lambda (_: C).(\lambda (_: T).(not (eq B b0
+Void))))) (\lambda (_: B).(\lambda (c3: C).(\lambda (_: T).(csubc g c3
+c2)))))))) H2 c2 H9) in (let H11 \def (eq_ind C c0 (\lambda (c: C).(csubc g
+c1 c)) H1 c2 H9) in (let H12 \def (eq_ind_r K k (\lambda (k0: K).((eq C c2
+(CHead c2 k0 w)) \to (or3 (ex2 C (\lambda (c3: C).(eq C c1 (CHead c3 k0 w)))
+(\lambda (c3: C).(csubc g c3 c2))) (ex5_3 C T A (\lambda (_: C).(\lambda (_:
+T).(\lambda (_: A).(eq K k0 (Bind Abbr))))) (\lambda (c3: C).(\lambda (v:
+T).(\lambda (_: A).(eq C c1 (CHead c3 (Bind Abst) v))))) (\lambda (c3:
+C).(\lambda (_: T).(\lambda (_: A).(csubc g c3 c2)))) (\lambda (c3:
+C).(\lambda (v: T).(\lambda (a: A).(sc3 g (asucc g a) c3 v)))) (\lambda (_:
+C).(\lambda (_: T).(\lambda (a: A).(sc3 g a c2 w))))) (ex4_3 B C T (\lambda
+(_: B).(\lambda (c3: C).(\lambda (v1: T).(eq C c1 (CHead c3 (Bind Void)
+v1))))) (\lambda (b0: B).(\lambda (_: C).(\lambda (_: T).(eq K k0 (Bind
+b0))))) (\lambda (b0: B).(\lambda (_: C).(\lambda (_: T).(not (eq B b0
+Void))))) (\lambda (_: B).(\lambda (c3: C).(\lambda (_: T).(csubc g c3
+c2)))))))) H10 (Bind b) H8) in (eq_ind K (Bind b) (\lambda (k0: K).(or3 (ex2
+C (\lambda (c3: C).(eq C (CHead c1 (Bind Void) u1) (CHead c3 k0 w))) (\lambda
+(c3: C).(csubc g c3 c2))) (ex5_3 C T A (\lambda (_: C).(\lambda (_:
+T).(\lambda (_: A).(eq K k0 (Bind Abbr))))) (\lambda (c3: C).(\lambda (v:
+T).(\lambda (_: A).(eq C (CHead c1 (Bind Void) u1) (CHead c3 (Bind Abst)
+v))))) (\lambda (c3: C).(\lambda (_: T).(\lambda (_: A).(csubc g c3 c2))))
+(\lambda (c3: C).(\lambda (v: T).(\lambda (a: A).(sc3 g (asucc g a) c3 v))))
+(\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(sc3 g a c2 w))))) (ex4_3 B C
+T (\lambda (_: B).(\lambda (c3: C).(\lambda (v1: T).(eq C (CHead c1 (Bind
+Void) u1) (CHead c3 (Bind Void) v1))))) (\lambda (b0: B).(\lambda (_:
+C).(\lambda (_: T).(eq K k0 (Bind b0))))) (\lambda (b0: B).(\lambda (_:
+C).(\lambda (_: T).(not (eq B b0 Void))))) (\lambda (_: B).(\lambda (c3:
+C).(\lambda (_: T).(csubc g c3 c2))))))) (or3_intro2 (ex2 C (\lambda (c3:
+C).(eq C (CHead c1 (Bind Void) u1) (CHead c3 (Bind b) w))) (\lambda (c3:
+C).(csubc g c3 c2))) (ex5_3 C T A (\lambda (_: C).(\lambda (_: T).(\lambda
+(_: A).(eq K (Bind b) (Bind Abbr))))) (\lambda (c3: C).(\lambda (v:
+T).(\lambda (_: A).(eq C (CHead c1 (Bind Void) u1) (CHead c3 (Bind Abst)
+v))))) (\lambda (c3: C).(\lambda (_: T).(\lambda (_: A).(csubc g c3 c2))))
+(\lambda (c3: C).(\lambda (v: T).(\lambda (a: A).(sc3 g (asucc g a) c3 v))))
+(\lambda (_: C).(\lambda (_: T).(\lambda (a: A).(sc3 g a c2 w))))) (ex4_3 B C
+T (\lambda (_: B).(\lambda (c3: C).(\lambda (v1: T).(eq C (CHead c1 (Bind
+Void) u1) (CHead c3 (Bind Void) v1))))) (\lambda (b0: B).(\lambda (_:
+C).(\lambda (_: T).(eq K (Bind b) (Bind b0))))) (\lambda (b0: B).(\lambda (_:
+C).(\lambda (_: T).(not (eq B b0 Void))))) (\lambda (_: B).(\lambda (c3:
+C).(\lambda (_: T).(csubc g c3 c2))))) (ex4_3_intro B C T (\lambda (_:
+B).(\lambda (c3: C).(\lambda (v1: T).(eq C (CHead c1 (Bind Void) u1) (CHead
+c3 (Bind Void) v1))))) (\lambda (b0: B).(\lambda (_: C).(\lambda (_: T).(eq K
+(Bind b) (Bind b0))))) (\lambda (b0: B).(\lambda (_: C).(\lambda (_: T).(not
+(eq B b0 Void))))) (\lambda (_: B).(\lambda (c3: C).(\lambda (_: T).(csubc g
+c3 c2)))) b c1 u1 (refl_equal C (CHead c1 (Bind Void) u1)) (refl_equal K
+(Bind b)) H3 H11)) k H8))))))) H6)) H5))))))))))) (\lambda (c1: C).(\lambda
+(c0: C).(\lambda (H1: (csubc g c1 c0)).(\lambda (H2: (((eq C c0 (CHead c2 k
+w)) \to (or3 (ex2 C (\lambda (c3: C).(eq C c1 (CHead c3 k w))) (\lambda (c3:
+C).(csubc g c3 c2))) (ex5_3 C T A (\lambda (_: C).(\lambda (_: T).(\lambda
+(_: A).(eq K k (Bind Abbr))))) (\lambda (c3: C).(\lambda (v: T).(\lambda (_:
+A).(eq C c1 (CHead c3 (Bind Abst) v))))) (\lambda (c3: C).(\lambda (_:
+T).(\lambda (_: A).(csubc g c3 c2)))) (\lambda (c3: C).(\lambda (v:
+T).(\lambda (a: A).(sc3 g (asucc g a) c3 v)))) (\lambda (_: C).(\lambda (_:
+T).(\lambda (a: A).(sc3 g a c2 w))))) (ex4_3 B C T (\lambda (_: B).(\lambda
+(c3: C).(\lambda (v1: T).(eq C c1 (CHead c3 (Bind Void) v1))))) (\lambda (b:
+B).(\lambda (_: C).(\lambda (_: T).(eq K k (Bind b))))) (\lambda (b:
+B).(\lambda (_: C).(\lambda (_: T).(not (eq B b Void))))) (\lambda (_:
+B).(\lambda (c3: C).(\lambda (_: T).(csubc g c3 c2))))))))).(\lambda (v:
T).(\lambda (a: A).(\lambda (H3: (sc3 g (asucc g a) c1 v)).(\lambda (w0:
T).(\lambda (H4: (sc3 g a c0 w0)).(\lambda (H5: (eq C (CHead c0 (Bind Abbr)
w0) (CHead c2 k w))).(let H6 \def (f_equal C C (\lambda (e: C).(match e in C
(CHead c2 k w) H5) in (\lambda (H9: (eq K (Bind Abbr) k)).(\lambda (H10: (eq
C c0 c2)).(let H11 \def (eq_ind T w0 (\lambda (t: T).(sc3 g a c0 t)) H4 w H8)
in (let H12 \def (eq_ind C c0 (\lambda (c: C).(sc3 g a c w)) H11 c2 H10) in
-(let H13 \def (eq_ind C c0 (\lambda (c: C).((eq C c (CHead c2 k w)) \to (or
+(let H13 \def (eq_ind C c0 (\lambda (c: C).((eq C c (CHead c2 k w)) \to (or3
(ex2 C (\lambda (c3: C).(eq C c1 (CHead c3 k w))) (\lambda (c3: C).(csubc g
c3 c2))) (ex5_3 C T A (\lambda (_: C).(\lambda (_: T).(\lambda (_: A).(eq K k
(Bind Abbr))))) (\lambda (c3: C).(\lambda (v0: T).(\lambda (_: A).(eq C c1
(CHead c3 (Bind Abst) v0))))) (\lambda (c3: C).(\lambda (_: T).(\lambda (_:
A).(csubc g c3 c2)))) (\lambda (c3: C).(\lambda (v0: T).(\lambda (a0: A).(sc3
g (asucc g a0) c3 v0)))) (\lambda (_: C).(\lambda (_: T).(\lambda (a0:
-A).(sc3 g a0 c2 w)))))))) H2 c2 H10) in (let H14 \def (eq_ind C c0 (\lambda
-(c: C).(csubc g c1 c)) H1 c2 H10) in (let H15 \def (eq_ind_r K k (\lambda
-(k0: K).((eq C c2 (CHead c2 k0 w)) \to (or (ex2 C (\lambda (c3: C).(eq C c1
-(CHead c3 k0 w))) (\lambda (c3: C).(csubc g c3 c2))) (ex5_3 C T A (\lambda
-(_: C).(\lambda (_: T).(\lambda (_: A).(eq K k0 (Bind Abbr))))) (\lambda (c3:
-C).(\lambda (v0: T).(\lambda (_: A).(eq C c1 (CHead c3 (Bind Abst) v0)))))
-(\lambda (c3: C).(\lambda (_: T).(\lambda (_: A).(csubc g c3 c2)))) (\lambda
-(c3: C).(\lambda (v0: T).(\lambda (a0: A).(sc3 g (asucc g a0) c3 v0))))
-(\lambda (_: C).(\lambda (_: T).(\lambda (a0: A).(sc3 g a0 c2 w)))))))) H13
-(Bind Abbr) H9) in (eq_ind K (Bind Abbr) (\lambda (k0: K).(or (ex2 C (\lambda
-(c3: C).(eq C (CHead c1 (Bind Abst) v) (CHead c3 k0 w))) (\lambda (c3:
+A).(sc3 g a0 c2 w))))) (ex4_3 B C T (\lambda (_: B).(\lambda (c3: C).(\lambda
+(v1: T).(eq C c1 (CHead c3 (Bind Void) v1))))) (\lambda (b: B).(\lambda (_:
+C).(\lambda (_: T).(eq K k (Bind b))))) (\lambda (b: B).(\lambda (_:
+C).(\lambda (_: T).(not (eq B b Void))))) (\lambda (_: B).(\lambda (c3:
+C).(\lambda (_: T).(csubc g c3 c2)))))))) H2 c2 H10) in (let H14 \def (eq_ind
+C c0 (\lambda (c: C).(csubc g c1 c)) H1 c2 H10) in (let H15 \def (eq_ind_r K
+k (\lambda (k0: K).((eq C c2 (CHead c2 k0 w)) \to (or3 (ex2 C (\lambda (c3:
+C).(eq C c1 (CHead c3 k0 w))) (\lambda (c3: C).(csubc g c3 c2))) (ex5_3 C T A
+(\lambda (_: C).(\lambda (_: T).(\lambda (_: A).(eq K k0 (Bind Abbr)))))
+(\lambda (c3: C).(\lambda (v0: T).(\lambda (_: A).(eq C c1 (CHead c3 (Bind
+Abst) v0))))) (\lambda (c3: C).(\lambda (_: T).(\lambda (_: A).(csubc g c3
+c2)))) (\lambda (c3: C).(\lambda (v0: T).(\lambda (a0: A).(sc3 g (asucc g a0)
+c3 v0)))) (\lambda (_: C).(\lambda (_: T).(\lambda (a0: A).(sc3 g a0 c2
+w))))) (ex4_3 B C T (\lambda (_: B).(\lambda (c3: C).(\lambda (v1: T).(eq C
+c1 (CHead c3 (Bind Void) v1))))) (\lambda (b: B).(\lambda (_: C).(\lambda (_:
+T).(eq K k0 (Bind b))))) (\lambda (b: B).(\lambda (_: C).(\lambda (_: T).(not
+(eq B b Void))))) (\lambda (_: B).(\lambda (c3: C).(\lambda (_: T).(csubc g
+c3 c2)))))))) H13 (Bind Abbr) H9) in (eq_ind K (Bind Abbr) (\lambda (k0:
+K).(or3 (ex2 C (\lambda (c3: C).(eq C (CHead c1 (Bind Abst) v) (CHead c3 k0
+w))) (\lambda (c3: C).(csubc g c3 c2))) (ex5_3 C T A (\lambda (_: C).(\lambda
+(_: T).(\lambda (_: A).(eq K k0 (Bind Abbr))))) (\lambda (c3: C).(\lambda
+(v0: T).(\lambda (_: A).(eq C (CHead c1 (Bind Abst) v) (CHead c3 (Bind Abst)
+v0))))) (\lambda (c3: C).(\lambda (_: T).(\lambda (_: A).(csubc g c3 c2))))
+(\lambda (c3: C).(\lambda (v0: T).(\lambda (a0: A).(sc3 g (asucc g a0) c3
+v0)))) (\lambda (_: C).(\lambda (_: T).(\lambda (a0: A).(sc3 g a0 c2 w)))))
+(ex4_3 B C T (\lambda (_: B).(\lambda (c3: C).(\lambda (v1: T).(eq C (CHead
+c1 (Bind Abst) v) (CHead c3 (Bind Void) v1))))) (\lambda (b: B).(\lambda (_:
+C).(\lambda (_: T).(eq K k0 (Bind b))))) (\lambda (b: B).(\lambda (_:
+C).(\lambda (_: T).(not (eq B b Void))))) (\lambda (_: B).(\lambda (c3:
+C).(\lambda (_: T).(csubc g c3 c2))))))) (or3_intro1 (ex2 C (\lambda (c3:
+C).(eq C (CHead c1 (Bind Abst) v) (CHead c3 (Bind Abbr) w))) (\lambda (c3:
C).(csubc g c3 c2))) (ex5_3 C T A (\lambda (_: C).(\lambda (_: T).(\lambda
-(_: A).(eq K k0 (Bind Abbr))))) (\lambda (c3: C).(\lambda (v0: T).(\lambda
-(_: A).(eq C (CHead c1 (Bind Abst) v) (CHead c3 (Bind Abst) v0))))) (\lambda
-(c3: C).(\lambda (_: T).(\lambda (_: A).(csubc g c3 c2)))) (\lambda (c3:
-C).(\lambda (v0: T).(\lambda (a0: A).(sc3 g (asucc g a0) c3 v0)))) (\lambda
-(_: C).(\lambda (_: T).(\lambda (a0: A).(sc3 g a0 c2 w))))))) (or_intror (ex2
-C (\lambda (c3: C).(eq C (CHead c1 (Bind Abst) v) (CHead c3 (Bind Abbr) w)))
-(\lambda (c3: C).(csubc g c3 c2))) (ex5_3 C T A (\lambda (_: C).(\lambda (_:
-T).(\lambda (_: A).(eq K (Bind Abbr) (Bind Abbr))))) (\lambda (c3:
-C).(\lambda (v0: T).(\lambda (_: A).(eq C (CHead c1 (Bind Abst) v) (CHead c3
-(Bind Abst) v0))))) (\lambda (c3: C).(\lambda (_: T).(\lambda (_: A).(csubc g
-c3 c2)))) (\lambda (c3: C).(\lambda (v0: T).(\lambda (a0: A).(sc3 g (asucc g
-a0) c3 v0)))) (\lambda (_: C).(\lambda (_: T).(\lambda (a0: A).(sc3 g a0 c2
-w))))) (ex5_3_intro C T A (\lambda (_: C).(\lambda (_: T).(\lambda (_: A).(eq
-K (Bind Abbr) (Bind Abbr))))) (\lambda (c3: C).(\lambda (v0: T).(\lambda (_:
-A).(eq C (CHead c1 (Bind Abst) v) (CHead c3 (Bind Abst) v0))))) (\lambda (c3:
-C).(\lambda (_: T).(\lambda (_: A).(csubc g c3 c2)))) (\lambda (c3:
-C).(\lambda (v0: T).(\lambda (a0: A).(sc3 g (asucc g a0) c3 v0)))) (\lambda
-(_: C).(\lambda (_: T).(\lambda (a0: A).(sc3 g a0 c2 w)))) c1 v a (refl_equal
-K (Bind Abbr)) (refl_equal C (CHead c1 (Bind Abst) v)) H14 H3 H12)) k
-H9))))))))) H7)) H6)))))))))))) x y H0))) H)))))).
+(_: A).(eq K (Bind Abbr) (Bind Abbr))))) (\lambda (c3: C).(\lambda (v0:
+T).(\lambda (_: A).(eq C (CHead c1 (Bind Abst) v) (CHead c3 (Bind Abst)
+v0))))) (\lambda (c3: C).(\lambda (_: T).(\lambda (_: A).(csubc g c3 c2))))
+(\lambda (c3: C).(\lambda (v0: T).(\lambda (a0: A).(sc3 g (asucc g a0) c3
+v0)))) (\lambda (_: C).(\lambda (_: T).(\lambda (a0: A).(sc3 g a0 c2 w)))))
+(ex4_3 B C T (\lambda (_: B).(\lambda (c3: C).(\lambda (v1: T).(eq C (CHead
+c1 (Bind Abst) v) (CHead c3 (Bind Void) v1))))) (\lambda (b: B).(\lambda (_:
+C).(\lambda (_: T).(eq K (Bind Abbr) (Bind b))))) (\lambda (b: B).(\lambda
+(_: C).(\lambda (_: T).(not (eq B b Void))))) (\lambda (_: B).(\lambda (c3:
+C).(\lambda (_: T).(csubc g c3 c2))))) (ex5_3_intro C T A (\lambda (_:
+C).(\lambda (_: T).(\lambda (_: A).(eq K (Bind Abbr) (Bind Abbr))))) (\lambda
+(c3: C).(\lambda (v0: T).(\lambda (_: A).(eq C (CHead c1 (Bind Abst) v)
+(CHead c3 (Bind Abst) v0))))) (\lambda (c3: C).(\lambda (_: T).(\lambda (_:
+A).(csubc g c3 c2)))) (\lambda (c3: C).(\lambda (v0: T).(\lambda (a0: A).(sc3
+g (asucc g a0) c3 v0)))) (\lambda (_: C).(\lambda (_: T).(\lambda (a0:
+A).(sc3 g a0 c2 w)))) c1 v a (refl_equal K (Bind Abbr)) (refl_equal C (CHead
+c1 (Bind Abst) v)) H14 H3 H12)) k H9))))))))) H7)) H6)))))))))))) x y H0)))
+H)))))).
(* This file was automatically generated: do not edit *********************)
+include "LambdaDelta-1/csubst0/props.ma".
+
include "LambdaDelta-1/csubst0/fwd.ma".
include "LambdaDelta-1/clear/fwd.ma".
(CHead x5 (Bind x3) x7) H15 f x0) H16 H17))))))))))) H13)) H12)))))))) k H1
H3) c2 H4)))))))) H2)) (csubst0_gen_head k c c2 t v (S i) H0)))))))))))) c1).
+theorem csubst0_clear_trans:
+ \forall (c1: C).(\forall (c2: C).(\forall (v: T).(\forall (i: nat).((csubst0
+i v c1 c2) \to (\forall (e2: C).((clear c2 e2) \to (or (clear c1 e2) (ex2 C
+(\lambda (e1: C).(csubst0 i v e1 e2)) (\lambda (e1: C).(clear c1 e1))))))))))
+\def
+ \lambda (c1: C).(\lambda (c2: C).(\lambda (v: T).(\lambda (i: nat).(\lambda
+(H: (csubst0 i v c1 c2)).(csubst0_ind (\lambda (n: nat).(\lambda (t:
+T).(\lambda (c: C).(\lambda (c0: C).(\forall (e2: C).((clear c0 e2) \to (or
+(clear c e2) (ex2 C (\lambda (e1: C).(csubst0 n t e1 e2)) (\lambda (e1:
+C).(clear c e1)))))))))) (\lambda (k: K).(\lambda (i0: nat).(\lambda (v0:
+T).(\lambda (u1: T).(\lambda (u2: T).(\lambda (H0: (subst0 i0 v0 u1
+u2)).(\lambda (c: C).(\lambda (e2: C).(\lambda (H1: (clear (CHead c k u2)
+e2)).(K_ind (\lambda (k0: K).((clear (CHead c k0 u2) e2) \to (or (clear
+(CHead c k0 u1) e2) (ex2 C (\lambda (e1: C).(csubst0 (s k0 i0) v0 e1 e2))
+(\lambda (e1: C).(clear (CHead c k0 u1) e1)))))) (\lambda (b: B).(\lambda
+(H2: (clear (CHead c (Bind b) u2) e2)).(eq_ind_r C (CHead c (Bind b) u2)
+(\lambda (c0: C).(or (clear (CHead c (Bind b) u1) c0) (ex2 C (\lambda (e1:
+C).(csubst0 (s (Bind b) i0) v0 e1 c0)) (\lambda (e1: C).(clear (CHead c (Bind
+b) u1) e1))))) (or_intror (clear (CHead c (Bind b) u1) (CHead c (Bind b) u2))
+(ex2 C (\lambda (e1: C).(csubst0 (S i0) v0 e1 (CHead c (Bind b) u2)))
+(\lambda (e1: C).(clear (CHead c (Bind b) u1) e1))) (ex_intro2 C (\lambda
+(e1: C).(csubst0 (S i0) v0 e1 (CHead c (Bind b) u2))) (\lambda (e1: C).(clear
+(CHead c (Bind b) u1) e1)) (CHead c (Bind b) u1) (csubst0_snd_bind b i0 v0 u1
+u2 H0 c) (clear_bind b c u1))) e2 (clear_gen_bind b c e2 u2 H2)))) (\lambda
+(f: F).(\lambda (H2: (clear (CHead c (Flat f) u2) e2)).(or_introl (clear
+(CHead c (Flat f) u1) e2) (ex2 C (\lambda (e1: C).(csubst0 i0 v0 e1 e2))
+(\lambda (e1: C).(clear (CHead c (Flat f) u1) e1))) (clear_flat c e2
+(clear_gen_flat f c e2 u2 H2) f u1)))) k H1)))))))))) (\lambda (k:
+K).(\lambda (i0: nat).(\lambda (c3: C).(\lambda (c4: C).(\lambda (v0:
+T).(\lambda (H0: (csubst0 i0 v0 c3 c4)).(\lambda (H1: ((\forall (e2:
+C).((clear c4 e2) \to (or (clear c3 e2) (ex2 C (\lambda (e1: C).(csubst0 i0
+v0 e1 e2)) (\lambda (e1: C).(clear c3 e1)))))))).(\lambda (u: T).(\lambda
+(e2: C).(\lambda (H2: (clear (CHead c4 k u) e2)).(K_ind (\lambda (k0:
+K).((clear (CHead c4 k0 u) e2) \to (or (clear (CHead c3 k0 u) e2) (ex2 C
+(\lambda (e1: C).(csubst0 (s k0 i0) v0 e1 e2)) (\lambda (e1: C).(clear (CHead
+c3 k0 u) e1)))))) (\lambda (b: B).(\lambda (H3: (clear (CHead c4 (Bind b) u)
+e2)).(eq_ind_r C (CHead c4 (Bind b) u) (\lambda (c: C).(or (clear (CHead c3
+(Bind b) u) c) (ex2 C (\lambda (e1: C).(csubst0 (s (Bind b) i0) v0 e1 c))
+(\lambda (e1: C).(clear (CHead c3 (Bind b) u) e1))))) (or_intror (clear
+(CHead c3 (Bind b) u) (CHead c4 (Bind b) u)) (ex2 C (\lambda (e1: C).(csubst0
+(S i0) v0 e1 (CHead c4 (Bind b) u))) (\lambda (e1: C).(clear (CHead c3 (Bind
+b) u) e1))) (ex_intro2 C (\lambda (e1: C).(csubst0 (S i0) v0 e1 (CHead c4
+(Bind b) u))) (\lambda (e1: C).(clear (CHead c3 (Bind b) u) e1)) (CHead c3
+(Bind b) u) (csubst0_fst_bind b i0 c3 c4 v0 H0 u) (clear_bind b c3 u))) e2
+(clear_gen_bind b c4 e2 u H3)))) (\lambda (f: F).(\lambda (H3: (clear (CHead
+c4 (Flat f) u) e2)).(let H_x \def (H1 e2 (clear_gen_flat f c4 e2 u H3)) in
+(let H4 \def H_x in (or_ind (clear c3 e2) (ex2 C (\lambda (e1: C).(csubst0 i0
+v0 e1 e2)) (\lambda (e1: C).(clear c3 e1))) (or (clear (CHead c3 (Flat f) u)
+e2) (ex2 C (\lambda (e1: C).(csubst0 i0 v0 e1 e2)) (\lambda (e1: C).(clear
+(CHead c3 (Flat f) u) e1)))) (\lambda (H5: (clear c3 e2)).(or_introl (clear
+(CHead c3 (Flat f) u) e2) (ex2 C (\lambda (e1: C).(csubst0 i0 v0 e1 e2))
+(\lambda (e1: C).(clear (CHead c3 (Flat f) u) e1))) (clear_flat c3 e2 H5 f
+u))) (\lambda (H5: (ex2 C (\lambda (e1: C).(csubst0 i0 v0 e1 e2)) (\lambda
+(e1: C).(clear c3 e1)))).(ex2_ind C (\lambda (e1: C).(csubst0 i0 v0 e1 e2))
+(\lambda (e1: C).(clear c3 e1)) (or (clear (CHead c3 (Flat f) u) e2) (ex2 C
+(\lambda (e1: C).(csubst0 i0 v0 e1 e2)) (\lambda (e1: C).(clear (CHead c3
+(Flat f) u) e1)))) (\lambda (x: C).(\lambda (H6: (csubst0 i0 v0 x
+e2)).(\lambda (H7: (clear c3 x)).(or_intror (clear (CHead c3 (Flat f) u) e2)
+(ex2 C (\lambda (e1: C).(csubst0 i0 v0 e1 e2)) (\lambda (e1: C).(clear (CHead
+c3 (Flat f) u) e1))) (ex_intro2 C (\lambda (e1: C).(csubst0 i0 v0 e1 e2))
+(\lambda (e1: C).(clear (CHead c3 (Flat f) u) e1)) x H6 (clear_flat c3 x H7 f
+u)))))) H5)) H4))))) k H2))))))))))) (\lambda (k: K).(\lambda (i0:
+nat).(\lambda (v0: T).(\lambda (u1: T).(\lambda (u2: T).(\lambda (H0: (subst0
+i0 v0 u1 u2)).(\lambda (c3: C).(\lambda (c4: C).(\lambda (H1: (csubst0 i0 v0
+c3 c4)).(\lambda (H2: ((\forall (e2: C).((clear c4 e2) \to (or (clear c3 e2)
+(ex2 C (\lambda (e1: C).(csubst0 i0 v0 e1 e2)) (\lambda (e1: C).(clear c3
+e1)))))))).(\lambda (e2: C).(\lambda (H3: (clear (CHead c4 k u2) e2)).(K_ind
+(\lambda (k0: K).((clear (CHead c4 k0 u2) e2) \to (or (clear (CHead c3 k0 u1)
+e2) (ex2 C (\lambda (e1: C).(csubst0 (s k0 i0) v0 e1 e2)) (\lambda (e1:
+C).(clear (CHead c3 k0 u1) e1)))))) (\lambda (b: B).(\lambda (H4: (clear
+(CHead c4 (Bind b) u2) e2)).(eq_ind_r C (CHead c4 (Bind b) u2) (\lambda (c:
+C).(or (clear (CHead c3 (Bind b) u1) c) (ex2 C (\lambda (e1: C).(csubst0 (s
+(Bind b) i0) v0 e1 c)) (\lambda (e1: C).(clear (CHead c3 (Bind b) u1) e1)))))
+(or_intror (clear (CHead c3 (Bind b) u1) (CHead c4 (Bind b) u2)) (ex2 C
+(\lambda (e1: C).(csubst0 (S i0) v0 e1 (CHead c4 (Bind b) u2))) (\lambda (e1:
+C).(clear (CHead c3 (Bind b) u1) e1))) (ex_intro2 C (\lambda (e1: C).(csubst0
+(S i0) v0 e1 (CHead c4 (Bind b) u2))) (\lambda (e1: C).(clear (CHead c3 (Bind
+b) u1) e1)) (CHead c3 (Bind b) u1) (csubst0_both_bind b i0 v0 u1 u2 H0 c3 c4
+H1) (clear_bind b c3 u1))) e2 (clear_gen_bind b c4 e2 u2 H4)))) (\lambda (f:
+F).(\lambda (H4: (clear (CHead c4 (Flat f) u2) e2)).(let H_x \def (H2 e2
+(clear_gen_flat f c4 e2 u2 H4)) in (let H5 \def H_x in (or_ind (clear c3 e2)
+(ex2 C (\lambda (e1: C).(csubst0 i0 v0 e1 e2)) (\lambda (e1: C).(clear c3
+e1))) (or (clear (CHead c3 (Flat f) u1) e2) (ex2 C (\lambda (e1: C).(csubst0
+i0 v0 e1 e2)) (\lambda (e1: C).(clear (CHead c3 (Flat f) u1) e1)))) (\lambda
+(H6: (clear c3 e2)).(or_introl (clear (CHead c3 (Flat f) u1) e2) (ex2 C
+(\lambda (e1: C).(csubst0 i0 v0 e1 e2)) (\lambda (e1: C).(clear (CHead c3
+(Flat f) u1) e1))) (clear_flat c3 e2 H6 f u1))) (\lambda (H6: (ex2 C (\lambda
+(e1: C).(csubst0 i0 v0 e1 e2)) (\lambda (e1: C).(clear c3 e1)))).(ex2_ind C
+(\lambda (e1: C).(csubst0 i0 v0 e1 e2)) (\lambda (e1: C).(clear c3 e1)) (or
+(clear (CHead c3 (Flat f) u1) e2) (ex2 C (\lambda (e1: C).(csubst0 i0 v0 e1
+e2)) (\lambda (e1: C).(clear (CHead c3 (Flat f) u1) e1)))) (\lambda (x:
+C).(\lambda (H7: (csubst0 i0 v0 x e2)).(\lambda (H8: (clear c3 x)).(or_intror
+(clear (CHead c3 (Flat f) u1) e2) (ex2 C (\lambda (e1: C).(csubst0 i0 v0 e1
+e2)) (\lambda (e1: C).(clear (CHead c3 (Flat f) u1) e1))) (ex_intro2 C
+(\lambda (e1: C).(csubst0 i0 v0 e1 e2)) (\lambda (e1: C).(clear (CHead c3
+(Flat f) u1) e1)) x H7 (clear_flat c3 x H8 f u1)))))) H6)) H5))))) k
+H3))))))))))))) i v c1 c2 H))))).
+
H15)))))))))) H14)) H13)))))))) k H3 (drop_gen_drop k x1 e x0 n0 H7))))))))))
H2)) (csubst0_gen_head k c c2 t v (S n0) H0))))))))))) c1)))) n).
+theorem csubst0_drop_lt_back:
+ \forall (n: nat).(\forall (i: nat).((lt n i) \to (\forall (c1: C).(\forall
+(c2: C).(\forall (v: T).((csubst0 i v c1 c2) \to (\forall (e2: C).((drop n O
+c2 e2) \to (or (drop n O c1 e2) (ex2 C (\lambda (e1: C).(csubst0 (minus i n)
+v e1 e2)) (\lambda (e1: C).(drop n O c1 e1))))))))))))
+\def
+ \lambda (n: nat).(nat_ind (\lambda (n0: nat).(\forall (i: nat).((lt n0 i)
+\to (\forall (c1: C).(\forall (c2: C).(\forall (v: T).((csubst0 i v c1 c2)
+\to (\forall (e2: C).((drop n0 O c2 e2) \to (or (drop n0 O c1 e2) (ex2 C
+(\lambda (e1: C).(csubst0 (minus i n0) v e1 e2)) (\lambda (e1: C).(drop n0 O
+c1 e1))))))))))))) (\lambda (i: nat).(\lambda (_: (lt O i)).(\lambda (c1:
+C).(\lambda (c2: C).(\lambda (v: T).(\lambda (H0: (csubst0 i v c1
+c2)).(\lambda (e2: C).(\lambda (H1: (drop O O c2 e2)).(eq_ind C c2 (\lambda
+(c: C).(or (drop O O c1 c) (ex2 C (\lambda (e1: C).(csubst0 (minus i O) v e1
+c)) (\lambda (e1: C).(drop O O c1 e1))))) (eq_ind nat i (\lambda (n0:
+nat).(or (drop O O c1 c2) (ex2 C (\lambda (e1: C).(csubst0 n0 v e1 c2))
+(\lambda (e1: C).(drop O O c1 e1))))) (or_intror (drop O O c1 c2) (ex2 C
+(\lambda (e1: C).(csubst0 i v e1 c2)) (\lambda (e1: C).(drop O O c1 e1)))
+(ex_intro2 C (\lambda (e1: C).(csubst0 i v e1 c2)) (\lambda (e1: C).(drop O O
+c1 e1)) c1 H0 (drop_refl c1))) (minus i O) (minus_n_O i)) e2 (drop_gen_refl
+c2 e2 H1)))))))))) (\lambda (n0: nat).(\lambda (IHn: ((\forall (i: nat).((lt
+n0 i) \to (\forall (c1: C).(\forall (c2: C).(\forall (v: T).((csubst0 i v c1
+c2) \to (\forall (e2: C).((drop n0 O c2 e2) \to (or (drop n0 O c1 e2) (ex2 C
+(\lambda (e1: C).(csubst0 (minus i n0) v e1 e2)) (\lambda (e1: C).(drop n0 O
+c1 e1)))))))))))))).(\lambda (i: nat).(\lambda (H: (lt (S n0) i)).(\lambda
+(c1: C).(C_ind (\lambda (c: C).(\forall (c2: C).(\forall (v: T).((csubst0 i v
+c c2) \to (\forall (e2: C).((drop (S n0) O c2 e2) \to (or (drop (S n0) O c
+e2) (ex2 C (\lambda (e1: C).(csubst0 (minus i (S n0)) v e1 e2)) (\lambda (e1:
+C).(drop (S n0) O c e1)))))))))) (\lambda (n1: nat).(\lambda (c2: C).(\lambda
+(v: T).(\lambda (H0: (csubst0 i v (CSort n1) c2)).(\lambda (e2: C).(\lambda
+(_: (drop (S n0) O c2 e2)).(csubst0_gen_sort c2 v i n1 H0 (or (drop (S n0) O
+(CSort n1) e2) (ex2 C (\lambda (e1: C).(csubst0 (minus i (S n0)) v e1 e2))
+(\lambda (e1: C).(drop (S n0) O (CSort n1) e1))))))))))) (\lambda (c:
+C).(\lambda (H0: ((\forall (c2: C).(\forall (v: T).((csubst0 i v c c2) \to
+(\forall (e2: C).((drop (S n0) O c2 e2) \to (or (drop (S n0) O c e2) (ex2 C
+(\lambda (e1: C).(csubst0 (minus i (S n0)) v e1 e2)) (\lambda (e1: C).(drop
+(S n0) O c e1))))))))))).(\lambda (k: K).(\lambda (t: T).(\lambda (c2:
+C).(\lambda (v: T).(\lambda (H1: (csubst0 i v (CHead c k t) c2)).(\lambda
+(e2: C).(\lambda (H2: (drop (S n0) O c2 e2)).(or3_ind (ex3_2 T nat (\lambda
+(_: T).(\lambda (j: nat).(eq nat i (s k j)))) (\lambda (u2: T).(\lambda (_:
+nat).(eq C c2 (CHead c k u2)))) (\lambda (u2: T).(\lambda (j: nat).(subst0 j
+v t u2)))) (ex3_2 C nat (\lambda (_: C).(\lambda (j: nat).(eq nat i (s k
+j)))) (\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k t)))) (\lambda
+(c3: C).(\lambda (j: nat).(csubst0 j v c c3)))) (ex4_3 T C nat (\lambda (_:
+T).(\lambda (_: C).(\lambda (j: nat).(eq nat i (s k j))))) (\lambda (u2:
+T).(\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k u2))))) (\lambda
+(u2: T).(\lambda (_: C).(\lambda (j: nat).(subst0 j v t u2)))) (\lambda (_:
+T).(\lambda (c3: C).(\lambda (j: nat).(csubst0 j v c c3))))) (or (drop (S n0)
+O (CHead c k t) e2) (ex2 C (\lambda (e1: C).(csubst0 (minus i (S n0)) v e1
+e2)) (\lambda (e1: C).(drop (S n0) O (CHead c k t) e1)))) (\lambda (H3:
+(ex3_2 T nat (\lambda (_: T).(\lambda (j: nat).(eq nat i (s k j)))) (\lambda
+(u2: T).(\lambda (_: nat).(eq C c2 (CHead c k u2)))) (\lambda (u2:
+T).(\lambda (j: nat).(subst0 j v t u2))))).(ex3_2_ind T nat (\lambda (_:
+T).(\lambda (j: nat).(eq nat i (s k j)))) (\lambda (u2: T).(\lambda (_:
+nat).(eq C c2 (CHead c k u2)))) (\lambda (u2: T).(\lambda (j: nat).(subst0 j
+v t u2))) (or (drop (S n0) O (CHead c k t) e2) (ex2 C (\lambda (e1:
+C).(csubst0 (minus i (S n0)) v e1 e2)) (\lambda (e1: C).(drop (S n0) O (CHead
+c k t) e1)))) (\lambda (x0: T).(\lambda (x1: nat).(\lambda (H4: (eq nat i (s
+k x1))).(\lambda (H5: (eq C c2 (CHead c k x0))).(\lambda (_: (subst0 x1 v t
+x0)).(let H7 \def (eq_ind C c2 (\lambda (c0: C).(drop (S n0) O c0 e2)) H2
+(CHead c k x0) H5) in (let H8 \def (eq_ind nat i (\lambda (n1: nat).(\forall
+(c3: C).(\forall (v0: T).((csubst0 n1 v0 c c3) \to (\forall (e3: C).((drop (S
+n0) O c3 e3) \to (or (drop (S n0) O c e3) (ex2 C (\lambda (e1: C).(csubst0
+(minus n1 (S n0)) v0 e1 e3)) (\lambda (e1: C).(drop (S n0) O c e1))))))))))
+H0 (s k x1) H4) in (let H9 \def (eq_ind nat i (\lambda (n1: nat).(lt (S n0)
+n1)) H (s k x1) H4) in (eq_ind_r nat (s k x1) (\lambda (n1: nat).(or (drop (S
+n0) O (CHead c k t) e2) (ex2 C (\lambda (e1: C).(csubst0 (minus n1 (S n0)) v
+e1 e2)) (\lambda (e1: C).(drop (S n0) O (CHead c k t) e1))))) (K_ind (\lambda
+(k0: K).(((\forall (c3: C).(\forall (v0: T).((csubst0 (s k0 x1) v0 c c3) \to
+(\forall (e3: C).((drop (S n0) O c3 e3) \to (or (drop (S n0) O c e3) (ex2 C
+(\lambda (e1: C).(csubst0 (minus (s k0 x1) (S n0)) v0 e1 e3)) (\lambda (e1:
+C).(drop (S n0) O c e1)))))))))) \to ((lt (S n0) (s k0 x1)) \to ((drop (r k0
+n0) O c e2) \to (or (drop (S n0) O (CHead c k0 t) e2) (ex2 C (\lambda (e1:
+C).(csubst0 (minus (s k0 x1) (S n0)) v e1 e2)) (\lambda (e1: C).(drop (S n0)
+O (CHead c k0 t) e1)))))))) (\lambda (b: B).(\lambda (_: ((\forall (c3:
+C).(\forall (v0: T).((csubst0 (s (Bind b) x1) v0 c c3) \to (\forall (e3:
+C).((drop (S n0) O c3 e3) \to (or (drop (S n0) O c e3) (ex2 C (\lambda (e1:
+C).(csubst0 (minus (s (Bind b) x1) (S n0)) v0 e1 e3)) (\lambda (e1: C).(drop
+(S n0) O c e1))))))))))).(\lambda (_: (lt (S n0) (s (Bind b) x1))).(\lambda
+(H12: (drop (r (Bind b) n0) O c e2)).(or_introl (drop (S n0) O (CHead c (Bind
+b) t) e2) (ex2 C (\lambda (e1: C).(csubst0 (minus x1 n0) v e1 e2)) (\lambda
+(e1: C).(drop (S n0) O (CHead c (Bind b) t) e1))) (drop_drop (Bind b) n0 c e2
+H12 t)))))) (\lambda (f: F).(\lambda (_: ((\forall (c3: C).(\forall (v0:
+T).((csubst0 (s (Flat f) x1) v0 c c3) \to (\forall (e3: C).((drop (S n0) O c3
+e3) \to (or (drop (S n0) O c e3) (ex2 C (\lambda (e1: C).(csubst0 (minus (s
+(Flat f) x1) (S n0)) v0 e1 e3)) (\lambda (e1: C).(drop (S n0) O c
+e1))))))))))).(\lambda (_: (lt (S n0) (s (Flat f) x1))).(\lambda (H12: (drop
+(r (Flat f) n0) O c e2)).(or_introl (drop (S n0) O (CHead c (Flat f) t) e2)
+(ex2 C (\lambda (e1: C).(csubst0 (minus x1 (S n0)) v e1 e2)) (\lambda (e1:
+C).(drop (S n0) O (CHead c (Flat f) t) e1))) (drop_drop (Flat f) n0 c e2 H12
+t)))))) k H8 H9 (drop_gen_drop k c e2 x0 n0 H7)) i H4))))))))) H3)) (\lambda
+(H3: (ex3_2 C nat (\lambda (_: C).(\lambda (j: nat).(eq nat i (s k j))))
+(\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k t)))) (\lambda (c3:
+C).(\lambda (j: nat).(csubst0 j v c c3))))).(ex3_2_ind C nat (\lambda (_:
+C).(\lambda (j: nat).(eq nat i (s k j)))) (\lambda (c3: C).(\lambda (_:
+nat).(eq C c2 (CHead c3 k t)))) (\lambda (c3: C).(\lambda (j: nat).(csubst0 j
+v c c3))) (or (drop (S n0) O (CHead c k t) e2) (ex2 C (\lambda (e1:
+C).(csubst0 (minus i (S n0)) v e1 e2)) (\lambda (e1: C).(drop (S n0) O (CHead
+c k t) e1)))) (\lambda (x0: C).(\lambda (x1: nat).(\lambda (H4: (eq nat i (s
+k x1))).(\lambda (H5: (eq C c2 (CHead x0 k t))).(\lambda (H6: (csubst0 x1 v c
+x0)).(let H7 \def (eq_ind C c2 (\lambda (c0: C).(drop (S n0) O c0 e2)) H2
+(CHead x0 k t) H5) in (let H8 \def (eq_ind nat i (\lambda (n1: nat).(\forall
+(c3: C).(\forall (v0: T).((csubst0 n1 v0 c c3) \to (\forall (e3: C).((drop (S
+n0) O c3 e3) \to (or (drop (S n0) O c e3) (ex2 C (\lambda (e1: C).(csubst0
+(minus n1 (S n0)) v0 e1 e3)) (\lambda (e1: C).(drop (S n0) O c e1))))))))))
+H0 (s k x1) H4) in (let H9 \def (eq_ind nat i (\lambda (n1: nat).(lt (S n0)
+n1)) H (s k x1) H4) in (eq_ind_r nat (s k x1) (\lambda (n1: nat).(or (drop (S
+n0) O (CHead c k t) e2) (ex2 C (\lambda (e1: C).(csubst0 (minus n1 (S n0)) v
+e1 e2)) (\lambda (e1: C).(drop (S n0) O (CHead c k t) e1))))) (K_ind (\lambda
+(k0: K).(((\forall (c3: C).(\forall (v0: T).((csubst0 (s k0 x1) v0 c c3) \to
+(\forall (e3: C).((drop (S n0) O c3 e3) \to (or (drop (S n0) O c e3) (ex2 C
+(\lambda (e1: C).(csubst0 (minus (s k0 x1) (S n0)) v0 e1 e3)) (\lambda (e1:
+C).(drop (S n0) O c e1)))))))))) \to ((lt (S n0) (s k0 x1)) \to ((drop (r k0
+n0) O x0 e2) \to (or (drop (S n0) O (CHead c k0 t) e2) (ex2 C (\lambda (e1:
+C).(csubst0 (minus (s k0 x1) (S n0)) v e1 e2)) (\lambda (e1: C).(drop (S n0)
+O (CHead c k0 t) e1)))))))) (\lambda (b: B).(\lambda (_: ((\forall (c3:
+C).(\forall (v0: T).((csubst0 (s (Bind b) x1) v0 c c3) \to (\forall (e3:
+C).((drop (S n0) O c3 e3) \to (or (drop (S n0) O c e3) (ex2 C (\lambda (e1:
+C).(csubst0 (minus (s (Bind b) x1) (S n0)) v0 e1 e3)) (\lambda (e1: C).(drop
+(S n0) O c e1))))))))))).(\lambda (H11: (lt (S n0) (s (Bind b) x1))).(\lambda
+(H12: (drop (r (Bind b) n0) O x0 e2)).(let H_x \def (IHn x1 (lt_S_n n0 x1
+H11) c x0 v H6 e2 H12) in (let H13 \def H_x in (or_ind (drop n0 O c e2) (ex2
+C (\lambda (e1: C).(csubst0 (minus x1 n0) v e1 e2)) (\lambda (e1: C).(drop n0
+O c e1))) (or (drop (S n0) O (CHead c (Bind b) t) e2) (ex2 C (\lambda (e1:
+C).(csubst0 (minus x1 n0) v e1 e2)) (\lambda (e1: C).(drop (S n0) O (CHead c
+(Bind b) t) e1)))) (\lambda (H14: (drop n0 O c e2)).(or_introl (drop (S n0) O
+(CHead c (Bind b) t) e2) (ex2 C (\lambda (e1: C).(csubst0 (minus x1 n0) v e1
+e2)) (\lambda (e1: C).(drop (S n0) O (CHead c (Bind b) t) e1))) (drop_drop
+(Bind b) n0 c e2 H14 t))) (\lambda (H14: (ex2 C (\lambda (e1: C).(csubst0
+(minus x1 n0) v e1 e2)) (\lambda (e1: C).(drop n0 O c e1)))).(ex2_ind C
+(\lambda (e1: C).(csubst0 (minus x1 n0) v e1 e2)) (\lambda (e1: C).(drop n0 O
+c e1)) (or (drop (S n0) O (CHead c (Bind b) t) e2) (ex2 C (\lambda (e1:
+C).(csubst0 (minus x1 n0) v e1 e2)) (\lambda (e1: C).(drop (S n0) O (CHead c
+(Bind b) t) e1)))) (\lambda (x: C).(\lambda (H15: (csubst0 (minus x1 n0) v x
+e2)).(\lambda (H16: (drop n0 O c x)).(or_intror (drop (S n0) O (CHead c (Bind
+b) t) e2) (ex2 C (\lambda (e1: C).(csubst0 (minus x1 n0) v e1 e2)) (\lambda
+(e1: C).(drop (S n0) O (CHead c (Bind b) t) e1))) (ex_intro2 C (\lambda (e1:
+C).(csubst0 (minus x1 n0) v e1 e2)) (\lambda (e1: C).(drop (S n0) O (CHead c
+(Bind b) t) e1)) x H15 (drop_drop (Bind b) n0 c x H16 t)))))) H14))
+H13))))))) (\lambda (f: F).(\lambda (H10: ((\forall (c3: C).(\forall (v0:
+T).((csubst0 (s (Flat f) x1) v0 c c3) \to (\forall (e3: C).((drop (S n0) O c3
+e3) \to (or (drop (S n0) O c e3) (ex2 C (\lambda (e1: C).(csubst0 (minus (s
+(Flat f) x1) (S n0)) v0 e1 e3)) (\lambda (e1: C).(drop (S n0) O c
+e1))))))))))).(\lambda (_: (lt (S n0) (s (Flat f) x1))).(\lambda (H12: (drop
+(r (Flat f) n0) O x0 e2)).(let H_x \def (H10 x0 v H6 e2 H12) in (let H13 \def
+H_x in (or_ind (drop (S n0) O c e2) (ex2 C (\lambda (e1: C).(csubst0 (minus
+x1 (S n0)) v e1 e2)) (\lambda (e1: C).(drop (S n0) O c e1))) (or (drop (S n0)
+O (CHead c (Flat f) t) e2) (ex2 C (\lambda (e1: C).(csubst0 (minus x1 (S n0))
+v e1 e2)) (\lambda (e1: C).(drop (S n0) O (CHead c (Flat f) t) e1))))
+(\lambda (H14: (drop (S n0) O c e2)).(or_introl (drop (S n0) O (CHead c (Flat
+f) t) e2) (ex2 C (\lambda (e1: C).(csubst0 (minus x1 (S n0)) v e1 e2))
+(\lambda (e1: C).(drop (S n0) O (CHead c (Flat f) t) e1))) (drop_drop (Flat
+f) n0 c e2 H14 t))) (\lambda (H14: (ex2 C (\lambda (e1: C).(csubst0 (minus x1
+(S n0)) v e1 e2)) (\lambda (e1: C).(drop (S n0) O c e1)))).(ex2_ind C
+(\lambda (e1: C).(csubst0 (minus x1 (S n0)) v e1 e2)) (\lambda (e1: C).(drop
+(S n0) O c e1)) (or (drop (S n0) O (CHead c (Flat f) t) e2) (ex2 C (\lambda
+(e1: C).(csubst0 (minus x1 (S n0)) v e1 e2)) (\lambda (e1: C).(drop (S n0) O
+(CHead c (Flat f) t) e1)))) (\lambda (x: C).(\lambda (H15: (csubst0 (minus x1
+(S n0)) v x e2)).(\lambda (H16: (drop (S n0) O c x)).(or_intror (drop (S n0)
+O (CHead c (Flat f) t) e2) (ex2 C (\lambda (e1: C).(csubst0 (minus x1 (S n0))
+v e1 e2)) (\lambda (e1: C).(drop (S n0) O (CHead c (Flat f) t) e1)))
+(ex_intro2 C (\lambda (e1: C).(csubst0 (minus x1 (S n0)) v e1 e2)) (\lambda
+(e1: C).(drop (S n0) O (CHead c (Flat f) t) e1)) x H15 (drop_drop (Flat f) n0
+c x H16 t)))))) H14)) H13))))))) k H8 H9 (drop_gen_drop k x0 e2 t n0 H7)) i
+H4))))))))) H3)) (\lambda (H3: (ex4_3 T C nat (\lambda (_: T).(\lambda (_:
+C).(\lambda (j: nat).(eq nat i (s k j))))) (\lambda (u2: T).(\lambda (c3:
+C).(\lambda (_: nat).(eq C c2 (CHead c3 k u2))))) (\lambda (u2: T).(\lambda
+(_: C).(\lambda (j: nat).(subst0 j v t u2)))) (\lambda (_: T).(\lambda (c3:
+C).(\lambda (j: nat).(csubst0 j v c c3)))))).(ex4_3_ind T C nat (\lambda (_:
+T).(\lambda (_: C).(\lambda (j: nat).(eq nat i (s k j))))) (\lambda (u2:
+T).(\lambda (c3: C).(\lambda (_: nat).(eq C c2 (CHead c3 k u2))))) (\lambda
+(u2: T).(\lambda (_: C).(\lambda (j: nat).(subst0 j v t u2)))) (\lambda (_:
+T).(\lambda (c3: C).(\lambda (j: nat).(csubst0 j v c c3)))) (or (drop (S n0)
+O (CHead c k t) e2) (ex2 C (\lambda (e1: C).(csubst0 (minus i (S n0)) v e1
+e2)) (\lambda (e1: C).(drop (S n0) O (CHead c k t) e1)))) (\lambda (x0:
+T).(\lambda (x1: C).(\lambda (x2: nat).(\lambda (H4: (eq nat i (s k
+x2))).(\lambda (H5: (eq C c2 (CHead x1 k x0))).(\lambda (_: (subst0 x2 v t
+x0)).(\lambda (H7: (csubst0 x2 v c x1)).(let H8 \def (eq_ind C c2 (\lambda
+(c0: C).(drop (S n0) O c0 e2)) H2 (CHead x1 k x0) H5) in (let H9 \def (eq_ind
+nat i (\lambda (n1: nat).(\forall (c3: C).(\forall (v0: T).((csubst0 n1 v0 c
+c3) \to (\forall (e3: C).((drop (S n0) O c3 e3) \to (or (drop (S n0) O c e3)
+(ex2 C (\lambda (e1: C).(csubst0 (minus n1 (S n0)) v0 e1 e3)) (\lambda (e1:
+C).(drop (S n0) O c e1)))))))))) H0 (s k x2) H4) in (let H10 \def (eq_ind nat
+i (\lambda (n1: nat).(lt (S n0) n1)) H (s k x2) H4) in (eq_ind_r nat (s k x2)
+(\lambda (n1: nat).(or (drop (S n0) O (CHead c k t) e2) (ex2 C (\lambda (e1:
+C).(csubst0 (minus n1 (S n0)) v e1 e2)) (\lambda (e1: C).(drop (S n0) O
+(CHead c k t) e1))))) (K_ind (\lambda (k0: K).(((\forall (c3: C).(\forall
+(v0: T).((csubst0 (s k0 x2) v0 c c3) \to (\forall (e3: C).((drop (S n0) O c3
+e3) \to (or (drop (S n0) O c e3) (ex2 C (\lambda (e1: C).(csubst0 (minus (s
+k0 x2) (S n0)) v0 e1 e3)) (\lambda (e1: C).(drop (S n0) O c e1)))))))))) \to
+((lt (S n0) (s k0 x2)) \to ((drop (r k0 n0) O x1 e2) \to (or (drop (S n0) O
+(CHead c k0 t) e2) (ex2 C (\lambda (e1: C).(csubst0 (minus (s k0 x2) (S n0))
+v e1 e2)) (\lambda (e1: C).(drop (S n0) O (CHead c k0 t) e1)))))))) (\lambda
+(b: B).(\lambda (_: ((\forall (c3: C).(\forall (v0: T).((csubst0 (s (Bind b)
+x2) v0 c c3) \to (\forall (e3: C).((drop (S n0) O c3 e3) \to (or (drop (S n0)
+O c e3) (ex2 C (\lambda (e1: C).(csubst0 (minus (s (Bind b) x2) (S n0)) v0 e1
+e3)) (\lambda (e1: C).(drop (S n0) O c e1))))))))))).(\lambda (H12: (lt (S
+n0) (s (Bind b) x2))).(\lambda (H13: (drop (r (Bind b) n0) O x1 e2)).(let H_x
+\def (IHn x2 (lt_S_n n0 x2 H12) c x1 v H7 e2 H13) in (let H14 \def H_x in
+(or_ind (drop n0 O c e2) (ex2 C (\lambda (e1: C).(csubst0 (minus x2 n0) v e1
+e2)) (\lambda (e1: C).(drop n0 O c e1))) (or (drop (S n0) O (CHead c (Bind b)
+t) e2) (ex2 C (\lambda (e1: C).(csubst0 (minus x2 n0) v e1 e2)) (\lambda (e1:
+C).(drop (S n0) O (CHead c (Bind b) t) e1)))) (\lambda (H15: (drop n0 O c
+e2)).(or_introl (drop (S n0) O (CHead c (Bind b) t) e2) (ex2 C (\lambda (e1:
+C).(csubst0 (minus x2 n0) v e1 e2)) (\lambda (e1: C).(drop (S n0) O (CHead c
+(Bind b) t) e1))) (drop_drop (Bind b) n0 c e2 H15 t))) (\lambda (H15: (ex2 C
+(\lambda (e1: C).(csubst0 (minus x2 n0) v e1 e2)) (\lambda (e1: C).(drop n0 O
+c e1)))).(ex2_ind C (\lambda (e1: C).(csubst0 (minus x2 n0) v e1 e2))
+(\lambda (e1: C).(drop n0 O c e1)) (or (drop (S n0) O (CHead c (Bind b) t)
+e2) (ex2 C (\lambda (e1: C).(csubst0 (minus x2 n0) v e1 e2)) (\lambda (e1:
+C).(drop (S n0) O (CHead c (Bind b) t) e1)))) (\lambda (x: C).(\lambda (H16:
+(csubst0 (minus x2 n0) v x e2)).(\lambda (H17: (drop n0 O c x)).(or_intror
+(drop (S n0) O (CHead c (Bind b) t) e2) (ex2 C (\lambda (e1: C).(csubst0
+(minus x2 n0) v e1 e2)) (\lambda (e1: C).(drop (S n0) O (CHead c (Bind b) t)
+e1))) (ex_intro2 C (\lambda (e1: C).(csubst0 (minus x2 n0) v e1 e2)) (\lambda
+(e1: C).(drop (S n0) O (CHead c (Bind b) t) e1)) x H16 (drop_drop (Bind b) n0
+c x H17 t)))))) H15)) H14))))))) (\lambda (f: F).(\lambda (H11: ((\forall
+(c3: C).(\forall (v0: T).((csubst0 (s (Flat f) x2) v0 c c3) \to (\forall (e3:
+C).((drop (S n0) O c3 e3) \to (or (drop (S n0) O c e3) (ex2 C (\lambda (e1:
+C).(csubst0 (minus (s (Flat f) x2) (S n0)) v0 e1 e3)) (\lambda (e1: C).(drop
+(S n0) O c e1))))))))))).(\lambda (_: (lt (S n0) (s (Flat f) x2))).(\lambda
+(H13: (drop (r (Flat f) n0) O x1 e2)).(let H_x \def (H11 x1 v H7 e2 H13) in
+(let H14 \def H_x in (or_ind (drop (S n0) O c e2) (ex2 C (\lambda (e1:
+C).(csubst0 (minus x2 (S n0)) v e1 e2)) (\lambda (e1: C).(drop (S n0) O c
+e1))) (or (drop (S n0) O (CHead c (Flat f) t) e2) (ex2 C (\lambda (e1:
+C).(csubst0 (minus x2 (S n0)) v e1 e2)) (\lambda (e1: C).(drop (S n0) O
+(CHead c (Flat f) t) e1)))) (\lambda (H15: (drop (S n0) O c e2)).(or_introl
+(drop (S n0) O (CHead c (Flat f) t) e2) (ex2 C (\lambda (e1: C).(csubst0
+(minus x2 (S n0)) v e1 e2)) (\lambda (e1: C).(drop (S n0) O (CHead c (Flat f)
+t) e1))) (drop_drop (Flat f) n0 c e2 H15 t))) (\lambda (H15: (ex2 C (\lambda
+(e1: C).(csubst0 (minus x2 (S n0)) v e1 e2)) (\lambda (e1: C).(drop (S n0) O
+c e1)))).(ex2_ind C (\lambda (e1: C).(csubst0 (minus x2 (S n0)) v e1 e2))
+(\lambda (e1: C).(drop (S n0) O c e1)) (or (drop (S n0) O (CHead c (Flat f)
+t) e2) (ex2 C (\lambda (e1: C).(csubst0 (minus x2 (S n0)) v e1 e2)) (\lambda
+(e1: C).(drop (S n0) O (CHead c (Flat f) t) e1)))) (\lambda (x: C).(\lambda
+(H16: (csubst0 (minus x2 (S n0)) v x e2)).(\lambda (H17: (drop (S n0) O c
+x)).(or_intror (drop (S n0) O (CHead c (Flat f) t) e2) (ex2 C (\lambda (e1:
+C).(csubst0 (minus x2 (S n0)) v e1 e2)) (\lambda (e1: C).(drop (S n0) O
+(CHead c (Flat f) t) e1))) (ex_intro2 C (\lambda (e1: C).(csubst0 (minus x2
+(S n0)) v e1 e2)) (\lambda (e1: C).(drop (S n0) O (CHead c (Flat f) t) e1)) x
+H16 (drop_drop (Flat f) n0 c x H17 t)))))) H15)) H14))))))) k H9 H10
+(drop_gen_drop k x1 e2 x0 n0 H8)) i H4))))))))))) H3)) (csubst0_gen_head k c
+c2 t v i H1))))))))))) c1)))))) n).
+
c3)))) u2 c2 i0 (refl_equal nat (s k i0)) (refl_equal C (CHead c2 k u2)) H12
H11)) k0 H8))))))) H6)) H5))))))))))))) i v y x H0))) H))))))).
+theorem csubst0_gen_S_bind_2:
+ \forall (b: B).(\forall (x: C).(\forall (c2: C).(\forall (v: T).(\forall
+(v2: T).(\forall (i: nat).((csubst0 (S i) v x (CHead c2 (Bind b) v2)) \to
+(or3 (ex2 T (\lambda (v1: T).(subst0 i v v1 v2)) (\lambda (v1: T).(eq C x
+(CHead c2 (Bind b) v1)))) (ex2 C (\lambda (c1: C).(csubst0 i v c1 c2))
+(\lambda (c1: C).(eq C x (CHead c1 (Bind b) v2)))) (ex3_2 C T (\lambda (_:
+C).(\lambda (v1: T).(subst0 i v v1 v2))) (\lambda (c1: C).(\lambda (_:
+T).(csubst0 i v c1 c2))) (\lambda (c1: C).(\lambda (v1: T).(eq C x (CHead c1
+(Bind b) v1))))))))))))
+\def
+ \lambda (b: B).(\lambda (x: C).(\lambda (c2: C).(\lambda (v: T).(\lambda
+(v2: T).(\lambda (i: nat).(\lambda (H: (csubst0 (S i) v x (CHead c2 (Bind b)
+v2))).(insert_eq C (CHead c2 (Bind b) v2) (\lambda (c: C).(csubst0 (S i) v x
+c)) (\lambda (_: C).(or3 (ex2 T (\lambda (v1: T).(subst0 i v v1 v2)) (\lambda
+(v1: T).(eq C x (CHead c2 (Bind b) v1)))) (ex2 C (\lambda (c1: C).(csubst0 i
+v c1 c2)) (\lambda (c1: C).(eq C x (CHead c1 (Bind b) v2)))) (ex3_2 C T
+(\lambda (_: C).(\lambda (v1: T).(subst0 i v v1 v2))) (\lambda (c1:
+C).(\lambda (_: T).(csubst0 i v c1 c2))) (\lambda (c1: C).(\lambda (v1:
+T).(eq C x (CHead c1 (Bind b) v1))))))) (\lambda (y: C).(\lambda (H0:
+(csubst0 (S i) v x y)).(insert_eq nat (S i) (\lambda (n: nat).(csubst0 n v x
+y)) (\lambda (_: nat).((eq C y (CHead c2 (Bind b) v2)) \to (or3 (ex2 T
+(\lambda (v1: T).(subst0 i v v1 v2)) (\lambda (v1: T).(eq C x (CHead c2 (Bind
+b) v1)))) (ex2 C (\lambda (c1: C).(csubst0 i v c1 c2)) (\lambda (c1: C).(eq C
+x (CHead c1 (Bind b) v2)))) (ex3_2 C T (\lambda (_: C).(\lambda (v1:
+T).(subst0 i v v1 v2))) (\lambda (c1: C).(\lambda (_: T).(csubst0 i v c1
+c2))) (\lambda (c1: C).(\lambda (v1: T).(eq C x (CHead c1 (Bind b) v1))))))))
+(\lambda (y0: nat).(\lambda (H1: (csubst0 y0 v x y)).(csubst0_ind (\lambda
+(n: nat).(\lambda (t: T).(\lambda (c: C).(\lambda (c0: C).((eq nat n (S i))
+\to ((eq C c0 (CHead c2 (Bind b) v2)) \to (or3 (ex2 T (\lambda (v1:
+T).(subst0 i t v1 v2)) (\lambda (v1: T).(eq C c (CHead c2 (Bind b) v1))))
+(ex2 C (\lambda (c1: C).(csubst0 i t c1 c2)) (\lambda (c1: C).(eq C c (CHead
+c1 (Bind b) v2)))) (ex3_2 C T (\lambda (_: C).(\lambda (v1: T).(subst0 i t v1
+v2))) (\lambda (c1: C).(\lambda (_: T).(csubst0 i t c1 c2))) (\lambda (c1:
+C).(\lambda (v1: T).(eq C c (CHead c1 (Bind b) v1)))))))))))) (\lambda (k:
+K).(\lambda (i0: nat).(\lambda (v0: T).(\lambda (u1: T).(\lambda (u2:
+T).(\lambda (H2: (subst0 i0 v0 u1 u2)).(\lambda (c: C).(\lambda (H3: (eq nat
+(s k i0) (S i))).(\lambda (H4: (eq C (CHead c k u2) (CHead c2 (Bind b)
+v2))).(let H5 \def (f_equal C C (\lambda (e: C).(match e in C return (\lambda
+(_: C).C) with [(CSort _) \Rightarrow c | (CHead c0 _ _) \Rightarrow c0]))
+(CHead c k u2) (CHead c2 (Bind b) v2) H4) in ((let H6 \def (f_equal C K
+(\lambda (e: C).(match e in C return (\lambda (_: C).K) with [(CSort _)
+\Rightarrow k | (CHead _ k0 _) \Rightarrow k0])) (CHead c k u2) (CHead c2
+(Bind b) v2) H4) in ((let H7 \def (f_equal C T (\lambda (e: C).(match e in C
+return (\lambda (_: C).T) with [(CSort _) \Rightarrow u2 | (CHead _ _ t)
+\Rightarrow t])) (CHead c k u2) (CHead c2 (Bind b) v2) H4) in (\lambda (H8:
+(eq K k (Bind b))).(\lambda (H9: (eq C c c2)).(eq_ind_r C c2 (\lambda (c0:
+C).(or3 (ex2 T (\lambda (v1: T).(subst0 i v0 v1 v2)) (\lambda (v1: T).(eq C
+(CHead c0 k u1) (CHead c2 (Bind b) v1)))) (ex2 C (\lambda (c1: C).(csubst0 i
+v0 c1 c2)) (\lambda (c1: C).(eq C (CHead c0 k u1) (CHead c1 (Bind b) v2))))
+(ex3_2 C T (\lambda (_: C).(\lambda (v1: T).(subst0 i v0 v1 v2))) (\lambda
+(c1: C).(\lambda (_: T).(csubst0 i v0 c1 c2))) (\lambda (c1: C).(\lambda (v1:
+T).(eq C (CHead c0 k u1) (CHead c1 (Bind b) v1))))))) (let H10 \def (eq_ind T
+u2 (\lambda (t: T).(subst0 i0 v0 u1 t)) H2 v2 H7) in (let H11 \def (eq_ind K
+k (\lambda (k0: K).(eq nat (s k0 i0) (S i))) H3 (Bind b) H8) in (eq_ind_r K
+(Bind b) (\lambda (k0: K).(or3 (ex2 T (\lambda (v1: T).(subst0 i v0 v1 v2))
+(\lambda (v1: T).(eq C (CHead c2 k0 u1) (CHead c2 (Bind b) v1)))) (ex2 C
+(\lambda (c1: C).(csubst0 i v0 c1 c2)) (\lambda (c1: C).(eq C (CHead c2 k0
+u1) (CHead c1 (Bind b) v2)))) (ex3_2 C T (\lambda (_: C).(\lambda (v1:
+T).(subst0 i v0 v1 v2))) (\lambda (c1: C).(\lambda (_: T).(csubst0 i v0 c1
+c2))) (\lambda (c1: C).(\lambda (v1: T).(eq C (CHead c2 k0 u1) (CHead c1
+(Bind b) v1))))))) (let H12 \def (f_equal nat nat (\lambda (e: nat).(match e
+in nat return (\lambda (_: nat).nat) with [O \Rightarrow i0 | (S n)
+\Rightarrow n])) (S i0) (S i) H11) in (let H13 \def (eq_ind nat i0 (\lambda
+(n: nat).(subst0 n v0 u1 v2)) H10 i H12) in (or3_intro0 (ex2 T (\lambda (v1:
+T).(subst0 i v0 v1 v2)) (\lambda (v1: T).(eq C (CHead c2 (Bind b) u1) (CHead
+c2 (Bind b) v1)))) (ex2 C (\lambda (c1: C).(csubst0 i v0 c1 c2)) (\lambda
+(c1: C).(eq C (CHead c2 (Bind b) u1) (CHead c1 (Bind b) v2)))) (ex3_2 C T
+(\lambda (_: C).(\lambda (v1: T).(subst0 i v0 v1 v2))) (\lambda (c1:
+C).(\lambda (_: T).(csubst0 i v0 c1 c2))) (\lambda (c1: C).(\lambda (v1:
+T).(eq C (CHead c2 (Bind b) u1) (CHead c1 (Bind b) v1))))) (ex_intro2 T
+(\lambda (v1: T).(subst0 i v0 v1 v2)) (\lambda (v1: T).(eq C (CHead c2 (Bind
+b) u1) (CHead c2 (Bind b) v1))) u1 H13 (refl_equal C (CHead c2 (Bind b)
+u1)))))) k H8))) c H9)))) H6)) H5))))))))))) (\lambda (k: K).(\lambda (i0:
+nat).(\lambda (c1: C).(\lambda (c0: C).(\lambda (v0: T).(\lambda (H2:
+(csubst0 i0 v0 c1 c0)).(\lambda (H3: (((eq nat i0 (S i)) \to ((eq C c0 (CHead
+c2 (Bind b) v2)) \to (or3 (ex2 T (\lambda (v1: T).(subst0 i v0 v1 v2))
+(\lambda (v1: T).(eq C c1 (CHead c2 (Bind b) v1)))) (ex2 C (\lambda (c3:
+C).(csubst0 i v0 c3 c2)) (\lambda (c3: C).(eq C c1 (CHead c3 (Bind b) v2))))
+(ex3_2 C T (\lambda (_: C).(\lambda (v1: T).(subst0 i v0 v1 v2))) (\lambda
+(c3: C).(\lambda (_: T).(csubst0 i v0 c3 c2))) (\lambda (c3: C).(\lambda (v1:
+T).(eq C c1 (CHead c3 (Bind b) v1)))))))))).(\lambda (u: T).(\lambda (H4: (eq
+nat (s k i0) (S i))).(\lambda (H5: (eq C (CHead c0 k u) (CHead c2 (Bind b)
+v2))).(let H6 \def (f_equal C C (\lambda (e: C).(match e in C return (\lambda
+(_: C).C) with [(CSort _) \Rightarrow c0 | (CHead c _ _) \Rightarrow c]))
+(CHead c0 k u) (CHead c2 (Bind b) v2) H5) in ((let H7 \def (f_equal C K
+(\lambda (e: C).(match e in C return (\lambda (_: C).K) with [(CSort _)
+\Rightarrow k | (CHead _ k0 _) \Rightarrow k0])) (CHead c0 k u) (CHead c2
+(Bind b) v2) H5) in ((let H8 \def (f_equal C T (\lambda (e: C).(match e in C
+return (\lambda (_: C).T) with [(CSort _) \Rightarrow u | (CHead _ _ t)
+\Rightarrow t])) (CHead c0 k u) (CHead c2 (Bind b) v2) H5) in (\lambda (H9:
+(eq K k (Bind b))).(\lambda (H10: (eq C c0 c2)).(eq_ind_r T v2 (\lambda (t:
+T).(or3 (ex2 T (\lambda (v1: T).(subst0 i v0 v1 v2)) (\lambda (v1: T).(eq C
+(CHead c1 k t) (CHead c2 (Bind b) v1)))) (ex2 C (\lambda (c3: C).(csubst0 i
+v0 c3 c2)) (\lambda (c3: C).(eq C (CHead c1 k t) (CHead c3 (Bind b) v2))))
+(ex3_2 C T (\lambda (_: C).(\lambda (v1: T).(subst0 i v0 v1 v2))) (\lambda
+(c3: C).(\lambda (_: T).(csubst0 i v0 c3 c2))) (\lambda (c3: C).(\lambda (v1:
+T).(eq C (CHead c1 k t) (CHead c3 (Bind b) v1))))))) (let H11 \def (eq_ind C
+c0 (\lambda (c: C).((eq nat i0 (S i)) \to ((eq C c (CHead c2 (Bind b) v2))
+\to (or3 (ex2 T (\lambda (v1: T).(subst0 i v0 v1 v2)) (\lambda (v1: T).(eq C
+c1 (CHead c2 (Bind b) v1)))) (ex2 C (\lambda (c3: C).(csubst0 i v0 c3 c2))
+(\lambda (c3: C).(eq C c1 (CHead c3 (Bind b) v2)))) (ex3_2 C T (\lambda (_:
+C).(\lambda (v1: T).(subst0 i v0 v1 v2))) (\lambda (c3: C).(\lambda (_:
+T).(csubst0 i v0 c3 c2))) (\lambda (c3: C).(\lambda (v1: T).(eq C c1 (CHead
+c3 (Bind b) v1))))))))) H3 c2 H10) in (let H12 \def (eq_ind C c0 (\lambda (c:
+C).(csubst0 i0 v0 c1 c)) H2 c2 H10) in (let H13 \def (eq_ind K k (\lambda
+(k0: K).(eq nat (s k0 i0) (S i))) H4 (Bind b) H9) in (eq_ind_r K (Bind b)
+(\lambda (k0: K).(or3 (ex2 T (\lambda (v1: T).(subst0 i v0 v1 v2)) (\lambda
+(v1: T).(eq C (CHead c1 k0 v2) (CHead c2 (Bind b) v1)))) (ex2 C (\lambda (c3:
+C).(csubst0 i v0 c3 c2)) (\lambda (c3: C).(eq C (CHead c1 k0 v2) (CHead c3
+(Bind b) v2)))) (ex3_2 C T (\lambda (_: C).(\lambda (v1: T).(subst0 i v0 v1
+v2))) (\lambda (c3: C).(\lambda (_: T).(csubst0 i v0 c3 c2))) (\lambda (c3:
+C).(\lambda (v1: T).(eq C (CHead c1 k0 v2) (CHead c3 (Bind b) v1))))))) (let
+H14 \def (f_equal nat nat (\lambda (e: nat).(match e in nat return (\lambda
+(_: nat).nat) with [O \Rightarrow i0 | (S n) \Rightarrow n])) (S i0) (S i)
+H13) in (let H15 \def (eq_ind nat i0 (\lambda (n: nat).((eq nat n (S i)) \to
+((eq C c2 (CHead c2 (Bind b) v2)) \to (or3 (ex2 T (\lambda (v1: T).(subst0 i
+v0 v1 v2)) (\lambda (v1: T).(eq C c1 (CHead c2 (Bind b) v1)))) (ex2 C
+(\lambda (c3: C).(csubst0 i v0 c3 c2)) (\lambda (c3: C).(eq C c1 (CHead c3
+(Bind b) v2)))) (ex3_2 C T (\lambda (_: C).(\lambda (v1: T).(subst0 i v0 v1
+v2))) (\lambda (c3: C).(\lambda (_: T).(csubst0 i v0 c3 c2))) (\lambda (c3:
+C).(\lambda (v1: T).(eq C c1 (CHead c3 (Bind b) v1))))))))) H11 i H14) in
+(let H16 \def (eq_ind nat i0 (\lambda (n: nat).(csubst0 n v0 c1 c2)) H12 i
+H14) in (or3_intro1 (ex2 T (\lambda (v1: T).(subst0 i v0 v1 v2)) (\lambda
+(v1: T).(eq C (CHead c1 (Bind b) v2) (CHead c2 (Bind b) v1)))) (ex2 C
+(\lambda (c3: C).(csubst0 i v0 c3 c2)) (\lambda (c3: C).(eq C (CHead c1 (Bind
+b) v2) (CHead c3 (Bind b) v2)))) (ex3_2 C T (\lambda (_: C).(\lambda (v1:
+T).(subst0 i v0 v1 v2))) (\lambda (c3: C).(\lambda (_: T).(csubst0 i v0 c3
+c2))) (\lambda (c3: C).(\lambda (v1: T).(eq C (CHead c1 (Bind b) v2) (CHead
+c3 (Bind b) v1))))) (ex_intro2 C (\lambda (c3: C).(csubst0 i v0 c3 c2))
+(\lambda (c3: C).(eq C (CHead c1 (Bind b) v2) (CHead c3 (Bind b) v2))) c1 H16
+(refl_equal C (CHead c1 (Bind b) v2))))))) k H9)))) u H8)))) H7))
+H6)))))))))))) (\lambda (k: K).(\lambda (i0: nat).(\lambda (v0: T).(\lambda
+(u1: T).(\lambda (u2: T).(\lambda (H2: (subst0 i0 v0 u1 u2)).(\lambda (c1:
+C).(\lambda (c0: C).(\lambda (H3: (csubst0 i0 v0 c1 c0)).(\lambda (H4: (((eq
+nat i0 (S i)) \to ((eq C c0 (CHead c2 (Bind b) v2)) \to (or3 (ex2 T (\lambda
+(v1: T).(subst0 i v0 v1 v2)) (\lambda (v1: T).(eq C c1 (CHead c2 (Bind b)
+v1)))) (ex2 C (\lambda (c3: C).(csubst0 i v0 c3 c2)) (\lambda (c3: C).(eq C
+c1 (CHead c3 (Bind b) v2)))) (ex3_2 C T (\lambda (_: C).(\lambda (v1:
+T).(subst0 i v0 v1 v2))) (\lambda (c3: C).(\lambda (_: T).(csubst0 i v0 c3
+c2))) (\lambda (c3: C).(\lambda (v1: T).(eq C c1 (CHead c3 (Bind b)
+v1)))))))))).(\lambda (H5: (eq nat (s k i0) (S i))).(\lambda (H6: (eq C
+(CHead c0 k u2) (CHead c2 (Bind b) v2))).(let H7 \def (f_equal C C (\lambda
+(e: C).(match e in C return (\lambda (_: C).C) with [(CSort _) \Rightarrow c0
+| (CHead c _ _) \Rightarrow c])) (CHead c0 k u2) (CHead c2 (Bind b) v2) H6)
+in ((let H8 \def (f_equal C K (\lambda (e: C).(match e in C return (\lambda
+(_: C).K) with [(CSort _) \Rightarrow k | (CHead _ k0 _) \Rightarrow k0]))
+(CHead c0 k u2) (CHead c2 (Bind b) v2) H6) in ((let H9 \def (f_equal C T
+(\lambda (e: C).(match e in C return (\lambda (_: C).T) with [(CSort _)
+\Rightarrow u2 | (CHead _ _ t) \Rightarrow t])) (CHead c0 k u2) (CHead c2
+(Bind b) v2) H6) in (\lambda (H10: (eq K k (Bind b))).(\lambda (H11: (eq C c0
+c2)).(let H12 \def (eq_ind C c0 (\lambda (c: C).((eq nat i0 (S i)) \to ((eq C
+c (CHead c2 (Bind b) v2)) \to (or3 (ex2 T (\lambda (v1: T).(subst0 i v0 v1
+v2)) (\lambda (v1: T).(eq C c1 (CHead c2 (Bind b) v1)))) (ex2 C (\lambda (c3:
+C).(csubst0 i v0 c3 c2)) (\lambda (c3: C).(eq C c1 (CHead c3 (Bind b) v2))))
+(ex3_2 C T (\lambda (_: C).(\lambda (v1: T).(subst0 i v0 v1 v2))) (\lambda
+(c3: C).(\lambda (_: T).(csubst0 i v0 c3 c2))) (\lambda (c3: C).(\lambda (v1:
+T).(eq C c1 (CHead c3 (Bind b) v1))))))))) H4 c2 H11) in (let H13 \def
+(eq_ind C c0 (\lambda (c: C).(csubst0 i0 v0 c1 c)) H3 c2 H11) in (let H14
+\def (eq_ind T u2 (\lambda (t: T).(subst0 i0 v0 u1 t)) H2 v2 H9) in (let H15
+\def (eq_ind K k (\lambda (k0: K).(eq nat (s k0 i0) (S i))) H5 (Bind b) H10)
+in (eq_ind_r K (Bind b) (\lambda (k0: K).(or3 (ex2 T (\lambda (v1: T).(subst0
+i v0 v1 v2)) (\lambda (v1: T).(eq C (CHead c1 k0 u1) (CHead c2 (Bind b)
+v1)))) (ex2 C (\lambda (c3: C).(csubst0 i v0 c3 c2)) (\lambda (c3: C).(eq C
+(CHead c1 k0 u1) (CHead c3 (Bind b) v2)))) (ex3_2 C T (\lambda (_:
+C).(\lambda (v1: T).(subst0 i v0 v1 v2))) (\lambda (c3: C).(\lambda (_:
+T).(csubst0 i v0 c3 c2))) (\lambda (c3: C).(\lambda (v1: T).(eq C (CHead c1
+k0 u1) (CHead c3 (Bind b) v1))))))) (let H16 \def (f_equal nat nat (\lambda
+(e: nat).(match e in nat return (\lambda (_: nat).nat) with [O \Rightarrow i0
+| (S n) \Rightarrow n])) (S i0) (S i) H15) in (let H17 \def (eq_ind nat i0
+(\lambda (n: nat).((eq nat n (S i)) \to ((eq C c2 (CHead c2 (Bind b) v2)) \to
+(or3 (ex2 T (\lambda (v1: T).(subst0 i v0 v1 v2)) (\lambda (v1: T).(eq C c1
+(CHead c2 (Bind b) v1)))) (ex2 C (\lambda (c3: C).(csubst0 i v0 c3 c2))
+(\lambda (c3: C).(eq C c1 (CHead c3 (Bind b) v2)))) (ex3_2 C T (\lambda (_:
+C).(\lambda (v1: T).(subst0 i v0 v1 v2))) (\lambda (c3: C).(\lambda (_:
+T).(csubst0 i v0 c3 c2))) (\lambda (c3: C).(\lambda (v1: T).(eq C c1 (CHead
+c3 (Bind b) v1))))))))) H12 i H16) in (let H18 \def (eq_ind nat i0 (\lambda
+(n: nat).(csubst0 n v0 c1 c2)) H13 i H16) in (let H19 \def (eq_ind nat i0
+(\lambda (n: nat).(subst0 n v0 u1 v2)) H14 i H16) in (or3_intro2 (ex2 T
+(\lambda (v1: T).(subst0 i v0 v1 v2)) (\lambda (v1: T).(eq C (CHead c1 (Bind
+b) u1) (CHead c2 (Bind b) v1)))) (ex2 C (\lambda (c3: C).(csubst0 i v0 c3
+c2)) (\lambda (c3: C).(eq C (CHead c1 (Bind b) u1) (CHead c3 (Bind b) v2))))
+(ex3_2 C T (\lambda (_: C).(\lambda (v1: T).(subst0 i v0 v1 v2))) (\lambda
+(c3: C).(\lambda (_: T).(csubst0 i v0 c3 c2))) (\lambda (c3: C).(\lambda (v1:
+T).(eq C (CHead c1 (Bind b) u1) (CHead c3 (Bind b) v1))))) (ex3_2_intro C T
+(\lambda (_: C).(\lambda (v1: T).(subst0 i v0 v1 v2))) (\lambda (c3:
+C).(\lambda (_: T).(csubst0 i v0 c3 c2))) (\lambda (c3: C).(\lambda (v1:
+T).(eq C (CHead c1 (Bind b) u1) (CHead c3 (Bind b) v1)))) c1 u1 H19 H18
+(refl_equal C (CHead c1 (Bind b) u1)))))))) k H10)))))))) H8))
+H7)))))))))))))) y0 v x y H1))) H0))) H))))))).
+
x2 e x4 H14)) x0 x3)))))))))))) H9)) H8)) n H5)))) (\lambda (H5: (lt n
i)).(le_lt_false i n H H5 (getl n c1 e))))))) H2)))))))))).
+theorem csubst0_getl_lt_back:
+ \forall (n: nat).(\forall (i: nat).((lt n i) \to (\forall (c1: C).(\forall
+(c2: C).(\forall (v: T).((csubst0 i v c1 c2) \to (\forall (e2: C).((getl n c2
+e2) \to (or (getl n c1 e2) (ex2 C (\lambda (e1: C).(csubst0 (minus i n) v e1
+e2)) (\lambda (e1: C).(getl n c1 e1))))))))))))
+\def
+ \lambda (n: nat).(\lambda (i: nat).(\lambda (H: (lt n i)).(\lambda (c1:
+C).(\lambda (c2: C).(\lambda (v: T).(\lambda (H0: (csubst0 i v c1
+c2)).(\lambda (e2: C).(\lambda (H1: (getl n c2 e2)).(let H2 \def
+(getl_gen_all c2 e2 n H1) in (ex2_ind C (\lambda (e: C).(drop n O c2 e))
+(\lambda (e: C).(clear e e2)) (or (getl n c1 e2) (ex2 C (\lambda (e1:
+C).(csubst0 (minus i n) v e1 e2)) (\lambda (e1: C).(getl n c1 e1)))) (\lambda
+(x: C).(\lambda (H3: (drop n O c2 x)).(\lambda (H4: (clear x e2)).(let H_x
+\def (csubst0_drop_lt_back n i H c1 c2 v H0 x H3) in (let H5 \def H_x in
+(or_ind (drop n O c1 x) (ex2 C (\lambda (e1: C).(csubst0 (minus i n) v e1 x))
+(\lambda (e1: C).(drop n O c1 e1))) (or (getl n c1 e2) (ex2 C (\lambda (e1:
+C).(csubst0 (minus i n) v e1 e2)) (\lambda (e1: C).(getl n c1 e1)))) (\lambda
+(H6: (drop n O c1 x)).(or_introl (getl n c1 e2) (ex2 C (\lambda (e1:
+C).(csubst0 (minus i n) v e1 e2)) (\lambda (e1: C).(getl n c1 e1)))
+(getl_intro n c1 e2 x H6 H4))) (\lambda (H6: (ex2 C (\lambda (e1: C).(csubst0
+(minus i n) v e1 x)) (\lambda (e1: C).(drop n O c1 e1)))).(ex2_ind C (\lambda
+(e1: C).(csubst0 (minus i n) v e1 x)) (\lambda (e1: C).(drop n O c1 e1)) (or
+(getl n c1 e2) (ex2 C (\lambda (e1: C).(csubst0 (minus i n) v e1 e2))
+(\lambda (e1: C).(getl n c1 e1)))) (\lambda (x0: C).(\lambda (H7: (csubst0
+(minus i n) v x0 x)).(\lambda (H8: (drop n O c1 x0)).(let H_x0 \def
+(csubst0_clear_trans x0 x v (minus i n) H7 e2 H4) in (let H9 \def H_x0 in
+(or_ind (clear x0 e2) (ex2 C (\lambda (e1: C).(csubst0 (minus i n) v e1 e2))
+(\lambda (e1: C).(clear x0 e1))) (or (getl n c1 e2) (ex2 C (\lambda (e1:
+C).(csubst0 (minus i n) v e1 e2)) (\lambda (e1: C).(getl n c1 e1)))) (\lambda
+(H10: (clear x0 e2)).(or_introl (getl n c1 e2) (ex2 C (\lambda (e1:
+C).(csubst0 (minus i n) v e1 e2)) (\lambda (e1: C).(getl n c1 e1)))
+(getl_intro n c1 e2 x0 H8 H10))) (\lambda (H10: (ex2 C (\lambda (e1:
+C).(csubst0 (minus i n) v e1 e2)) (\lambda (e1: C).(clear x0 e1)))).(ex2_ind
+C (\lambda (e1: C).(csubst0 (minus i n) v e1 e2)) (\lambda (e1: C).(clear x0
+e1)) (or (getl n c1 e2) (ex2 C (\lambda (e1: C).(csubst0 (minus i n) v e1
+e2)) (\lambda (e1: C).(getl n c1 e1)))) (\lambda (x1: C).(\lambda (H11:
+(csubst0 (minus i n) v x1 e2)).(\lambda (H12: (clear x0 x1)).(or_intror (getl
+n c1 e2) (ex2 C (\lambda (e1: C).(csubst0 (minus i n) v e1 e2)) (\lambda (e1:
+C).(getl n c1 e1))) (ex_intro2 C (\lambda (e1: C).(csubst0 (minus i n) v e1
+e2)) (\lambda (e1: C).(getl n c1 e1)) x1 H11 (getl_intro n c1 x1 x0 H8
+H12)))))) H10)) H9)))))) H6)) H5)))))) H2)))))))))).
+
include "LambdaDelta-1/csubst0/getl.ma".
-include "LambdaDelta-1/csubst0/props.ma".
-
include "LambdaDelta-1/subst1/props.ma".
include "LambdaDelta-1/drop/props.ma".
(\lambda (c3: C).(\lambda (c4: C).(\lambda (H0: (csubt g c3 c4)).(\lambda (_:
((\forall (e1: C).((clear c3 e1) \to (ex2 C (\lambda (e2: C).(csubt g e1 e2))
(\lambda (e2: C).(clear c4 e2))))))).(\lambda (u: T).(\lambda (t: T).(\lambda
-(H2: (ty3 g c4 u t)).(\lambda (e1: C).(\lambda (H3: (clear (CHead c3 (Bind
-Abst) t) e1)).(eq_ind_r C (CHead c3 (Bind Abst) t) (\lambda (c: C).(ex2 C
-(\lambda (e2: C).(csubt g c e2)) (\lambda (e2: C).(clear (CHead c4 (Bind
-Abbr) u) e2)))) (ex_intro2 C (\lambda (e2: C).(csubt g (CHead c3 (Bind Abst)
-t) e2)) (\lambda (e2: C).(clear (CHead c4 (Bind Abbr) u) e2)) (CHead c4 (Bind
-Abbr) u) (csubt_abst g c3 c4 H0 u t H2) (clear_bind Abbr c4 u)) e1
-(clear_gen_bind Abst c3 e1 t H3))))))))))) c1 c2 H)))).
+(H2: (ty3 g c3 u t)).(\lambda (H3: (ty3 g c4 u t)).(\lambda (e1: C).(\lambda
+(H4: (clear (CHead c3 (Bind Abst) t) e1)).(eq_ind_r C (CHead c3 (Bind Abst)
+t) (\lambda (c: C).(ex2 C (\lambda (e2: C).(csubt g c e2)) (\lambda (e2:
+C).(clear (CHead c4 (Bind Abbr) u) e2)))) (ex_intro2 C (\lambda (e2:
+C).(csubt g (CHead c3 (Bind Abst) t) e2)) (\lambda (e2: C).(clear (CHead c4
+(Bind Abbr) u) e2)) (CHead c4 (Bind Abbr) u) (csubt_abst g c3 c4 H0 u t H2
+H3) (clear_bind Abbr c4 u)) e1 (clear_gen_bind Abst c3 e1 t H4)))))))))))) c1
+c2 H)))).
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+(* This file was automatically generated: do not edit *********************)
+
+include "LambdaDelta-1/ty3/arity.ma".
+
+theorem csubt_csuba:
+ \forall (g: G).(\forall (c1: C).(\forall (c2: C).((csubt g c1 c2) \to (csuba
+g c1 c2))))
+\def
+ \lambda (g: G).(\lambda (c1: C).(\lambda (c2: C).(\lambda (H: (csubt g c1
+c2)).(csubt_ind g (\lambda (c: C).(\lambda (c0: C).(csuba g c c0))) (\lambda
+(n: nat).(csuba_refl g (CSort n))) (\lambda (c3: C).(\lambda (c4: C).(\lambda
+(_: (csubt g c3 c4)).(\lambda (H1: (csuba g c3 c4)).(\lambda (k: K).(\lambda
+(u: T).(csuba_head g c3 c4 H1 k u))))))) (\lambda (c3: C).(\lambda (c4:
+C).(\lambda (_: (csubt g c3 c4)).(\lambda (H1: (csuba g c3 c4)).(\lambda (b:
+B).(\lambda (H2: (not (eq B b Void))).(\lambda (u1: T).(\lambda (u2:
+T).(csuba_void g c3 c4 H1 b H2 u1 u2))))))))) (\lambda (c3: C).(\lambda (c4:
+C).(\lambda (_: (csubt g c3 c4)).(\lambda (H1: (csuba g c3 c4)).(\lambda (u:
+T).(\lambda (t: T).(\lambda (H2: (ty3 g c3 u t)).(\lambda (_: (ty3 g c4 u
+t)).(let H_x \def (ty3_arity g c3 u t H2) in (let H4 \def H_x in (ex2_ind A
+(\lambda (a1: A).(arity g c3 u a1)) (\lambda (a1: A).(arity g c3 t (asucc g
+a1))) (csuba g (CHead c3 (Bind Abst) t) (CHead c4 (Bind Abbr) u)) (\lambda
+(x: A).(\lambda (H5: (arity g c3 u x)).(\lambda (H6: (arity g c3 t (asucc g
+x))).(csuba_abst g c3 c4 H1 t x H6 u (csuba_arity g c3 u x H5 c4 H1)))))
+H4))))))))))) c1 c2 H)))).
+
(b: B).((not (eq B b Void)) \to (\forall (u1: T).(\forall (u2: T).(csubt g
(CHead c1 (Bind Void) u1) (CHead c2 (Bind b) u2))))))))
| csubt_abst: \forall (c1: C).(\forall (c2: C).((csubt g c1 c2) \to (\forall
-(u: T).(\forall (t: T).((ty3 g c2 u t) \to (csubt g (CHead c1 (Bind Abst) t)
-(CHead c2 (Bind Abbr) u))))))).
+(u: T).(\forall (t: T).((ty3 g c1 u t) \to ((ty3 g c2 u t) \to (csubt g
+(CHead c1 (Bind Abst) t) (CHead c2 (Bind Abbr) u)))))))).
C).(\lambda (H1: (csubt g c0 c3)).(\lambda (_: ((\forall (d1: C).(\forall (u:
T).((drop (S n0) O c0 (CHead d1 (Flat f) u)) \to (ex2 C (\lambda (d2:
C).(csubt g d1 d2)) (\lambda (d2: C).(drop (S n0) O c3 (CHead d2 (Flat f)
-u))))))))).(\lambda (u: T).(\lambda (t: T).(\lambda (_: (ty3 g c3 u
-t)).(\lambda (d1: C).(\lambda (u0: T).(\lambda (H4: (drop (S n0) O (CHead c0
-(Bind Abst) t) (CHead d1 (Flat f) u0))).(ex2_ind C (\lambda (d2: C).(csubt g
-d1 d2)) (\lambda (d2: C).(drop n0 O c3 (CHead d2 (Flat f) u0))) (ex2 C
-(\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2: C).(drop (S n0) O (CHead c3
-(Bind Abbr) u) (CHead d2 (Flat f) u0)))) (\lambda (x: C).(\lambda (H5: (csubt
-g d1 x)).(\lambda (H6: (drop n0 O c3 (CHead x (Flat f) u0))).(ex_intro2 C
-(\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2: C).(drop (S n0) O (CHead c3
-(Bind Abbr) u) (CHead d2 (Flat f) u0))) x H5 (drop_drop (Bind Abbr) n0 c3
-(CHead x (Flat f) u0) H6 u))))) (H c0 c3 H1 d1 u0 (drop_gen_drop (Bind Abst)
-c0 (CHead d1 (Flat f) u0) t n0 H4))))))))))))) c1 c2 H0)))))) n))).
+u))))))))).(\lambda (u: T).(\lambda (t: T).(\lambda (_: (ty3 g c0 u
+t)).(\lambda (_: (ty3 g c3 u t)).(\lambda (d1: C).(\lambda (u0: T).(\lambda
+(H5: (drop (S n0) O (CHead c0 (Bind Abst) t) (CHead d1 (Flat f)
+u0))).(ex2_ind C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2: C).(drop n0
+O c3 (CHead d2 (Flat f) u0))) (ex2 C (\lambda (d2: C).(csubt g d1 d2))
+(\lambda (d2: C).(drop (S n0) O (CHead c3 (Bind Abbr) u) (CHead d2 (Flat f)
+u0)))) (\lambda (x: C).(\lambda (H6: (csubt g d1 x)).(\lambda (H7: (drop n0 O
+c3 (CHead x (Flat f) u0))).(ex_intro2 C (\lambda (d2: C).(csubt g d1 d2))
+(\lambda (d2: C).(drop (S n0) O (CHead c3 (Bind Abbr) u) (CHead d2 (Flat f)
+u0))) x H6 (drop_drop (Bind Abbr) n0 c3 (CHead x (Flat f) u0) H7 u))))) (H c0
+c3 H1 d1 u0 (drop_gen_drop (Bind Abst) c0 (CHead d1 (Flat f) u0) t n0
+H5)))))))))))))) c1 c2 H0)))))) n))).
theorem csubt_drop_abbr:
\forall (g: G).(\forall (n: nat).(\forall (c1: C).(\forall (c2: C).((csubt g
C).(\forall (u: T).((drop (S n0) O c0 (CHead d1 (Bind Abbr) u)) \to (ex2 C
(\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2: C).(drop (S n0) O c3 (CHead
d2 (Bind Abbr) u))))))))).(\lambda (u: T).(\lambda (t: T).(\lambda (_: (ty3 g
-c3 u t)).(\lambda (d1: C).(\lambda (u0: T).(\lambda (H4: (drop (S n0) O
-(CHead c0 (Bind Abst) t) (CHead d1 (Bind Abbr) u0))).(ex2_ind C (\lambda (d2:
-C).(csubt g d1 d2)) (\lambda (d2: C).(drop n0 O c3 (CHead d2 (Bind Abbr)
-u0))) (ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2: C).(drop (S n0)
-O (CHead c3 (Bind Abbr) u) (CHead d2 (Bind Abbr) u0)))) (\lambda (x:
-C).(\lambda (H5: (csubt g d1 x)).(\lambda (H6: (drop n0 O c3 (CHead x (Bind
-Abbr) u0))).(ex_intro2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2:
-C).(drop (S n0) O (CHead c3 (Bind Abbr) u) (CHead d2 (Bind Abbr) u0))) x H5
-(drop_drop (Bind Abbr) n0 c3 (CHead x (Bind Abbr) u0) H6 u))))) (H c0 c3 H1
-d1 u0 (drop_gen_drop (Bind Abst) c0 (CHead d1 (Bind Abbr) u0) t n0
-H4))))))))))))) c1 c2 H0)))))) n)).
+c0 u t)).(\lambda (_: (ty3 g c3 u t)).(\lambda (d1: C).(\lambda (u0:
+T).(\lambda (H5: (drop (S n0) O (CHead c0 (Bind Abst) t) (CHead d1 (Bind
+Abbr) u0))).(ex2_ind C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2:
+C).(drop n0 O c3 (CHead d2 (Bind Abbr) u0))) (ex2 C (\lambda (d2: C).(csubt g
+d1 d2)) (\lambda (d2: C).(drop (S n0) O (CHead c3 (Bind Abbr) u) (CHead d2
+(Bind Abbr) u0)))) (\lambda (x: C).(\lambda (H6: (csubt g d1 x)).(\lambda
+(H7: (drop n0 O c3 (CHead x (Bind Abbr) u0))).(ex_intro2 C (\lambda (d2:
+C).(csubt g d1 d2)) (\lambda (d2: C).(drop (S n0) O (CHead c3 (Bind Abbr) u)
+(CHead d2 (Bind Abbr) u0))) x H6 (drop_drop (Bind Abbr) n0 c3 (CHead x (Bind
+Abbr) u0) H7 u))))) (H c0 c3 H1 d1 u0 (drop_gen_drop (Bind Abst) c0 (CHead d1
+(Bind Abbr) u0) t n0 H5)))))))))))))) c1 c2 H0)))))) n)).
theorem csubt_drop_abst:
\forall (g: G).(\forall (n: nat).(\forall (c1: C).(\forall (c2: C).((csubt g
c1 c2) \to (\forall (d1: C).(\forall (t: T).((drop n O c1 (CHead d1 (Bind
Abst) t)) \to (or (ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2:
-C).(drop n O c2 (CHead d2 (Bind Abst) t)))) (ex3_2 C T (\lambda (d2:
+C).(drop n O c2 (CHead d2 (Bind Abst) t)))) (ex4_2 C T (\lambda (d2:
C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u: T).(drop n
-O c2 (CHead d2 (Bind Abbr) u)))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u
-t))))))))))))
+O c2 (CHead d2 (Bind Abbr) u)))) (\lambda (_: C).(\lambda (u: T).(ty3 g d1 u
+t))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u t))))))))))))
\def
\lambda (g: G).(\lambda (n: nat).(nat_ind (\lambda (n0: nat).(\forall (c1:
C).(\forall (c2: C).((csubt g c1 c2) \to (\forall (d1: C).(\forall (t:
T).((drop n0 O c1 (CHead d1 (Bind Abst) t)) \to (or (ex2 C (\lambda (d2:
C).(csubt g d1 d2)) (\lambda (d2: C).(drop n0 O c2 (CHead d2 (Bind Abst)
-t)))) (ex3_2 C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda
+t)))) (ex4_2 C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda
(d2: C).(\lambda (u: T).(drop n0 O c2 (CHead d2 (Bind Abbr) u)))) (\lambda
-(d2: C).(\lambda (u: T).(ty3 g d2 u t)))))))))))) (\lambda (c1: C).(\lambda
-(c2: C).(\lambda (H: (csubt g c1 c2)).(\lambda (d1: C).(\lambda (t:
-T).(\lambda (H0: (drop O O c1 (CHead d1 (Bind Abst) t))).(let H1 \def (eq_ind
-C c1 (\lambda (c: C).(csubt g c c2)) H (CHead d1 (Bind Abst) t)
-(drop_gen_refl c1 (CHead d1 (Bind Abst) t) H0)) in (let H2 \def
-(csubt_gen_abst g d1 c2 t H1) in (or_ind (ex2 C (\lambda (e2: C).(eq C c2
-(CHead e2 (Bind Abst) t))) (\lambda (e2: C).(csubt g d1 e2))) (ex3_2 C T
-(\lambda (e2: C).(\lambda (v2: T).(eq C c2 (CHead e2 (Bind Abbr) v2))))
-(\lambda (e2: C).(\lambda (_: T).(csubt g d1 e2))) (\lambda (e2: C).(\lambda
-(v2: T).(ty3 g e2 v2 t)))) (or (ex2 C (\lambda (d2: C).(csubt g d1 d2))
-(\lambda (d2: C).(drop O O c2 (CHead d2 (Bind Abst) t)))) (ex3_2 C T (\lambda
-(d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u:
-T).(drop O O c2 (CHead d2 (Bind Abbr) u)))) (\lambda (d2: C).(\lambda (u:
-T).(ty3 g d2 u t))))) (\lambda (H3: (ex2 C (\lambda (e2: C).(eq C c2 (CHead
-e2 (Bind Abst) t))) (\lambda (e2: C).(csubt g d1 e2)))).(ex2_ind C (\lambda
-(e2: C).(eq C c2 (CHead e2 (Bind Abst) t))) (\lambda (e2: C).(csubt g d1 e2))
-(or (ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2: C).(drop O O c2
-(CHead d2 (Bind Abst) t)))) (ex3_2 C T (\lambda (d2: C).(\lambda (_:
-T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u: T).(drop O O c2 (CHead d2
-(Bind Abbr) u)))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u t)))))
+(_: C).(\lambda (u: T).(ty3 g d1 u t))) (\lambda (d2: C).(\lambda (u: T).(ty3
+g d2 u t)))))))))))) (\lambda (c1: C).(\lambda (c2: C).(\lambda (H: (csubt g
+c1 c2)).(\lambda (d1: C).(\lambda (t: T).(\lambda (H0: (drop O O c1 (CHead d1
+(Bind Abst) t))).(let H1 \def (eq_ind C c1 (\lambda (c: C).(csubt g c c2)) H
+(CHead d1 (Bind Abst) t) (drop_gen_refl c1 (CHead d1 (Bind Abst) t) H0)) in
+(let H2 \def (csubt_gen_abst g d1 c2 t H1) in (or_ind (ex2 C (\lambda (e2:
+C).(eq C c2 (CHead e2 (Bind Abst) t))) (\lambda (e2: C).(csubt g d1 e2)))
+(ex4_2 C T (\lambda (e2: C).(\lambda (v2: T).(eq C c2 (CHead e2 (Bind Abbr)
+v2)))) (\lambda (e2: C).(\lambda (_: T).(csubt g d1 e2))) (\lambda (_:
+C).(\lambda (v2: T).(ty3 g d1 v2 t))) (\lambda (e2: C).(\lambda (v2: T).(ty3
+g e2 v2 t)))) (or (ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2:
+C).(drop O O c2 (CHead d2 (Bind Abst) t)))) (ex4_2 C T (\lambda (d2:
+C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u: T).(drop O
+O c2 (CHead d2 (Bind Abbr) u)))) (\lambda (_: C).(\lambda (u: T).(ty3 g d1 u
+t))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u t))))) (\lambda (H3: (ex2 C
+(\lambda (e2: C).(eq C c2 (CHead e2 (Bind Abst) t))) (\lambda (e2: C).(csubt
+g d1 e2)))).(ex2_ind C (\lambda (e2: C).(eq C c2 (CHead e2 (Bind Abst) t)))
+(\lambda (e2: C).(csubt g d1 e2)) (or (ex2 C (\lambda (d2: C).(csubt g d1
+d2)) (\lambda (d2: C).(drop O O c2 (CHead d2 (Bind Abst) t)))) (ex4_2 C T
+(\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda
+(u: T).(drop O O c2 (CHead d2 (Bind Abbr) u)))) (\lambda (_: C).(\lambda (u:
+T).(ty3 g d1 u t))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u t)))))
(\lambda (x: C).(\lambda (H4: (eq C c2 (CHead x (Bind Abst) t))).(\lambda
(H5: (csubt g d1 x)).(eq_ind_r C (CHead x (Bind Abst) t) (\lambda (c: C).(or
(ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2: C).(drop O O c (CHead
-d2 (Bind Abst) t)))) (ex3_2 C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1
+d2 (Bind Abst) t)))) (ex4_2 C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1
d2))) (\lambda (d2: C).(\lambda (u: T).(drop O O c (CHead d2 (Bind Abbr)
-u)))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u t)))))) (or_introl (ex2 C
-(\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2: C).(drop O O (CHead x (Bind
-Abst) t) (CHead d2 (Bind Abst) t)))) (ex3_2 C T (\lambda (d2: C).(\lambda (_:
-T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u: T).(drop O O (CHead x
-(Bind Abst) t) (CHead d2 (Bind Abbr) u)))) (\lambda (d2: C).(\lambda (u:
-T).(ty3 g d2 u t)))) (ex_intro2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda
-(d2: C).(drop O O (CHead x (Bind Abst) t) (CHead d2 (Bind Abst) t))) x H5
-(drop_refl (CHead x (Bind Abst) t)))) c2 H4)))) H3)) (\lambda (H3: (ex3_2 C T
-(\lambda (e2: C).(\lambda (v2: T).(eq C c2 (CHead e2 (Bind Abbr) v2))))
-(\lambda (e2: C).(\lambda (_: T).(csubt g d1 e2))) (\lambda (e2: C).(\lambda
-(v2: T).(ty3 g e2 v2 t))))).(ex3_2_ind C T (\lambda (e2: C).(\lambda (v2:
+u)))) (\lambda (_: C).(\lambda (u: T).(ty3 g d1 u t))) (\lambda (d2:
+C).(\lambda (u: T).(ty3 g d2 u t)))))) (or_introl (ex2 C (\lambda (d2:
+C).(csubt g d1 d2)) (\lambda (d2: C).(drop O O (CHead x (Bind Abst) t) (CHead
+d2 (Bind Abst) t)))) (ex4_2 C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1
+d2))) (\lambda (d2: C).(\lambda (u: T).(drop O O (CHead x (Bind Abst) t)
+(CHead d2 (Bind Abbr) u)))) (\lambda (_: C).(\lambda (u: T).(ty3 g d1 u t)))
+(\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u t)))) (ex_intro2 C (\lambda (d2:
+C).(csubt g d1 d2)) (\lambda (d2: C).(drop O O (CHead x (Bind Abst) t) (CHead
+d2 (Bind Abst) t))) x H5 (drop_refl (CHead x (Bind Abst) t)))) c2 H4)))) H3))
+(\lambda (H3: (ex4_2 C T (\lambda (e2: C).(\lambda (v2: T).(eq C c2 (CHead e2
+(Bind Abbr) v2)))) (\lambda (e2: C).(\lambda (_: T).(csubt g d1 e2)))
+(\lambda (_: C).(\lambda (v2: T).(ty3 g d1 v2 t))) (\lambda (e2: C).(\lambda
+(v2: T).(ty3 g e2 v2 t))))).(ex4_2_ind C T (\lambda (e2: C).(\lambda (v2:
T).(eq C c2 (CHead e2 (Bind Abbr) v2)))) (\lambda (e2: C).(\lambda (_:
-T).(csubt g d1 e2))) (\lambda (e2: C).(\lambda (v2: T).(ty3 g e2 v2 t))) (or
-(ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2: C).(drop O O c2 (CHead
-d2 (Bind Abst) t)))) (ex3_2 C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1
-d2))) (\lambda (d2: C).(\lambda (u: T).(drop O O c2 (CHead d2 (Bind Abbr)
-u)))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u t))))) (\lambda (x0:
-C).(\lambda (x1: T).(\lambda (H4: (eq C c2 (CHead x0 (Bind Abbr)
-x1))).(\lambda (H5: (csubt g d1 x0)).(\lambda (H6: (ty3 g x0 x1 t)).(eq_ind_r
-C (CHead x0 (Bind Abbr) x1) (\lambda (c: C).(or (ex2 C (\lambda (d2:
-C).(csubt g d1 d2)) (\lambda (d2: C).(drop O O c (CHead d2 (Bind Abst) t))))
-(ex3_2 C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2:
-C).(\lambda (u: T).(drop O O c (CHead d2 (Bind Abbr) u)))) (\lambda (d2:
-C).(\lambda (u: T).(ty3 g d2 u t)))))) (or_intror (ex2 C (\lambda (d2:
-C).(csubt g d1 d2)) (\lambda (d2: C).(drop O O (CHead x0 (Bind Abbr) x1)
-(CHead d2 (Bind Abst) t)))) (ex3_2 C T (\lambda (d2: C).(\lambda (_:
-T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u: T).(drop O O (CHead x0
-(Bind Abbr) x1) (CHead d2 (Bind Abbr) u)))) (\lambda (d2: C).(\lambda (u:
-T).(ty3 g d2 u t)))) (ex3_2_intro C T (\lambda (d2: C).(\lambda (_: T).(csubt
-g d1 d2))) (\lambda (d2: C).(\lambda (u: T).(drop O O (CHead x0 (Bind Abbr)
-x1) (CHead d2 (Bind Abbr) u)))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u
-t))) x0 x1 H5 (drop_refl (CHead x0 (Bind Abbr) x1)) H6)) c2 H4)))))) H3))
-H2))))))))) (\lambda (n0: nat).(\lambda (H: ((\forall (c1: C).(\forall (c2:
-C).((csubt g c1 c2) \to (\forall (d1: C).(\forall (t: T).((drop n0 O c1
+T).(csubt g d1 e2))) (\lambda (_: C).(\lambda (v2: T).(ty3 g d1 v2 t)))
+(\lambda (e2: C).(\lambda (v2: T).(ty3 g e2 v2 t))) (or (ex2 C (\lambda (d2:
+C).(csubt g d1 d2)) (\lambda (d2: C).(drop O O c2 (CHead d2 (Bind Abst) t))))
+(ex4_2 C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2:
+C).(\lambda (u: T).(drop O O c2 (CHead d2 (Bind Abbr) u)))) (\lambda (_:
+C).(\lambda (u: T).(ty3 g d1 u t))) (\lambda (d2: C).(\lambda (u: T).(ty3 g
+d2 u t))))) (\lambda (x0: C).(\lambda (x1: T).(\lambda (H4: (eq C c2 (CHead
+x0 (Bind Abbr) x1))).(\lambda (H5: (csubt g d1 x0)).(\lambda (H6: (ty3 g d1
+x1 t)).(\lambda (H7: (ty3 g x0 x1 t)).(eq_ind_r C (CHead x0 (Bind Abbr) x1)
+(\lambda (c: C).(or (ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2:
+C).(drop O O c (CHead d2 (Bind Abst) t)))) (ex4_2 C T (\lambda (d2:
+C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u: T).(drop O
+O c (CHead d2 (Bind Abbr) u)))) (\lambda (_: C).(\lambda (u: T).(ty3 g d1 u
+t))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u t)))))) (or_intror (ex2 C
+(\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2: C).(drop O O (CHead x0 (Bind
+Abbr) x1) (CHead d2 (Bind Abst) t)))) (ex4_2 C T (\lambda (d2: C).(\lambda
+(_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u: T).(drop O O (CHead x0
+(Bind Abbr) x1) (CHead d2 (Bind Abbr) u)))) (\lambda (_: C).(\lambda (u:
+T).(ty3 g d1 u t))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u t))))
+(ex4_2_intro C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda
+(d2: C).(\lambda (u: T).(drop O O (CHead x0 (Bind Abbr) x1) (CHead d2 (Bind
+Abbr) u)))) (\lambda (_: C).(\lambda (u: T).(ty3 g d1 u t))) (\lambda (d2:
+C).(\lambda (u: T).(ty3 g d2 u t))) x0 x1 H5 (drop_refl (CHead x0 (Bind Abbr)
+x1)) H6 H7)) c2 H4))))))) H3)) H2))))))))) (\lambda (n0: nat).(\lambda (H:
+((\forall (c1: C).(\forall (c2: C).((csubt g c1 c2) \to (\forall (d1:
+C).(\forall (t: T).((drop n0 O c1 (CHead d1 (Bind Abst) t)) \to (or (ex2 C
+(\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2: C).(drop n0 O c2 (CHead d2
+(Bind Abst) t)))) (ex4_2 C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1
+d2))) (\lambda (d2: C).(\lambda (u: T).(drop n0 O c2 (CHead d2 (Bind Abbr)
+u)))) (\lambda (_: C).(\lambda (u: T).(ty3 g d1 u t))) (\lambda (d2:
+C).(\lambda (u: T).(ty3 g d2 u t))))))))))))).(\lambda (c1: C).(\lambda (c2:
+C).(\lambda (H0: (csubt g c1 c2)).(csubt_ind g (\lambda (c: C).(\lambda (c0:
+C).(\forall (d1: C).(\forall (t: T).((drop (S n0) O c (CHead d1 (Bind Abst)
+t)) \to (or (ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2: C).(drop
+(S n0) O c0 (CHead d2 (Bind Abst) t)))) (ex4_2 C T (\lambda (d2: C).(\lambda
+(_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u: T).(drop (S n0) O c0
+(CHead d2 (Bind Abbr) u)))) (\lambda (_: C).(\lambda (u: T).(ty3 g d1 u t)))
+(\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u t)))))))))) (\lambda (n1:
+nat).(\lambda (d1: C).(\lambda (t: T).(\lambda (H1: (drop (S n0) O (CSort n1)
+(CHead d1 (Bind Abst) t))).(and3_ind (eq C (CHead d1 (Bind Abst) t) (CSort
+n1)) (eq nat (S n0) O) (eq nat O O) (or (ex2 C (\lambda (d2: C).(csubt g d1
+d2)) (\lambda (d2: C).(drop (S n0) O (CSort n1) (CHead d2 (Bind Abst) t))))
+(ex4_2 C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2:
+C).(\lambda (u: T).(drop (S n0) O (CSort n1) (CHead d2 (Bind Abbr) u))))
+(\lambda (_: C).(\lambda (u: T).(ty3 g d1 u t))) (\lambda (d2: C).(\lambda
+(u: T).(ty3 g d2 u t))))) (\lambda (_: (eq C (CHead d1 (Bind Abst) t) (CSort
+n1))).(\lambda (H3: (eq nat (S n0) O)).(\lambda (_: (eq nat O O)).(let H5
+\def (eq_ind nat (S n0) (\lambda (ee: nat).(match ee in nat return (\lambda
+(_: nat).Prop) with [O \Rightarrow False | (S _) \Rightarrow True])) I O H3)
+in (False_ind (or (ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2:
+C).(drop (S n0) O (CSort n1) (CHead d2 (Bind Abst) t)))) (ex4_2 C T (\lambda
+(d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u:
+T).(drop (S n0) O (CSort n1) (CHead d2 (Bind Abbr) u)))) (\lambda (_:
+C).(\lambda (u: T).(ty3 g d1 u t))) (\lambda (d2: C).(\lambda (u: T).(ty3 g
+d2 u t))))) H5))))) (drop_gen_sort n1 (S n0) O (CHead d1 (Bind Abst) t)
+H1)))))) (\lambda (c0: C).(\lambda (c3: C).(\lambda (H1: (csubt g c0
+c3)).(\lambda (H2: ((\forall (d1: C).(\forall (t: T).((drop (S n0) O c0
(CHead d1 (Bind Abst) t)) \to (or (ex2 C (\lambda (d2: C).(csubt g d1 d2))
-(\lambda (d2: C).(drop n0 O c2 (CHead d2 (Bind Abst) t)))) (ex3_2 C T
+(\lambda (d2: C).(drop (S n0) O c3 (CHead d2 (Bind Abst) t)))) (ex4_2 C T
(\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda
-(u: T).(drop n0 O c2 (CHead d2 (Bind Abbr) u)))) (\lambda (d2: C).(\lambda
-(u: T).(ty3 g d2 u t))))))))))))).(\lambda (c1: C).(\lambda (c2: C).(\lambda
-(H0: (csubt g c1 c2)).(csubt_ind g (\lambda (c: C).(\lambda (c0: C).(\forall
-(d1: C).(\forall (t: T).((drop (S n0) O c (CHead d1 (Bind Abst) t)) \to (or
-(ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2: C).(drop (S n0) O c0
-(CHead d2 (Bind Abst) t)))) (ex3_2 C T (\lambda (d2: C).(\lambda (_:
-T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u: T).(drop (S n0) O c0
-(CHead d2 (Bind Abbr) u)))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u
-t)))))))))) (\lambda (n1: nat).(\lambda (d1: C).(\lambda (t: T).(\lambda (H1:
-(drop (S n0) O (CSort n1) (CHead d1 (Bind Abst) t))).(and3_ind (eq C (CHead
-d1 (Bind Abst) t) (CSort n1)) (eq nat (S n0) O) (eq nat O O) (or (ex2 C
-(\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2: C).(drop (S n0) O (CSort n1)
-(CHead d2 (Bind Abst) t)))) (ex3_2 C T (\lambda (d2: C).(\lambda (_:
-T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u: T).(drop (S n0) O (CSort
-n1) (CHead d2 (Bind Abbr) u)))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u
-t))))) (\lambda (_: (eq C (CHead d1 (Bind Abst) t) (CSort n1))).(\lambda (H3:
-(eq nat (S n0) O)).(\lambda (_: (eq nat O O)).(let H5 \def (eq_ind nat (S n0)
-(\lambda (ee: nat).(match ee in nat return (\lambda (_: nat).Prop) with [O
-\Rightarrow False | (S _) \Rightarrow True])) I O H3) in (False_ind (or (ex2
-C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2: C).(drop (S n0) O (CSort
-n1) (CHead d2 (Bind Abst) t)))) (ex3_2 C T (\lambda (d2: C).(\lambda (_:
-T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u: T).(drop (S n0) O (CSort
-n1) (CHead d2 (Bind Abbr) u)))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u
-t))))) H5))))) (drop_gen_sort n1 (S n0) O (CHead d1 (Bind Abst) t) H1))))))
-(\lambda (c0: C).(\lambda (c3: C).(\lambda (H1: (csubt g c0 c3)).(\lambda
-(H2: ((\forall (d1: C).(\forall (t: T).((drop (S n0) O c0 (CHead d1 (Bind
-Abst) t)) \to (or (ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2:
-C).(drop (S n0) O c3 (CHead d2 (Bind Abst) t)))) (ex3_2 C T (\lambda (d2:
-C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u: T).(drop
-(S n0) O c3 (CHead d2 (Bind Abbr) u)))) (\lambda (d2: C).(\lambda (u: T).(ty3
-g d2 u t)))))))))).(\lambda (k: K).(K_ind (\lambda (k0: K).(\forall (u:
-T).(\forall (d1: C).(\forall (t: T).((drop (S n0) O (CHead c0 k0 u) (CHead d1
-(Bind Abst) t)) \to (or (ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda
-(d2: C).(drop (S n0) O (CHead c3 k0 u) (CHead d2 (Bind Abst) t)))) (ex3_2 C T
-(\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda
-(u0: T).(drop (S n0) O (CHead c3 k0 u) (CHead d2 (Bind Abbr) u0)))) (\lambda
-(d2: C).(\lambda (u0: T).(ty3 g d2 u0 t)))))))))) (\lambda (b: B).(\lambda
-(u: T).(\lambda (d1: C).(\lambda (t: T).(\lambda (H3: (drop (S n0) O (CHead
-c0 (Bind b) u) (CHead d1 (Bind Abst) t))).(or_ind (ex2 C (\lambda (d2:
-C).(csubt g d1 d2)) (\lambda (d2: C).(drop n0 O c3 (CHead d2 (Bind Abst)
-t)))) (ex3_2 C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda
-(d2: C).(\lambda (u0: T).(drop n0 O c3 (CHead d2 (Bind Abbr) u0)))) (\lambda
-(d2: C).(\lambda (u0: T).(ty3 g d2 u0 t)))) (or (ex2 C (\lambda (d2:
-C).(csubt g d1 d2)) (\lambda (d2: C).(drop (S n0) O (CHead c3 (Bind b) u)
-(CHead d2 (Bind Abst) t)))) (ex3_2 C T (\lambda (d2: C).(\lambda (_:
-T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u0: T).(drop (S n0) O (CHead
-c3 (Bind b) u) (CHead d2 (Bind Abbr) u0)))) (\lambda (d2: C).(\lambda (u0:
-T).(ty3 g d2 u0 t))))) (\lambda (H4: (ex2 C (\lambda (d2: C).(csubt g d1 d2))
-(\lambda (d2: C).(drop n0 O c3 (CHead d2 (Bind Abst) t))))).(ex2_ind C
-(\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2: C).(drop n0 O c3 (CHead d2
-(Bind Abst) t))) (or (ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2:
-C).(drop (S n0) O (CHead c3 (Bind b) u) (CHead d2 (Bind Abst) t)))) (ex3_2 C
-T (\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2:
-C).(\lambda (u0: T).(drop (S n0) O (CHead c3 (Bind b) u) (CHead d2 (Bind
-Abbr) u0)))) (\lambda (d2: C).(\lambda (u0: T).(ty3 g d2 u0 t))))) (\lambda
-(x: C).(\lambda (H5: (csubt g d1 x)).(\lambda (H6: (drop n0 O c3 (CHead x
-(Bind Abst) t))).(or_introl (ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda
-(d2: C).(drop (S n0) O (CHead c3 (Bind b) u) (CHead d2 (Bind Abst) t))))
-(ex3_2 C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2:
-C).(\lambda (u0: T).(drop (S n0) O (CHead c3 (Bind b) u) (CHead d2 (Bind
-Abbr) u0)))) (\lambda (d2: C).(\lambda (u0: T).(ty3 g d2 u0 t)))) (ex_intro2
-C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2: C).(drop (S n0) O (CHead c3
-(Bind b) u) (CHead d2 (Bind Abst) t))) x H5 (drop_drop (Bind b) n0 c3 (CHead
-x (Bind Abst) t) H6 u)))))) H4)) (\lambda (H4: (ex3_2 C T (\lambda (d2:
+(u: T).(drop (S n0) O c3 (CHead d2 (Bind Abbr) u)))) (\lambda (_: C).(\lambda
+(u: T).(ty3 g d1 u t))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u
+t)))))))))).(\lambda (k: K).(K_ind (\lambda (k0: K).(\forall (u: T).(\forall
+(d1: C).(\forall (t: T).((drop (S n0) O (CHead c0 k0 u) (CHead d1 (Bind Abst)
+t)) \to (or (ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2: C).(drop
+(S n0) O (CHead c3 k0 u) (CHead d2 (Bind Abst) t)))) (ex4_2 C T (\lambda (d2:
+C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u0: T).(drop
+(S n0) O (CHead c3 k0 u) (CHead d2 (Bind Abbr) u0)))) (\lambda (_:
+C).(\lambda (u0: T).(ty3 g d1 u0 t))) (\lambda (d2: C).(\lambda (u0: T).(ty3
+g d2 u0 t)))))))))) (\lambda (b: B).(\lambda (u: T).(\lambda (d1: C).(\lambda
+(t: T).(\lambda (H3: (drop (S n0) O (CHead c0 (Bind b) u) (CHead d1 (Bind
+Abst) t))).(or_ind (ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2:
+C).(drop n0 O c3 (CHead d2 (Bind Abst) t)))) (ex4_2 C T (\lambda (d2:
C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u0: T).(drop
-n0 O c3 (CHead d2 (Bind Abbr) u0)))) (\lambda (d2: C).(\lambda (u0: T).(ty3 g
-d2 u0 t))))).(ex3_2_ind C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1
-d2))) (\lambda (d2: C).(\lambda (u0: T).(drop n0 O c3 (CHead d2 (Bind Abbr)
-u0)))) (\lambda (d2: C).(\lambda (u0: T).(ty3 g d2 u0 t))) (or (ex2 C
+n0 O c3 (CHead d2 (Bind Abbr) u0)))) (\lambda (_: C).(\lambda (u0: T).(ty3 g
+d1 u0 t))) (\lambda (d2: C).(\lambda (u0: T).(ty3 g d2 u0 t)))) (or (ex2 C
(\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2: C).(drop (S n0) O (CHead c3
-(Bind b) u) (CHead d2 (Bind Abst) t)))) (ex3_2 C T (\lambda (d2: C).(\lambda
+(Bind b) u) (CHead d2 (Bind Abst) t)))) (ex4_2 C T (\lambda (d2: C).(\lambda
(_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u0: T).(drop (S n0) O
-(CHead c3 (Bind b) u) (CHead d2 (Bind Abbr) u0)))) (\lambda (d2: C).(\lambda
-(u0: T).(ty3 g d2 u0 t))))) (\lambda (x0: C).(\lambda (x1: T).(\lambda (H5:
-(csubt g d1 x0)).(\lambda (H6: (drop n0 O c3 (CHead x0 (Bind Abbr)
-x1))).(\lambda (H7: (ty3 g x0 x1 t)).(or_intror (ex2 C (\lambda (d2:
+(CHead c3 (Bind b) u) (CHead d2 (Bind Abbr) u0)))) (\lambda (_: C).(\lambda
+(u0: T).(ty3 g d1 u0 t))) (\lambda (d2: C).(\lambda (u0: T).(ty3 g d2 u0
+t))))) (\lambda (H4: (ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2:
+C).(drop n0 O c3 (CHead d2 (Bind Abst) t))))).(ex2_ind C (\lambda (d2:
+C).(csubt g d1 d2)) (\lambda (d2: C).(drop n0 O c3 (CHead d2 (Bind Abst) t)))
+(or (ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2: C).(drop (S n0) O
+(CHead c3 (Bind b) u) (CHead d2 (Bind Abst) t)))) (ex4_2 C T (\lambda (d2:
+C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u0: T).(drop
+(S n0) O (CHead c3 (Bind b) u) (CHead d2 (Bind Abbr) u0)))) (\lambda (_:
+C).(\lambda (u0: T).(ty3 g d1 u0 t))) (\lambda (d2: C).(\lambda (u0: T).(ty3
+g d2 u0 t))))) (\lambda (x: C).(\lambda (H5: (csubt g d1 x)).(\lambda (H6:
+(drop n0 O c3 (CHead x (Bind Abst) t))).(or_introl (ex2 C (\lambda (d2:
C).(csubt g d1 d2)) (\lambda (d2: C).(drop (S n0) O (CHead c3 (Bind b) u)
-(CHead d2 (Bind Abst) t)))) (ex3_2 C T (\lambda (d2: C).(\lambda (_:
-T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u0: T).(drop (S n0) O (CHead
-c3 (Bind b) u) (CHead d2 (Bind Abbr) u0)))) (\lambda (d2: C).(\lambda (u0:
-T).(ty3 g d2 u0 t)))) (ex3_2_intro C T (\lambda (d2: C).(\lambda (_:
+(CHead d2 (Bind Abst) t)))) (ex4_2 C T (\lambda (d2: C).(\lambda (_:
T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u0: T).(drop (S n0) O (CHead
-c3 (Bind b) u) (CHead d2 (Bind Abbr) u0)))) (\lambda (d2: C).(\lambda (u0:
-T).(ty3 g d2 u0 t))) x0 x1 H5 (drop_drop (Bind b) n0 c3 (CHead x0 (Bind Abbr)
-x1) H6 u) H7))))))) H4)) (H c0 c3 H1 d1 t (drop_gen_drop (Bind b) c0 (CHead
-d1 (Bind Abst) t) u n0 H3)))))))) (\lambda (f: F).(\lambda (u: T).(\lambda
-(d1: C).(\lambda (t: T).(\lambda (H3: (drop (S n0) O (CHead c0 (Flat f) u)
-(CHead d1 (Bind Abst) t))).(or_ind (ex2 C (\lambda (d2: C).(csubt g d1 d2))
-(\lambda (d2: C).(drop (S n0) O c3 (CHead d2 (Bind Abst) t)))) (ex3_2 C T
+c3 (Bind b) u) (CHead d2 (Bind Abbr) u0)))) (\lambda (_: C).(\lambda (u0:
+T).(ty3 g d1 u0 t))) (\lambda (d2: C).(\lambda (u0: T).(ty3 g d2 u0 t))))
+(ex_intro2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2: C).(drop (S n0)
+O (CHead c3 (Bind b) u) (CHead d2 (Bind Abst) t))) x H5 (drop_drop (Bind b)
+n0 c3 (CHead x (Bind Abst) t) H6 u)))))) H4)) (\lambda (H4: (ex4_2 C T
(\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda
-(u0: T).(drop (S n0) O c3 (CHead d2 (Bind Abbr) u0)))) (\lambda (d2:
-C).(\lambda (u0: T).(ty3 g d2 u0 t)))) (or (ex2 C (\lambda (d2: C).(csubt g
-d1 d2)) (\lambda (d2: C).(drop (S n0) O (CHead c3 (Flat f) u) (CHead d2 (Bind
-Abst) t)))) (ex3_2 C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2)))
-(\lambda (d2: C).(\lambda (u0: T).(drop (S n0) O (CHead c3 (Flat f) u) (CHead
-d2 (Bind Abbr) u0)))) (\lambda (d2: C).(\lambda (u0: T).(ty3 g d2 u0 t)))))
-(\lambda (H4: (ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2: C).(drop
-(S n0) O c3 (CHead d2 (Bind Abst) t))))).(ex2_ind C (\lambda (d2: C).(csubt g
-d1 d2)) (\lambda (d2: C).(drop (S n0) O c3 (CHead d2 (Bind Abst) t))) (or
-(ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2: C).(drop (S n0) O
-(CHead c3 (Flat f) u) (CHead d2 (Bind Abst) t)))) (ex3_2 C T (\lambda (d2:
+(u0: T).(drop n0 O c3 (CHead d2 (Bind Abbr) u0)))) (\lambda (_: C).(\lambda
+(u0: T).(ty3 g d1 u0 t))) (\lambda (d2: C).(\lambda (u0: T).(ty3 g d2 u0
+t))))).(ex4_2_ind C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2)))
+(\lambda (d2: C).(\lambda (u0: T).(drop n0 O c3 (CHead d2 (Bind Abbr) u0))))
+(\lambda (_: C).(\lambda (u0: T).(ty3 g d1 u0 t))) (\lambda (d2: C).(\lambda
+(u0: T).(ty3 g d2 u0 t))) (or (ex2 C (\lambda (d2: C).(csubt g d1 d2))
+(\lambda (d2: C).(drop (S n0) O (CHead c3 (Bind b) u) (CHead d2 (Bind Abst)
+t)))) (ex4_2 C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda
+(d2: C).(\lambda (u0: T).(drop (S n0) O (CHead c3 (Bind b) u) (CHead d2 (Bind
+Abbr) u0)))) (\lambda (_: C).(\lambda (u0: T).(ty3 g d1 u0 t))) (\lambda (d2:
+C).(\lambda (u0: T).(ty3 g d2 u0 t))))) (\lambda (x0: C).(\lambda (x1:
+T).(\lambda (H5: (csubt g d1 x0)).(\lambda (H6: (drop n0 O c3 (CHead x0 (Bind
+Abbr) x1))).(\lambda (H7: (ty3 g d1 x1 t)).(\lambda (H8: (ty3 g x0 x1
+t)).(or_intror (ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2:
+C).(drop (S n0) O (CHead c3 (Bind b) u) (CHead d2 (Bind Abst) t)))) (ex4_2 C
+T (\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2:
+C).(\lambda (u0: T).(drop (S n0) O (CHead c3 (Bind b) u) (CHead d2 (Bind
+Abbr) u0)))) (\lambda (_: C).(\lambda (u0: T).(ty3 g d1 u0 t))) (\lambda (d2:
+C).(\lambda (u0: T).(ty3 g d2 u0 t)))) (ex4_2_intro C T (\lambda (d2:
C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u0: T).(drop
-(S n0) O (CHead c3 (Flat f) u) (CHead d2 (Bind Abbr) u0)))) (\lambda (d2:
+(S n0) O (CHead c3 (Bind b) u) (CHead d2 (Bind Abbr) u0)))) (\lambda (_:
+C).(\lambda (u0: T).(ty3 g d1 u0 t))) (\lambda (d2: C).(\lambda (u0: T).(ty3
+g d2 u0 t))) x0 x1 H5 (drop_drop (Bind b) n0 c3 (CHead x0 (Bind Abbr) x1) H6
+u) H7 H8)))))))) H4)) (H c0 c3 H1 d1 t (drop_gen_drop (Bind b) c0 (CHead d1
+(Bind Abst) t) u n0 H3)))))))) (\lambda (f: F).(\lambda (u: T).(\lambda (d1:
+C).(\lambda (t: T).(\lambda (H3: (drop (S n0) O (CHead c0 (Flat f) u) (CHead
+d1 (Bind Abst) t))).(or_ind (ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda
+(d2: C).(drop (S n0) O c3 (CHead d2 (Bind Abst) t)))) (ex4_2 C T (\lambda
+(d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u0:
+T).(drop (S n0) O c3 (CHead d2 (Bind Abbr) u0)))) (\lambda (_: C).(\lambda
+(u0: T).(ty3 g d1 u0 t))) (\lambda (d2: C).(\lambda (u0: T).(ty3 g d2 u0
+t)))) (or (ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2: C).(drop (S
+n0) O (CHead c3 (Flat f) u) (CHead d2 (Bind Abst) t)))) (ex4_2 C T (\lambda
+(d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u0:
+T).(drop (S n0) O (CHead c3 (Flat f) u) (CHead d2 (Bind Abbr) u0)))) (\lambda
+(_: C).(\lambda (u0: T).(ty3 g d1 u0 t))) (\lambda (d2: C).(\lambda (u0:
+T).(ty3 g d2 u0 t))))) (\lambda (H4: (ex2 C (\lambda (d2: C).(csubt g d1 d2))
+(\lambda (d2: C).(drop (S n0) O c3 (CHead d2 (Bind Abst) t))))).(ex2_ind C
+(\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2: C).(drop (S n0) O c3 (CHead
+d2 (Bind Abst) t))) (or (ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda
+(d2: C).(drop (S n0) O (CHead c3 (Flat f) u) (CHead d2 (Bind Abst) t))))
+(ex4_2 C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2:
+C).(\lambda (u0: T).(drop (S n0) O (CHead c3 (Flat f) u) (CHead d2 (Bind
+Abbr) u0)))) (\lambda (_: C).(\lambda (u0: T).(ty3 g d1 u0 t))) (\lambda (d2:
C).(\lambda (u0: T).(ty3 g d2 u0 t))))) (\lambda (x: C).(\lambda (H5: (csubt
g d1 x)).(\lambda (H6: (drop (S n0) O c3 (CHead x (Bind Abst) t))).(or_introl
(ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2: C).(drop (S n0) O
-(CHead c3 (Flat f) u) (CHead d2 (Bind Abst) t)))) (ex3_2 C T (\lambda (d2:
+(CHead c3 (Flat f) u) (CHead d2 (Bind Abst) t)))) (ex4_2 C T (\lambda (d2:
C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u0: T).(drop
-(S n0) O (CHead c3 (Flat f) u) (CHead d2 (Bind Abbr) u0)))) (\lambda (d2:
-C).(\lambda (u0: T).(ty3 g d2 u0 t)))) (ex_intro2 C (\lambda (d2: C).(csubt g
-d1 d2)) (\lambda (d2: C).(drop (S n0) O (CHead c3 (Flat f) u) (CHead d2 (Bind
-Abst) t))) x H5 (drop_drop (Flat f) n0 c3 (CHead x (Bind Abst) t) H6 u))))))
-H4)) (\lambda (H4: (ex3_2 C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1
-d2))) (\lambda (d2: C).(\lambda (u0: T).(drop (S n0) O c3 (CHead d2 (Bind
-Abbr) u0)))) (\lambda (d2: C).(\lambda (u0: T).(ty3 g d2 u0 t))))).(ex3_2_ind
-C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2:
-C).(\lambda (u0: T).(drop (S n0) O c3 (CHead d2 (Bind Abbr) u0)))) (\lambda
-(d2: C).(\lambda (u0: T).(ty3 g d2 u0 t))) (or (ex2 C (\lambda (d2: C).(csubt
+(S n0) O (CHead c3 (Flat f) u) (CHead d2 (Bind Abbr) u0)))) (\lambda (_:
+C).(\lambda (u0: T).(ty3 g d1 u0 t))) (\lambda (d2: C).(\lambda (u0: T).(ty3
+g d2 u0 t)))) (ex_intro2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2:
+C).(drop (S n0) O (CHead c3 (Flat f) u) (CHead d2 (Bind Abst) t))) x H5
+(drop_drop (Flat f) n0 c3 (CHead x (Bind Abst) t) H6 u)))))) H4)) (\lambda
+(H4: (ex4_2 C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda
+(d2: C).(\lambda (u0: T).(drop (S n0) O c3 (CHead d2 (Bind Abbr) u0))))
+(\lambda (_: C).(\lambda (u0: T).(ty3 g d1 u0 t))) (\lambda (d2: C).(\lambda
+(u0: T).(ty3 g d2 u0 t))))).(ex4_2_ind C T (\lambda (d2: C).(\lambda (_:
+T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u0: T).(drop (S n0) O c3
+(CHead d2 (Bind Abbr) u0)))) (\lambda (_: C).(\lambda (u0: T).(ty3 g d1 u0
+t))) (\lambda (d2: C).(\lambda (u0: T).(ty3 g d2 u0 t))) (or (ex2 C (\lambda
+(d2: C).(csubt g d1 d2)) (\lambda (d2: C).(drop (S n0) O (CHead c3 (Flat f)
+u) (CHead d2 (Bind Abst) t)))) (ex4_2 C T (\lambda (d2: C).(\lambda (_:
+T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u0: T).(drop (S n0) O (CHead
+c3 (Flat f) u) (CHead d2 (Bind Abbr) u0)))) (\lambda (_: C).(\lambda (u0:
+T).(ty3 g d1 u0 t))) (\lambda (d2: C).(\lambda (u0: T).(ty3 g d2 u0 t)))))
+(\lambda (x0: C).(\lambda (x1: T).(\lambda (H5: (csubt g d1 x0)).(\lambda
+(H6: (drop (S n0) O c3 (CHead x0 (Bind Abbr) x1))).(\lambda (H7: (ty3 g d1 x1
+t)).(\lambda (H8: (ty3 g x0 x1 t)).(or_intror (ex2 C (\lambda (d2: C).(csubt
g d1 d2)) (\lambda (d2: C).(drop (S n0) O (CHead c3 (Flat f) u) (CHead d2
-(Bind Abst) t)))) (ex3_2 C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1
+(Bind Abst) t)))) (ex4_2 C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1
d2))) (\lambda (d2: C).(\lambda (u0: T).(drop (S n0) O (CHead c3 (Flat f) u)
-(CHead d2 (Bind Abbr) u0)))) (\lambda (d2: C).(\lambda (u0: T).(ty3 g d2 u0
-t))))) (\lambda (x0: C).(\lambda (x1: T).(\lambda (H5: (csubt g d1
-x0)).(\lambda (H6: (drop (S n0) O c3 (CHead x0 (Bind Abbr) x1))).(\lambda
-(H7: (ty3 g x0 x1 t)).(or_intror (ex2 C (\lambda (d2: C).(csubt g d1 d2))
-(\lambda (d2: C).(drop (S n0) O (CHead c3 (Flat f) u) (CHead d2 (Bind Abst)
-t)))) (ex3_2 C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda
-(d2: C).(\lambda (u0: T).(drop (S n0) O (CHead c3 (Flat f) u) (CHead d2 (Bind
-Abbr) u0)))) (\lambda (d2: C).(\lambda (u0: T).(ty3 g d2 u0 t))))
-(ex3_2_intro C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda
-(d2: C).(\lambda (u0: T).(drop (S n0) O (CHead c3 (Flat f) u) (CHead d2 (Bind
-Abbr) u0)))) (\lambda (d2: C).(\lambda (u0: T).(ty3 g d2 u0 t))) x0 x1 H5
-(drop_drop (Flat f) n0 c3 (CHead x0 (Bind Abbr) x1) H6 u) H7))))))) H4)) (H2
-d1 t (drop_gen_drop (Flat f) c0 (CHead d1 (Bind Abst) t) u n0 H3))))))))
-k)))))) (\lambda (c0: C).(\lambda (c3: C).(\lambda (H1: (csubt g c0
-c3)).(\lambda (_: ((\forall (d1: C).(\forall (t: T).((drop (S n0) O c0 (CHead
-d1 (Bind Abst) t)) \to (or (ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda
-(d2: C).(drop (S n0) O c3 (CHead d2 (Bind Abst) t)))) (ex3_2 C T (\lambda
-(d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u:
-T).(drop (S n0) O c3 (CHead d2 (Bind Abbr) u)))) (\lambda (d2: C).(\lambda
+(CHead d2 (Bind Abbr) u0)))) (\lambda (_: C).(\lambda (u0: T).(ty3 g d1 u0
+t))) (\lambda (d2: C).(\lambda (u0: T).(ty3 g d2 u0 t)))) (ex4_2_intro C T
+(\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda
+(u0: T).(drop (S n0) O (CHead c3 (Flat f) u) (CHead d2 (Bind Abbr) u0))))
+(\lambda (_: C).(\lambda (u0: T).(ty3 g d1 u0 t))) (\lambda (d2: C).(\lambda
+(u0: T).(ty3 g d2 u0 t))) x0 x1 H5 (drop_drop (Flat f) n0 c3 (CHead x0 (Bind
+Abbr) x1) H6 u) H7 H8)))))))) H4)) (H2 d1 t (drop_gen_drop (Flat f) c0 (CHead
+d1 (Bind Abst) t) u n0 H3)))))))) k)))))) (\lambda (c0: C).(\lambda (c3:
+C).(\lambda (H1: (csubt g c0 c3)).(\lambda (_: ((\forall (d1: C).(\forall (t:
+T).((drop (S n0) O c0 (CHead d1 (Bind Abst) t)) \to (or (ex2 C (\lambda (d2:
+C).(csubt g d1 d2)) (\lambda (d2: C).(drop (S n0) O c3 (CHead d2 (Bind Abst)
+t)))) (ex4_2 C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda
+(d2: C).(\lambda (u: T).(drop (S n0) O c3 (CHead d2 (Bind Abbr) u))))
+(\lambda (_: C).(\lambda (u: T).(ty3 g d1 u t))) (\lambda (d2: C).(\lambda
(u: T).(ty3 g d2 u t)))))))))).(\lambda (b: B).(\lambda (_: (not (eq B b
Void))).(\lambda (u1: T).(\lambda (u2: T).(\lambda (d1: C).(\lambda (t:
T).(\lambda (H4: (drop (S n0) O (CHead c0 (Bind Void) u1) (CHead d1 (Bind
Abst) t))).(or_ind (ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2:
-C).(drop n0 O c3 (CHead d2 (Bind Abst) t)))) (ex3_2 C T (\lambda (d2:
+C).(drop n0 O c3 (CHead d2 (Bind Abst) t)))) (ex4_2 C T (\lambda (d2:
C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u: T).(drop
-n0 O c3 (CHead d2 (Bind Abbr) u)))) (\lambda (d2: C).(\lambda (u: T).(ty3 g
-d2 u t)))) (or (ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2:
-C).(drop (S n0) O (CHead c3 (Bind b) u2) (CHead d2 (Bind Abst) t)))) (ex3_2 C
-T (\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2:
-C).(\lambda (u: T).(drop (S n0) O (CHead c3 (Bind b) u2) (CHead d2 (Bind
-Abbr) u)))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u t))))) (\lambda (H5:
-(ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2: C).(drop n0 O c3
-(CHead d2 (Bind Abst) t))))).(ex2_ind C (\lambda (d2: C).(csubt g d1 d2))
-(\lambda (d2: C).(drop n0 O c3 (CHead d2 (Bind Abst) t))) (or (ex2 C (\lambda
+n0 O c3 (CHead d2 (Bind Abbr) u)))) (\lambda (_: C).(\lambda (u: T).(ty3 g d1
+u t))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u t)))) (or (ex2 C (\lambda
(d2: C).(csubt g d1 d2)) (\lambda (d2: C).(drop (S n0) O (CHead c3 (Bind b)
-u2) (CHead d2 (Bind Abst) t)))) (ex3_2 C T (\lambda (d2: C).(\lambda (_:
+u2) (CHead d2 (Bind Abst) t)))) (ex4_2 C T (\lambda (d2: C).(\lambda (_:
T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u: T).(drop (S n0) O (CHead
-c3 (Bind b) u2) (CHead d2 (Bind Abbr) u)))) (\lambda (d2: C).(\lambda (u:
-T).(ty3 g d2 u t))))) (\lambda (x: C).(\lambda (H6: (csubt g d1 x)).(\lambda
-(H7: (drop n0 O c3 (CHead x (Bind Abst) t))).(or_introl (ex2 C (\lambda (d2:
-C).(csubt g d1 d2)) (\lambda (d2: C).(drop (S n0) O (CHead c3 (Bind b) u2)
-(CHead d2 (Bind Abst) t)))) (ex3_2 C T (\lambda (d2: C).(\lambda (_:
-T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u: T).(drop (S n0) O (CHead
-c3 (Bind b) u2) (CHead d2 (Bind Abbr) u)))) (\lambda (d2: C).(\lambda (u:
-T).(ty3 g d2 u t)))) (ex_intro2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda
-(d2: C).(drop (S n0) O (CHead c3 (Bind b) u2) (CHead d2 (Bind Abst) t))) x H6
-(drop_drop (Bind b) n0 c3 (CHead x (Bind Abst) t) H7 u2)))))) H5)) (\lambda
-(H5: (ex3_2 C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda
-(d2: C).(\lambda (u: T).(drop n0 O c3 (CHead d2 (Bind Abbr) u)))) (\lambda
-(d2: C).(\lambda (u: T).(ty3 g d2 u t))))).(ex3_2_ind C T (\lambda (d2:
+c3 (Bind b) u2) (CHead d2 (Bind Abbr) u)))) (\lambda (_: C).(\lambda (u:
+T).(ty3 g d1 u t))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u t)))))
+(\lambda (H5: (ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2: C).(drop
+n0 O c3 (CHead d2 (Bind Abst) t))))).(ex2_ind C (\lambda (d2: C).(csubt g d1
+d2)) (\lambda (d2: C).(drop n0 O c3 (CHead d2 (Bind Abst) t))) (or (ex2 C
+(\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2: C).(drop (S n0) O (CHead c3
+(Bind b) u2) (CHead d2 (Bind Abst) t)))) (ex4_2 C T (\lambda (d2: C).(\lambda
+(_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u: T).(drop (S n0) O
+(CHead c3 (Bind b) u2) (CHead d2 (Bind Abbr) u)))) (\lambda (_: C).(\lambda
+(u: T).(ty3 g d1 u t))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u t)))))
+(\lambda (x: C).(\lambda (H6: (csubt g d1 x)).(\lambda (H7: (drop n0 O c3
+(CHead x (Bind Abst) t))).(or_introl (ex2 C (\lambda (d2: C).(csubt g d1 d2))
+(\lambda (d2: C).(drop (S n0) O (CHead c3 (Bind b) u2) (CHead d2 (Bind Abst)
+t)))) (ex4_2 C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda
+(d2: C).(\lambda (u: T).(drop (S n0) O (CHead c3 (Bind b) u2) (CHead d2 (Bind
+Abbr) u)))) (\lambda (_: C).(\lambda (u: T).(ty3 g d1 u t))) (\lambda (d2:
+C).(\lambda (u: T).(ty3 g d2 u t)))) (ex_intro2 C (\lambda (d2: C).(csubt g
+d1 d2)) (\lambda (d2: C).(drop (S n0) O (CHead c3 (Bind b) u2) (CHead d2
+(Bind Abst) t))) x H6 (drop_drop (Bind b) n0 c3 (CHead x (Bind Abst) t) H7
+u2)))))) H5)) (\lambda (H5: (ex4_2 C T (\lambda (d2: C).(\lambda (_:
+T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u: T).(drop n0 O c3 (CHead d2
+(Bind Abbr) u)))) (\lambda (_: C).(\lambda (u: T).(ty3 g d1 u t))) (\lambda
+(d2: C).(\lambda (u: T).(ty3 g d2 u t))))).(ex4_2_ind C T (\lambda (d2:
C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u: T).(drop
-n0 O c3 (CHead d2 (Bind Abbr) u)))) (\lambda (d2: C).(\lambda (u: T).(ty3 g
-d2 u t))) (or (ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2: C).(drop
-(S n0) O (CHead c3 (Bind b) u2) (CHead d2 (Bind Abst) t)))) (ex3_2 C T
-(\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda
-(u: T).(drop (S n0) O (CHead c3 (Bind b) u2) (CHead d2 (Bind Abbr) u))))
-(\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u t))))) (\lambda (x0: C).(\lambda
-(x1: T).(\lambda (H6: (csubt g d1 x0)).(\lambda (H7: (drop n0 O c3 (CHead x0
-(Bind Abbr) x1))).(\lambda (H8: (ty3 g x0 x1 t)).(or_intror (ex2 C (\lambda
+n0 O c3 (CHead d2 (Bind Abbr) u)))) (\lambda (_: C).(\lambda (u: T).(ty3 g d1
+u t))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u t))) (or (ex2 C (\lambda
(d2: C).(csubt g d1 d2)) (\lambda (d2: C).(drop (S n0) O (CHead c3 (Bind b)
-u2) (CHead d2 (Bind Abst) t)))) (ex3_2 C T (\lambda (d2: C).(\lambda (_:
+u2) (CHead d2 (Bind Abst) t)))) (ex4_2 C T (\lambda (d2: C).(\lambda (_:
T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u: T).(drop (S n0) O (CHead
-c3 (Bind b) u2) (CHead d2 (Bind Abbr) u)))) (\lambda (d2: C).(\lambda (u:
-T).(ty3 g d2 u t)))) (ex3_2_intro C T (\lambda (d2: C).(\lambda (_: T).(csubt
-g d1 d2))) (\lambda (d2: C).(\lambda (u: T).(drop (S n0) O (CHead c3 (Bind b)
-u2) (CHead d2 (Bind Abbr) u)))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u
-t))) x0 x1 H6 (drop_drop (Bind b) n0 c3 (CHead x0 (Bind Abbr) x1) H7 u2)
-H8))))))) H5)) (H c0 c3 H1 d1 t (drop_gen_drop (Bind Void) c0 (CHead d1 (Bind
-Abst) t) u1 n0 H4)))))))))))))) (\lambda (c0: C).(\lambda (c3: C).(\lambda
-(H1: (csubt g c0 c3)).(\lambda (_: ((\forall (d1: C).(\forall (t: T).((drop
-(S n0) O c0 (CHead d1 (Bind Abst) t)) \to (or (ex2 C (\lambda (d2: C).(csubt
-g d1 d2)) (\lambda (d2: C).(drop (S n0) O c3 (CHead d2 (Bind Abst) t))))
-(ex3_2 C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2:
-C).(\lambda (u: T).(drop (S n0) O c3 (CHead d2 (Bind Abbr) u)))) (\lambda
-(d2: C).(\lambda (u: T).(ty3 g d2 u t)))))))))).(\lambda (u: T).(\lambda (t:
-T).(\lambda (_: (ty3 g c3 u t)).(\lambda (d1: C).(\lambda (t0: T).(\lambda
-(H4: (drop (S n0) O (CHead c0 (Bind Abst) t) (CHead d1 (Bind Abst)
-t0))).(or_ind (ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2: C).(drop
-n0 O c3 (CHead d2 (Bind Abst) t0)))) (ex3_2 C T (\lambda (d2: C).(\lambda (_:
-T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u0: T).(drop n0 O c3 (CHead
-d2 (Bind Abbr) u0)))) (\lambda (d2: C).(\lambda (u0: T).(ty3 g d2 u0 t0))))
-(or (ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2: C).(drop (S n0) O
-(CHead c3 (Bind Abbr) u) (CHead d2 (Bind Abst) t0)))) (ex3_2 C T (\lambda
-(d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u0:
-T).(drop (S n0) O (CHead c3 (Bind Abbr) u) (CHead d2 (Bind Abbr) u0))))
-(\lambda (d2: C).(\lambda (u0: T).(ty3 g d2 u0 t0))))) (\lambda (H5: (ex2 C
-(\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2: C).(drop n0 O c3 (CHead d2
-(Bind Abst) t0))))).(ex2_ind C (\lambda (d2: C).(csubt g d1 d2)) (\lambda
-(d2: C).(drop n0 O c3 (CHead d2 (Bind Abst) t0))) (or (ex2 C (\lambda (d2:
-C).(csubt g d1 d2)) (\lambda (d2: C).(drop (S n0) O (CHead c3 (Bind Abbr) u)
-(CHead d2 (Bind Abst) t0)))) (ex3_2 C T (\lambda (d2: C).(\lambda (_:
-T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u0: T).(drop (S n0) O (CHead
-c3 (Bind Abbr) u) (CHead d2 (Bind Abbr) u0)))) (\lambda (d2: C).(\lambda (u0:
-T).(ty3 g d2 u0 t0))))) (\lambda (x: C).(\lambda (H6: (csubt g d1
-x)).(\lambda (H7: (drop n0 O c3 (CHead x (Bind Abst) t0))).(or_introl (ex2 C
+c3 (Bind b) u2) (CHead d2 (Bind Abbr) u)))) (\lambda (_: C).(\lambda (u:
+T).(ty3 g d1 u t))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u t)))))
+(\lambda (x0: C).(\lambda (x1: T).(\lambda (H6: (csubt g d1 x0)).(\lambda
+(H7: (drop n0 O c3 (CHead x0 (Bind Abbr) x1))).(\lambda (H8: (ty3 g d1 x1
+t)).(\lambda (H9: (ty3 g x0 x1 t)).(or_intror (ex2 C (\lambda (d2: C).(csubt
+g d1 d2)) (\lambda (d2: C).(drop (S n0) O (CHead c3 (Bind b) u2) (CHead d2
+(Bind Abst) t)))) (ex4_2 C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1
+d2))) (\lambda (d2: C).(\lambda (u: T).(drop (S n0) O (CHead c3 (Bind b) u2)
+(CHead d2 (Bind Abbr) u)))) (\lambda (_: C).(\lambda (u: T).(ty3 g d1 u t)))
+(\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u t)))) (ex4_2_intro C T (\lambda
+(d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u:
+T).(drop (S n0) O (CHead c3 (Bind b) u2) (CHead d2 (Bind Abbr) u)))) (\lambda
+(_: C).(\lambda (u: T).(ty3 g d1 u t))) (\lambda (d2: C).(\lambda (u: T).(ty3
+g d2 u t))) x0 x1 H6 (drop_drop (Bind b) n0 c3 (CHead x0 (Bind Abbr) x1) H7
+u2) H8 H9)))))))) H5)) (H c0 c3 H1 d1 t (drop_gen_drop (Bind Void) c0 (CHead
+d1 (Bind Abst) t) u1 n0 H4)))))))))))))) (\lambda (c0: C).(\lambda (c3:
+C).(\lambda (H1: (csubt g c0 c3)).(\lambda (_: ((\forall (d1: C).(\forall (t:
+T).((drop (S n0) O c0 (CHead d1 (Bind Abst) t)) \to (or (ex2 C (\lambda (d2:
+C).(csubt g d1 d2)) (\lambda (d2: C).(drop (S n0) O c3 (CHead d2 (Bind Abst)
+t)))) (ex4_2 C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda
+(d2: C).(\lambda (u: T).(drop (S n0) O c3 (CHead d2 (Bind Abbr) u))))
+(\lambda (_: C).(\lambda (u: T).(ty3 g d1 u t))) (\lambda (d2: C).(\lambda
+(u: T).(ty3 g d2 u t)))))))))).(\lambda (u: T).(\lambda (t: T).(\lambda (_:
+(ty3 g c0 u t)).(\lambda (_: (ty3 g c3 u t)).(\lambda (d1: C).(\lambda (t0:
+T).(\lambda (H5: (drop (S n0) O (CHead c0 (Bind Abst) t) (CHead d1 (Bind
+Abst) t0))).(or_ind (ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2:
+C).(drop n0 O c3 (CHead d2 (Bind Abst) t0)))) (ex4_2 C T (\lambda (d2:
+C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u0: T).(drop
+n0 O c3 (CHead d2 (Bind Abbr) u0)))) (\lambda (_: C).(\lambda (u0: T).(ty3 g
+d1 u0 t0))) (\lambda (d2: C).(\lambda (u0: T).(ty3 g d2 u0 t0)))) (or (ex2 C
(\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2: C).(drop (S n0) O (CHead c3
-(Bind Abbr) u) (CHead d2 (Bind Abst) t0)))) (ex3_2 C T (\lambda (d2:
+(Bind Abbr) u) (CHead d2 (Bind Abst) t0)))) (ex4_2 C T (\lambda (d2:
C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u0: T).(drop
-(S n0) O (CHead c3 (Bind Abbr) u) (CHead d2 (Bind Abbr) u0)))) (\lambda (d2:
-C).(\lambda (u0: T).(ty3 g d2 u0 t0)))) (ex_intro2 C (\lambda (d2: C).(csubt
-g d1 d2)) (\lambda (d2: C).(drop (S n0) O (CHead c3 (Bind Abbr) u) (CHead d2
-(Bind Abst) t0))) x H6 (drop_drop (Bind Abbr) n0 c3 (CHead x (Bind Abst) t0)
-H7 u)))))) H5)) (\lambda (H5: (ex3_2 C T (\lambda (d2: C).(\lambda (_:
-T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u0: T).(drop n0 O c3 (CHead
-d2 (Bind Abbr) u0)))) (\lambda (d2: C).(\lambda (u0: T).(ty3 g d2 u0
-t0))))).(ex3_2_ind C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2)))
-(\lambda (d2: C).(\lambda (u0: T).(drop n0 O c3 (CHead d2 (Bind Abbr) u0))))
-(\lambda (d2: C).(\lambda (u0: T).(ty3 g d2 u0 t0))) (or (ex2 C (\lambda (d2:
-C).(csubt g d1 d2)) (\lambda (d2: C).(drop (S n0) O (CHead c3 (Bind Abbr) u)
-(CHead d2 (Bind Abst) t0)))) (ex3_2 C T (\lambda (d2: C).(\lambda (_:
-T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u0: T).(drop (S n0) O (CHead
-c3 (Bind Abbr) u) (CHead d2 (Bind Abbr) u0)))) (\lambda (d2: C).(\lambda (u0:
-T).(ty3 g d2 u0 t0))))) (\lambda (x0: C).(\lambda (x1: T).(\lambda (H6:
-(csubt g d1 x0)).(\lambda (H7: (drop n0 O c3 (CHead x0 (Bind Abbr)
-x1))).(\lambda (H8: (ty3 g x0 x1 t0)).(or_intror (ex2 C (\lambda (d2:
+(S n0) O (CHead c3 (Bind Abbr) u) (CHead d2 (Bind Abbr) u0)))) (\lambda (_:
+C).(\lambda (u0: T).(ty3 g d1 u0 t0))) (\lambda (d2: C).(\lambda (u0: T).(ty3
+g d2 u0 t0))))) (\lambda (H6: (ex2 C (\lambda (d2: C).(csubt g d1 d2))
+(\lambda (d2: C).(drop n0 O c3 (CHead d2 (Bind Abst) t0))))).(ex2_ind C
+(\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2: C).(drop n0 O c3 (CHead d2
+(Bind Abst) t0))) (or (ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2:
+C).(drop (S n0) O (CHead c3 (Bind Abbr) u) (CHead d2 (Bind Abst) t0))))
+(ex4_2 C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2:
+C).(\lambda (u0: T).(drop (S n0) O (CHead c3 (Bind Abbr) u) (CHead d2 (Bind
+Abbr) u0)))) (\lambda (_: C).(\lambda (u0: T).(ty3 g d1 u0 t0))) (\lambda
+(d2: C).(\lambda (u0: T).(ty3 g d2 u0 t0))))) (\lambda (x: C).(\lambda (H7:
+(csubt g d1 x)).(\lambda (H8: (drop n0 O c3 (CHead x (Bind Abst)
+t0))).(or_introl (ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2:
+C).(drop (S n0) O (CHead c3 (Bind Abbr) u) (CHead d2 (Bind Abst) t0))))
+(ex4_2 C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2:
+C).(\lambda (u0: T).(drop (S n0) O (CHead c3 (Bind Abbr) u) (CHead d2 (Bind
+Abbr) u0)))) (\lambda (_: C).(\lambda (u0: T).(ty3 g d1 u0 t0))) (\lambda
+(d2: C).(\lambda (u0: T).(ty3 g d2 u0 t0)))) (ex_intro2 C (\lambda (d2:
C).(csubt g d1 d2)) (\lambda (d2: C).(drop (S n0) O (CHead c3 (Bind Abbr) u)
-(CHead d2 (Bind Abst) t0)))) (ex3_2 C T (\lambda (d2: C).(\lambda (_:
-T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u0: T).(drop (S n0) O (CHead
-c3 (Bind Abbr) u) (CHead d2 (Bind Abbr) u0)))) (\lambda (d2: C).(\lambda (u0:
-T).(ty3 g d2 u0 t0)))) (ex3_2_intro C T (\lambda (d2: C).(\lambda (_:
-T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u0: T).(drop (S n0) O (CHead
-c3 (Bind Abbr) u) (CHead d2 (Bind Abbr) u0)))) (\lambda (d2: C).(\lambda (u0:
-T).(ty3 g d2 u0 t0))) x0 x1 H6 (drop_drop (Bind Abbr) n0 c3 (CHead x0 (Bind
-Abbr) x1) H7 u) H8))))))) H5)) (H c0 c3 H1 d1 t0 (drop_gen_drop (Bind Abst)
-c0 (CHead d1 (Bind Abst) t0) t n0 H4))))))))))))) c1 c2 H0)))))) n)).
+(CHead d2 (Bind Abst) t0))) x H7 (drop_drop (Bind Abbr) n0 c3 (CHead x (Bind
+Abst) t0) H8 u)))))) H6)) (\lambda (H6: (ex4_2 C T (\lambda (d2: C).(\lambda
+(_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u0: T).(drop n0 O c3
+(CHead d2 (Bind Abbr) u0)))) (\lambda (_: C).(\lambda (u0: T).(ty3 g d1 u0
+t0))) (\lambda (d2: C).(\lambda (u0: T).(ty3 g d2 u0 t0))))).(ex4_2_ind C T
+(\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda
+(u0: T).(drop n0 O c3 (CHead d2 (Bind Abbr) u0)))) (\lambda (_: C).(\lambda
+(u0: T).(ty3 g d1 u0 t0))) (\lambda (d2: C).(\lambda (u0: T).(ty3 g d2 u0
+t0))) (or (ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2: C).(drop (S
+n0) O (CHead c3 (Bind Abbr) u) (CHead d2 (Bind Abst) t0)))) (ex4_2 C T
+(\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda
+(u0: T).(drop (S n0) O (CHead c3 (Bind Abbr) u) (CHead d2 (Bind Abbr) u0))))
+(\lambda (_: C).(\lambda (u0: T).(ty3 g d1 u0 t0))) (\lambda (d2: C).(\lambda
+(u0: T).(ty3 g d2 u0 t0))))) (\lambda (x0: C).(\lambda (x1: T).(\lambda (H7:
+(csubt g d1 x0)).(\lambda (H8: (drop n0 O c3 (CHead x0 (Bind Abbr)
+x1))).(\lambda (H9: (ty3 g d1 x1 t0)).(\lambda (H10: (ty3 g x0 x1
+t0)).(or_intror (ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2:
+C).(drop (S n0) O (CHead c3 (Bind Abbr) u) (CHead d2 (Bind Abst) t0))))
+(ex4_2 C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2:
+C).(\lambda (u0: T).(drop (S n0) O (CHead c3 (Bind Abbr) u) (CHead d2 (Bind
+Abbr) u0)))) (\lambda (_: C).(\lambda (u0: T).(ty3 g d1 u0 t0))) (\lambda
+(d2: C).(\lambda (u0: T).(ty3 g d2 u0 t0)))) (ex4_2_intro C T (\lambda (d2:
+C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u0: T).(drop
+(S n0) O (CHead c3 (Bind Abbr) u) (CHead d2 (Bind Abbr) u0)))) (\lambda (_:
+C).(\lambda (u0: T).(ty3 g d1 u0 t0))) (\lambda (d2: C).(\lambda (u0: T).(ty3
+g d2 u0 t0))) x0 x1 H7 (drop_drop (Bind Abbr) n0 c3 (CHead x0 (Bind Abbr) x1)
+H8 u) H9 H10)))))))) H6)) (H c0 c3 H1 d1 t0 (drop_gen_drop (Bind Abst) c0
+(CHead d1 (Bind Abst) t0) t n0 H5)))))))))))))) c1 c2 H0)))))) n)).
(\lambda (c1: C).(\lambda (c3: C).(\lambda (_: (csubt g c1 c3)).(\lambda (_:
(((eq C c1 (CHead e1 (Bind Abbr) v)) \to (ex2 C (\lambda (e2: C).(eq C c3
(CHead e2 (Bind Abbr) v))) (\lambda (e2: C).(csubt g e1 e2)))))).(\lambda (u:
-T).(\lambda (t: T).(\lambda (_: (ty3 g c3 u t)).(\lambda (H4: (eq C (CHead c1
-(Bind Abst) t) (CHead e1 (Bind Abbr) v))).(let H5 \def (eq_ind C (CHead c1
-(Bind Abst) t) (\lambda (ee: C).(match ee in C return (\lambda (_: C).Prop)
-with [(CSort _) \Rightarrow False | (CHead _ k _) \Rightarrow (match k in K
-return (\lambda (_: K).Prop) with [(Bind b) \Rightarrow (match b in B return
-(\lambda (_: B).Prop) with [Abbr \Rightarrow False | Abst \Rightarrow True |
-Void \Rightarrow False]) | (Flat _) \Rightarrow False])])) I (CHead e1 (Bind
-Abbr) v) H4) in (False_ind (ex2 C (\lambda (e2: C).(eq C (CHead c3 (Bind
-Abbr) u) (CHead e2 (Bind Abbr) v))) (\lambda (e2: C).(csubt g e1 e2)))
-H5)))))))))) y c2 H0))) H))))).
+T).(\lambda (t: T).(\lambda (_: (ty3 g c1 u t)).(\lambda (_: (ty3 g c3 u
+t)).(\lambda (H5: (eq C (CHead c1 (Bind Abst) t) (CHead e1 (Bind Abbr)
+v))).(let H6 \def (eq_ind C (CHead c1 (Bind Abst) t) (\lambda (ee: C).(match
+ee in C return (\lambda (_: C).Prop) with [(CSort _) \Rightarrow False |
+(CHead _ k _) \Rightarrow (match k in K return (\lambda (_: K).Prop) with
+[(Bind b) \Rightarrow (match b in B return (\lambda (_: B).Prop) with [Abbr
+\Rightarrow False | Abst \Rightarrow True | Void \Rightarrow False]) | (Flat
+_) \Rightarrow False])])) I (CHead e1 (Bind Abbr) v) H5) in (False_ind (ex2 C
+(\lambda (e2: C).(eq C (CHead c3 (Bind Abbr) u) (CHead e2 (Bind Abbr) v)))
+(\lambda (e2: C).(csubt g e1 e2))) H6))))))))))) y c2 H0))) H))))).
theorem csubt_gen_abst:
\forall (g: G).(\forall (e1: C).(\forall (c2: C).(\forall (v1: T).((csubt g
(CHead e1 (Bind Abst) v1) c2) \to (or (ex2 C (\lambda (e2: C).(eq C c2 (CHead
-e2 (Bind Abst) v1))) (\lambda (e2: C).(csubt g e1 e2))) (ex3_2 C T (\lambda
+e2 (Bind Abst) v1))) (\lambda (e2: C).(csubt g e1 e2))) (ex4_2 C T (\lambda
(e2: C).(\lambda (v2: T).(eq C c2 (CHead e2 (Bind Abbr) v2)))) (\lambda (e2:
-C).(\lambda (_: T).(csubt g e1 e2))) (\lambda (e2: C).(\lambda (v2: T).(ty3 g
-e2 v2 v1)))))))))
+C).(\lambda (_: T).(csubt g e1 e2))) (\lambda (_: C).(\lambda (v2: T).(ty3 g
+e1 v2 v1))) (\lambda (e2: C).(\lambda (v2: T).(ty3 g e2 v2 v1)))))))))
\def
\lambda (g: G).(\lambda (e1: C).(\lambda (c2: C).(\lambda (v1: T).(\lambda
(H: (csubt g (CHead e1 (Bind Abst) v1) c2)).(insert_eq C (CHead e1 (Bind
Abst) v1) (\lambda (c: C).(csubt g c c2)) (\lambda (_: C).(or (ex2 C (\lambda
(e2: C).(eq C c2 (CHead e2 (Bind Abst) v1))) (\lambda (e2: C).(csubt g e1
-e2))) (ex3_2 C T (\lambda (e2: C).(\lambda (v2: T).(eq C c2 (CHead e2 (Bind
-Abbr) v2)))) (\lambda (e2: C).(\lambda (_: T).(csubt g e1 e2))) (\lambda (e2:
-C).(\lambda (v2: T).(ty3 g e2 v2 v1)))))) (\lambda (y: C).(\lambda (H0:
-(csubt g y c2)).(csubt_ind g (\lambda (c: C).(\lambda (c0: C).((eq C c (CHead
-e1 (Bind Abst) v1)) \to (or (ex2 C (\lambda (e2: C).(eq C c0 (CHead e2 (Bind
-Abst) v1))) (\lambda (e2: C).(csubt g e1 e2))) (ex3_2 C T (\lambda (e2:
-C).(\lambda (v2: T).(eq C c0 (CHead e2 (Bind Abbr) v2)))) (\lambda (e2:
-C).(\lambda (_: T).(csubt g e1 e2))) (\lambda (e2: C).(\lambda (v2: T).(ty3 g
-e2 v2 v1)))))))) (\lambda (n: nat).(\lambda (H1: (eq C (CSort n) (CHead e1
-(Bind Abst) v1))).(let H2 \def (eq_ind C (CSort n) (\lambda (ee: C).(match ee
-in C return (\lambda (_: C).Prop) with [(CSort _) \Rightarrow True | (CHead _
-_ _) \Rightarrow False])) I (CHead e1 (Bind Abst) v1) H1) in (False_ind (or
-(ex2 C (\lambda (e2: C).(eq C (CSort n) (CHead e2 (Bind Abst) v1))) (\lambda
-(e2: C).(csubt g e1 e2))) (ex3_2 C T (\lambda (e2: C).(\lambda (v2: T).(eq C
-(CSort n) (CHead e2 (Bind Abbr) v2)))) (\lambda (e2: C).(\lambda (_:
-T).(csubt g e1 e2))) (\lambda (e2: C).(\lambda (v2: T).(ty3 g e2 v2 v1)))))
+e2))) (ex4_2 C T (\lambda (e2: C).(\lambda (v2: T).(eq C c2 (CHead e2 (Bind
+Abbr) v2)))) (\lambda (e2: C).(\lambda (_: T).(csubt g e1 e2))) (\lambda (_:
+C).(\lambda (v2: T).(ty3 g e1 v2 v1))) (\lambda (e2: C).(\lambda (v2: T).(ty3
+g e2 v2 v1)))))) (\lambda (y: C).(\lambda (H0: (csubt g y c2)).(csubt_ind g
+(\lambda (c: C).(\lambda (c0: C).((eq C c (CHead e1 (Bind Abst) v1)) \to (or
+(ex2 C (\lambda (e2: C).(eq C c0 (CHead e2 (Bind Abst) v1))) (\lambda (e2:
+C).(csubt g e1 e2))) (ex4_2 C T (\lambda (e2: C).(\lambda (v2: T).(eq C c0
+(CHead e2 (Bind Abbr) v2)))) (\lambda (e2: C).(\lambda (_: T).(csubt g e1
+e2))) (\lambda (_: C).(\lambda (v2: T).(ty3 g e1 v2 v1))) (\lambda (e2:
+C).(\lambda (v2: T).(ty3 g e2 v2 v1)))))))) (\lambda (n: nat).(\lambda (H1:
+(eq C (CSort n) (CHead e1 (Bind Abst) v1))).(let H2 \def (eq_ind C (CSort n)
+(\lambda (ee: C).(match ee in C return (\lambda (_: C).Prop) with [(CSort _)
+\Rightarrow True | (CHead _ _ _) \Rightarrow False])) I (CHead e1 (Bind Abst)
+v1) H1) in (False_ind (or (ex2 C (\lambda (e2: C).(eq C (CSort n) (CHead e2
+(Bind Abst) v1))) (\lambda (e2: C).(csubt g e1 e2))) (ex4_2 C T (\lambda (e2:
+C).(\lambda (v2: T).(eq C (CSort n) (CHead e2 (Bind Abbr) v2)))) (\lambda
+(e2: C).(\lambda (_: T).(csubt g e1 e2))) (\lambda (_: C).(\lambda (v2:
+T).(ty3 g e1 v2 v1))) (\lambda (e2: C).(\lambda (v2: T).(ty3 g e2 v2 v1)))))
H2)))) (\lambda (c1: C).(\lambda (c3: C).(\lambda (H1: (csubt g c1
c3)).(\lambda (H2: (((eq C c1 (CHead e1 (Bind Abst) v1)) \to (or (ex2 C
(\lambda (e2: C).(eq C c3 (CHead e2 (Bind Abst) v1))) (\lambda (e2: C).(csubt
-g e1 e2))) (ex3_2 C T (\lambda (e2: C).(\lambda (v2: T).(eq C c3 (CHead e2
+g e1 e2))) (ex4_2 C T (\lambda (e2: C).(\lambda (v2: T).(eq C c3 (CHead e2
(Bind Abbr) v2)))) (\lambda (e2: C).(\lambda (_: T).(csubt g e1 e2)))
-(\lambda (e2: C).(\lambda (v2: T).(ty3 g e2 v2 v1)))))))).(\lambda (k:
-K).(\lambda (u: T).(\lambda (H3: (eq C (CHead c1 k u) (CHead e1 (Bind Abst)
-v1))).(let H4 \def (f_equal C C (\lambda (e: C).(match e in C return (\lambda
-(_: C).C) with [(CSort _) \Rightarrow c1 | (CHead c _ _) \Rightarrow c]))
-(CHead c1 k u) (CHead e1 (Bind Abst) v1) H3) in ((let H5 \def (f_equal C K
-(\lambda (e: C).(match e in C return (\lambda (_: C).K) with [(CSort _)
-\Rightarrow k | (CHead _ k0 _) \Rightarrow k0])) (CHead c1 k u) (CHead e1
-(Bind Abst) v1) H3) in ((let H6 \def (f_equal C T (\lambda (e: C).(match e in
-C return (\lambda (_: C).T) with [(CSort _) \Rightarrow u | (CHead _ _ t)
-\Rightarrow t])) (CHead c1 k u) (CHead e1 (Bind Abst) v1) H3) in (\lambda
-(H7: (eq K k (Bind Abst))).(\lambda (H8: (eq C c1 e1)).(eq_ind_r T v1
-(\lambda (t: T).(or (ex2 C (\lambda (e2: C).(eq C (CHead c3 k t) (CHead e2
-(Bind Abst) v1))) (\lambda (e2: C).(csubt g e1 e2))) (ex3_2 C T (\lambda (e2:
-C).(\lambda (v2: T).(eq C (CHead c3 k t) (CHead e2 (Bind Abbr) v2))))
-(\lambda (e2: C).(\lambda (_: T).(csubt g e1 e2))) (\lambda (e2: C).(\lambda
-(v2: T).(ty3 g e2 v2 v1)))))) (eq_ind_r K (Bind Abst) (\lambda (k0: K).(or
-(ex2 C (\lambda (e2: C).(eq C (CHead c3 k0 v1) (CHead e2 (Bind Abst) v1)))
-(\lambda (e2: C).(csubt g e1 e2))) (ex3_2 C T (\lambda (e2: C).(\lambda (v2:
-T).(eq C (CHead c3 k0 v1) (CHead e2 (Bind Abbr) v2)))) (\lambda (e2:
-C).(\lambda (_: T).(csubt g e1 e2))) (\lambda (e2: C).(\lambda (v2: T).(ty3 g
-e2 v2 v1)))))) (let H9 \def (eq_ind C c1 (\lambda (c: C).((eq C c (CHead e1
-(Bind Abst) v1)) \to (or (ex2 C (\lambda (e2: C).(eq C c3 (CHead e2 (Bind
-Abst) v1))) (\lambda (e2: C).(csubt g e1 e2))) (ex3_2 C T (\lambda (e2:
-C).(\lambda (v2: T).(eq C c3 (CHead e2 (Bind Abbr) v2)))) (\lambda (e2:
-C).(\lambda (_: T).(csubt g e1 e2))) (\lambda (e2: C).(\lambda (v2: T).(ty3 g
-e2 v2 v1))))))) H2 e1 H8) in (let H10 \def (eq_ind C c1 (\lambda (c:
-C).(csubt g c c3)) H1 e1 H8) in (or_introl (ex2 C (\lambda (e2: C).(eq C
-(CHead c3 (Bind Abst) v1) (CHead e2 (Bind Abst) v1))) (\lambda (e2: C).(csubt
-g e1 e2))) (ex3_2 C T (\lambda (e2: C).(\lambda (v2: T).(eq C (CHead c3 (Bind
-Abst) v1) (CHead e2 (Bind Abbr) v2)))) (\lambda (e2: C).(\lambda (_:
-T).(csubt g e1 e2))) (\lambda (e2: C).(\lambda (v2: T).(ty3 g e2 v2 v1))))
+(\lambda (_: C).(\lambda (v2: T).(ty3 g e1 v2 v1))) (\lambda (e2: C).(\lambda
+(v2: T).(ty3 g e2 v2 v1)))))))).(\lambda (k: K).(\lambda (u: T).(\lambda (H3:
+(eq C (CHead c1 k u) (CHead e1 (Bind Abst) v1))).(let H4 \def (f_equal C C
+(\lambda (e: C).(match e in C return (\lambda (_: C).C) with [(CSort _)
+\Rightarrow c1 | (CHead c _ _) \Rightarrow c])) (CHead c1 k u) (CHead e1
+(Bind Abst) v1) H3) in ((let H5 \def (f_equal C K (\lambda (e: C).(match e in
+C return (\lambda (_: C).K) with [(CSort _) \Rightarrow k | (CHead _ k0 _)
+\Rightarrow k0])) (CHead c1 k u) (CHead e1 (Bind Abst) v1) H3) in ((let H6
+\def (f_equal C T (\lambda (e: C).(match e in C return (\lambda (_: C).T)
+with [(CSort _) \Rightarrow u | (CHead _ _ t) \Rightarrow t])) (CHead c1 k u)
+(CHead e1 (Bind Abst) v1) H3) in (\lambda (H7: (eq K k (Bind Abst))).(\lambda
+(H8: (eq C c1 e1)).(eq_ind_r T v1 (\lambda (t: T).(or (ex2 C (\lambda (e2:
+C).(eq C (CHead c3 k t) (CHead e2 (Bind Abst) v1))) (\lambda (e2: C).(csubt g
+e1 e2))) (ex4_2 C T (\lambda (e2: C).(\lambda (v2: T).(eq C (CHead c3 k t)
+(CHead e2 (Bind Abbr) v2)))) (\lambda (e2: C).(\lambda (_: T).(csubt g e1
+e2))) (\lambda (_: C).(\lambda (v2: T).(ty3 g e1 v2 v1))) (\lambda (e2:
+C).(\lambda (v2: T).(ty3 g e2 v2 v1)))))) (eq_ind_r K (Bind Abst) (\lambda
+(k0: K).(or (ex2 C (\lambda (e2: C).(eq C (CHead c3 k0 v1) (CHead e2 (Bind
+Abst) v1))) (\lambda (e2: C).(csubt g e1 e2))) (ex4_2 C T (\lambda (e2:
+C).(\lambda (v2: T).(eq C (CHead c3 k0 v1) (CHead e2 (Bind Abbr) v2))))
+(\lambda (e2: C).(\lambda (_: T).(csubt g e1 e2))) (\lambda (_: C).(\lambda
+(v2: T).(ty3 g e1 v2 v1))) (\lambda (e2: C).(\lambda (v2: T).(ty3 g e2 v2
+v1)))))) (let H9 \def (eq_ind C c1 (\lambda (c: C).((eq C c (CHead e1 (Bind
+Abst) v1)) \to (or (ex2 C (\lambda (e2: C).(eq C c3 (CHead e2 (Bind Abst)
+v1))) (\lambda (e2: C).(csubt g e1 e2))) (ex4_2 C T (\lambda (e2: C).(\lambda
+(v2: T).(eq C c3 (CHead e2 (Bind Abbr) v2)))) (\lambda (e2: C).(\lambda (_:
+T).(csubt g e1 e2))) (\lambda (_: C).(\lambda (v2: T).(ty3 g e1 v2 v1)))
+(\lambda (e2: C).(\lambda (v2: T).(ty3 g e2 v2 v1))))))) H2 e1 H8) in (let
+H10 \def (eq_ind C c1 (\lambda (c: C).(csubt g c c3)) H1 e1 H8) in (or_introl
+(ex2 C (\lambda (e2: C).(eq C (CHead c3 (Bind Abst) v1) (CHead e2 (Bind Abst)
+v1))) (\lambda (e2: C).(csubt g e1 e2))) (ex4_2 C T (\lambda (e2: C).(\lambda
+(v2: T).(eq C (CHead c3 (Bind Abst) v1) (CHead e2 (Bind Abbr) v2)))) (\lambda
+(e2: C).(\lambda (_: T).(csubt g e1 e2))) (\lambda (_: C).(\lambda (v2:
+T).(ty3 g e1 v2 v1))) (\lambda (e2: C).(\lambda (v2: T).(ty3 g e2 v2 v1))))
(ex_intro2 C (\lambda (e2: C).(eq C (CHead c3 (Bind Abst) v1) (CHead e2 (Bind
Abst) v1))) (\lambda (e2: C).(csubt g e1 e2)) c3 (refl_equal C (CHead c3
(Bind Abst) v1)) H10)))) k H7) u H6)))) H5)) H4))))))))) (\lambda (c1:
C).(\lambda (c3: C).(\lambda (_: (csubt g c1 c3)).(\lambda (_: (((eq C c1
(CHead e1 (Bind Abst) v1)) \to (or (ex2 C (\lambda (e2: C).(eq C c3 (CHead e2
-(Bind Abst) v1))) (\lambda (e2: C).(csubt g e1 e2))) (ex3_2 C T (\lambda (e2:
+(Bind Abst) v1))) (\lambda (e2: C).(csubt g e1 e2))) (ex4_2 C T (\lambda (e2:
C).(\lambda (v2: T).(eq C c3 (CHead e2 (Bind Abbr) v2)))) (\lambda (e2:
-C).(\lambda (_: T).(csubt g e1 e2))) (\lambda (e2: C).(\lambda (v2: T).(ty3 g
-e2 v2 v1)))))))).(\lambda (b: B).(\lambda (_: (not (eq B b Void))).(\lambda
-(u1: T).(\lambda (u2: T).(\lambda (H4: (eq C (CHead c1 (Bind Void) u1) (CHead
-e1 (Bind Abst) v1))).(let H5 \def (eq_ind C (CHead c1 (Bind Void) u1)
-(\lambda (ee: C).(match ee in C return (\lambda (_: C).Prop) with [(CSort _)
+C).(\lambda (_: T).(csubt g e1 e2))) (\lambda (_: C).(\lambda (v2: T).(ty3 g
+e1 v2 v1))) (\lambda (e2: C).(\lambda (v2: T).(ty3 g e2 v2
+v1)))))))).(\lambda (b: B).(\lambda (_: (not (eq B b Void))).(\lambda (u1:
+T).(\lambda (u2: T).(\lambda (H4: (eq C (CHead c1 (Bind Void) u1) (CHead e1
+(Bind Abst) v1))).(let H5 \def (eq_ind C (CHead c1 (Bind Void) u1) (\lambda
+(ee: C).(match ee in C return (\lambda (_: C).Prop) with [(CSort _)
\Rightarrow False | (CHead _ k _) \Rightarrow (match k in K return (\lambda
(_: K).Prop) with [(Bind b0) \Rightarrow (match b0 in B return (\lambda (_:
B).Prop) with [Abbr \Rightarrow False | Abst \Rightarrow False | Void
\Rightarrow True]) | (Flat _) \Rightarrow False])])) I (CHead e1 (Bind Abst)
v1) H4) in (False_ind (or (ex2 C (\lambda (e2: C).(eq C (CHead c3 (Bind b)
-u2) (CHead e2 (Bind Abst) v1))) (\lambda (e2: C).(csubt g e1 e2))) (ex3_2 C T
+u2) (CHead e2 (Bind Abst) v1))) (\lambda (e2: C).(csubt g e1 e2))) (ex4_2 C T
(\lambda (e2: C).(\lambda (v2: T).(eq C (CHead c3 (Bind b) u2) (CHead e2
(Bind Abbr) v2)))) (\lambda (e2: C).(\lambda (_: T).(csubt g e1 e2)))
-(\lambda (e2: C).(\lambda (v2: T).(ty3 g e2 v2 v1))))) H5))))))))))) (\lambda
-(c1: C).(\lambda (c3: C).(\lambda (H1: (csubt g c1 c3)).(\lambda (H2: (((eq C
-c1 (CHead e1 (Bind Abst) v1)) \to (or (ex2 C (\lambda (e2: C).(eq C c3 (CHead
-e2 (Bind Abst) v1))) (\lambda (e2: C).(csubt g e1 e2))) (ex3_2 C T (\lambda
-(e2: C).(\lambda (v2: T).(eq C c3 (CHead e2 (Bind Abbr) v2)))) (\lambda (e2:
-C).(\lambda (_: T).(csubt g e1 e2))) (\lambda (e2: C).(\lambda (v2: T).(ty3 g
-e2 v2 v1)))))))).(\lambda (u: T).(\lambda (t: T).(\lambda (H3: (ty3 g c3 u
-t)).(\lambda (H4: (eq C (CHead c1 (Bind Abst) t) (CHead e1 (Bind Abst)
-v1))).(let H5 \def (f_equal C C (\lambda (e: C).(match e in C return (\lambda
+(\lambda (_: C).(\lambda (v2: T).(ty3 g e1 v2 v1))) (\lambda (e2: C).(\lambda
+(v2: T).(ty3 g e2 v2 v1))))) H5))))))))))) (\lambda (c1: C).(\lambda (c3:
+C).(\lambda (H1: (csubt g c1 c3)).(\lambda (H2: (((eq C c1 (CHead e1 (Bind
+Abst) v1)) \to (or (ex2 C (\lambda (e2: C).(eq C c3 (CHead e2 (Bind Abst)
+v1))) (\lambda (e2: C).(csubt g e1 e2))) (ex4_2 C T (\lambda (e2: C).(\lambda
+(v2: T).(eq C c3 (CHead e2 (Bind Abbr) v2)))) (\lambda (e2: C).(\lambda (_:
+T).(csubt g e1 e2))) (\lambda (_: C).(\lambda (v2: T).(ty3 g e1 v2 v1)))
+(\lambda (e2: C).(\lambda (v2: T).(ty3 g e2 v2 v1)))))))).(\lambda (u:
+T).(\lambda (t: T).(\lambda (H3: (ty3 g c1 u t)).(\lambda (H4: (ty3 g c3 u
+t)).(\lambda (H5: (eq C (CHead c1 (Bind Abst) t) (CHead e1 (Bind Abst)
+v1))).(let H6 \def (f_equal C C (\lambda (e: C).(match e in C return (\lambda
(_: C).C) with [(CSort _) \Rightarrow c1 | (CHead c _ _) \Rightarrow c]))
-(CHead c1 (Bind Abst) t) (CHead e1 (Bind Abst) v1) H4) in ((let H6 \def
+(CHead c1 (Bind Abst) t) (CHead e1 (Bind Abst) v1) H5) in ((let H7 \def
(f_equal C T (\lambda (e: C).(match e in C return (\lambda (_: C).T) with
[(CSort _) \Rightarrow t | (CHead _ _ t0) \Rightarrow t0])) (CHead c1 (Bind
-Abst) t) (CHead e1 (Bind Abst) v1) H4) in (\lambda (H7: (eq C c1 e1)).(let H8
-\def (eq_ind T t (\lambda (t0: T).(ty3 g c3 u t0)) H3 v1 H6) in (let H9 \def
+Abst) t) (CHead e1 (Bind Abst) v1) H5) in (\lambda (H8: (eq C c1 e1)).(let H9
+\def (eq_ind T t (\lambda (t0: T).(ty3 g c3 u t0)) H4 v1 H7) in (let H10 \def
+(eq_ind T t (\lambda (t0: T).(ty3 g c1 u t0)) H3 v1 H7) in (let H11 \def
+(eq_ind C c1 (\lambda (c: C).(ty3 g c u v1)) H10 e1 H8) in (let H12 \def
(eq_ind C c1 (\lambda (c: C).((eq C c (CHead e1 (Bind Abst) v1)) \to (or (ex2
C (\lambda (e2: C).(eq C c3 (CHead e2 (Bind Abst) v1))) (\lambda (e2:
-C).(csubt g e1 e2))) (ex3_2 C T (\lambda (e2: C).(\lambda (v2: T).(eq C c3
+C).(csubt g e1 e2))) (ex4_2 C T (\lambda (e2: C).(\lambda (v2: T).(eq C c3
(CHead e2 (Bind Abbr) v2)))) (\lambda (e2: C).(\lambda (_: T).(csubt g e1
-e2))) (\lambda (e2: C).(\lambda (v2: T).(ty3 g e2 v2 v1))))))) H2 e1 H7) in
-(let H10 \def (eq_ind C c1 (\lambda (c: C).(csubt g c c3)) H1 e1 H7) in
-(or_intror (ex2 C (\lambda (e2: C).(eq C (CHead c3 (Bind Abbr) u) (CHead e2
-(Bind Abst) v1))) (\lambda (e2: C).(csubt g e1 e2))) (ex3_2 C T (\lambda (e2:
-C).(\lambda (v2: T).(eq C (CHead c3 (Bind Abbr) u) (CHead e2 (Bind Abbr)
-v2)))) (\lambda (e2: C).(\lambda (_: T).(csubt g e1 e2))) (\lambda (e2:
-C).(\lambda (v2: T).(ty3 g e2 v2 v1)))) (ex3_2_intro C T (\lambda (e2:
-C).(\lambda (v2: T).(eq C (CHead c3 (Bind Abbr) u) (CHead e2 (Bind Abbr)
-v2)))) (\lambda (e2: C).(\lambda (_: T).(csubt g e1 e2))) (\lambda (e2:
+e2))) (\lambda (_: C).(\lambda (v2: T).(ty3 g e1 v2 v1))) (\lambda (e2:
+C).(\lambda (v2: T).(ty3 g e2 v2 v1))))))) H2 e1 H8) in (let H13 \def (eq_ind
+C c1 (\lambda (c: C).(csubt g c c3)) H1 e1 H8) in (or_intror (ex2 C (\lambda
+(e2: C).(eq C (CHead c3 (Bind Abbr) u) (CHead e2 (Bind Abst) v1))) (\lambda
+(e2: C).(csubt g e1 e2))) (ex4_2 C T (\lambda (e2: C).(\lambda (v2: T).(eq C
+(CHead c3 (Bind Abbr) u) (CHead e2 (Bind Abbr) v2)))) (\lambda (e2:
+C).(\lambda (_: T).(csubt g e1 e2))) (\lambda (_: C).(\lambda (v2: T).(ty3 g
+e1 v2 v1))) (\lambda (e2: C).(\lambda (v2: T).(ty3 g e2 v2 v1))))
+(ex4_2_intro C T (\lambda (e2: C).(\lambda (v2: T).(eq C (CHead c3 (Bind
+Abbr) u) (CHead e2 (Bind Abbr) v2)))) (\lambda (e2: C).(\lambda (_: T).(csubt
+g e1 e2))) (\lambda (_: C).(\lambda (v2: T).(ty3 g e1 v2 v1))) (\lambda (e2:
C).(\lambda (v2: T).(ty3 g e2 v2 v1))) c3 u (refl_equal C (CHead c3 (Bind
-Abbr) u)) H10 H8))))))) H5)))))))))) y c2 H0))) H))))).
+Abbr) u)) H13 H11 H9))))))))) H6))))))))))) y c2 H0))) H))))).
theorem csubt_gen_flat:
\forall (g: G).(\forall (e1: C).(\forall (c2: C).(\forall (v: T).(\forall
C).(csubt g e1 e2))) H5))))))))))) (\lambda (c1: C).(\lambda (c3: C).(\lambda
(_: (csubt g c1 c3)).(\lambda (_: (((eq C c1 (CHead e1 (Flat f) v)) \to (ex2
C (\lambda (e2: C).(eq C c3 (CHead e2 (Flat f) v))) (\lambda (e2: C).(csubt g
-e1 e2)))))).(\lambda (u: T).(\lambda (t: T).(\lambda (_: (ty3 g c3 u
-t)).(\lambda (H4: (eq C (CHead c1 (Bind Abst) t) (CHead e1 (Flat f) v))).(let
-H5 \def (eq_ind C (CHead c1 (Bind Abst) t) (\lambda (ee: C).(match ee in C
-return (\lambda (_: C).Prop) with [(CSort _) \Rightarrow False | (CHead _ k
-_) \Rightarrow (match k in K return (\lambda (_: K).Prop) with [(Bind _)
-\Rightarrow True | (Flat _) \Rightarrow False])])) I (CHead e1 (Flat f) v)
-H4) in (False_ind (ex2 C (\lambda (e2: C).(eq C (CHead c3 (Bind Abbr) u)
-(CHead e2 (Flat f) v))) (\lambda (e2: C).(csubt g e1 e2))) H5)))))))))) y c2
-H0))) H)))))).
+e1 e2)))))).(\lambda (u: T).(\lambda (t: T).(\lambda (_: (ty3 g c1 u
+t)).(\lambda (_: (ty3 g c3 u t)).(\lambda (H5: (eq C (CHead c1 (Bind Abst) t)
+(CHead e1 (Flat f) v))).(let H6 \def (eq_ind C (CHead c1 (Bind Abst) t)
+(\lambda (ee: C).(match ee in C return (\lambda (_: C).Prop) with [(CSort _)
+\Rightarrow False | (CHead _ k _) \Rightarrow (match k in K return (\lambda
+(_: K).Prop) with [(Bind _) \Rightarrow True | (Flat _) \Rightarrow
+False])])) I (CHead e1 (Flat f) v) H5) in (False_ind (ex2 C (\lambda (e2:
+C).(eq C (CHead c3 (Bind Abbr) u) (CHead e2 (Flat f) v))) (\lambda (e2:
+C).(csubt g e1 e2))) H6))))))))))) y c2 H0))) H)))))).
theorem csubt_gen_bind:
\forall (g: G).(\forall (b1: B).(\forall (e1: C).(\forall (c2: C).(\forall
(csubt g c1 c3)).(\lambda (H2: (((eq C c1 (CHead e1 (Bind b1) v1)) \to (ex2_3
B C T (\lambda (b2: B).(\lambda (e2: C).(\lambda (v2: T).(eq C c3 (CHead e2
(Bind b2) v2))))) (\lambda (_: B).(\lambda (e2: C).(\lambda (_: T).(csubt g
-e1 e2)))))))).(\lambda (u: T).(\lambda (t: T).(\lambda (H3: (ty3 g c3 u
-t)).(\lambda (H4: (eq C (CHead c1 (Bind Abst) t) (CHead e1 (Bind b1)
-v1))).(let H5 \def (f_equal C C (\lambda (e: C).(match e in C return (\lambda
-(_: C).C) with [(CSort _) \Rightarrow c1 | (CHead c _ _) \Rightarrow c]))
-(CHead c1 (Bind Abst) t) (CHead e1 (Bind b1) v1) H4) in ((let H6 \def
-(f_equal C B (\lambda (e: C).(match e in C return (\lambda (_: C).B) with
-[(CSort _) \Rightarrow Abst | (CHead _ k _) \Rightarrow (match k in K return
-(\lambda (_: K).B) with [(Bind b) \Rightarrow b | (Flat _) \Rightarrow
-Abst])])) (CHead c1 (Bind Abst) t) (CHead e1 (Bind b1) v1) H4) in ((let H7
-\def (f_equal C T (\lambda (e: C).(match e in C return (\lambda (_: C).T)
-with [(CSort _) \Rightarrow t | (CHead _ _ t0) \Rightarrow t0])) (CHead c1
-(Bind Abst) t) (CHead e1 (Bind b1) v1) H4) in (\lambda (H8: (eq B Abst
-b1)).(\lambda (H9: (eq C c1 e1)).(let H10 \def (eq_ind T t (\lambda (t0:
-T).(ty3 g c3 u t0)) H3 v1 H7) in (let H11 \def (eq_ind C c1 (\lambda (c:
+e1 e2)))))))).(\lambda (u: T).(\lambda (t: T).(\lambda (H3: (ty3 g c1 u
+t)).(\lambda (H4: (ty3 g c3 u t)).(\lambda (H5: (eq C (CHead c1 (Bind Abst)
+t) (CHead e1 (Bind b1) v1))).(let H6 \def (f_equal C C (\lambda (e: C).(match
+e in C return (\lambda (_: C).C) with [(CSort _) \Rightarrow c1 | (CHead c _
+_) \Rightarrow c])) (CHead c1 (Bind Abst) t) (CHead e1 (Bind b1) v1) H5) in
+((let H7 \def (f_equal C B (\lambda (e: C).(match e in C return (\lambda (_:
+C).B) with [(CSort _) \Rightarrow Abst | (CHead _ k _) \Rightarrow (match k
+in K return (\lambda (_: K).B) with [(Bind b) \Rightarrow b | (Flat _)
+\Rightarrow Abst])])) (CHead c1 (Bind Abst) t) (CHead e1 (Bind b1) v1) H5) in
+((let H8 \def (f_equal C T (\lambda (e: C).(match e in C return (\lambda (_:
+C).T) with [(CSort _) \Rightarrow t | (CHead _ _ t0) \Rightarrow t0])) (CHead
+c1 (Bind Abst) t) (CHead e1 (Bind b1) v1) H5) in (\lambda (H9: (eq B Abst
+b1)).(\lambda (H10: (eq C c1 e1)).(let H11 \def (eq_ind T t (\lambda (t0:
+T).(ty3 g c3 u t0)) H4 v1 H8) in (let H12 \def (eq_ind T t (\lambda (t0:
+T).(ty3 g c1 u t0)) H3 v1 H8) in (let H13 \def (eq_ind C c1 (\lambda (c:
+C).(ty3 g c u v1)) H12 e1 H10) in (let H14 \def (eq_ind C c1 (\lambda (c:
C).((eq C c (CHead e1 (Bind b1) v1)) \to (ex2_3 B C T (\lambda (b2:
B).(\lambda (e2: C).(\lambda (v2: T).(eq C c3 (CHead e2 (Bind b2) v2)))))
(\lambda (_: B).(\lambda (e2: C).(\lambda (_: T).(csubt g e1 e2))))))) H2 e1
-H9) in (let H12 \def (eq_ind C c1 (\lambda (c: C).(csubt g c c3)) H1 e1 H9)
-in (let H13 \def (eq_ind_r B b1 (\lambda (b: B).((eq C e1 (CHead e1 (Bind b)
+H10) in (let H15 \def (eq_ind C c1 (\lambda (c: C).(csubt g c c3)) H1 e1 H10)
+in (let H16 \def (eq_ind_r B b1 (\lambda (b: B).((eq C e1 (CHead e1 (Bind b)
v1)) \to (ex2_3 B C T (\lambda (b2: B).(\lambda (e2: C).(\lambda (v2: T).(eq
C c3 (CHead e2 (Bind b2) v2))))) (\lambda (_: B).(\lambda (e2: C).(\lambda
-(_: T).(csubt g e1 e2))))))) H11 Abst H8) in (ex2_3_intro B C T (\lambda (b2:
+(_: T).(csubt g e1 e2))))))) H14 Abst H9) in (ex2_3_intro B C T (\lambda (b2:
B).(\lambda (e2: C).(\lambda (v2: T).(eq C (CHead c3 (Bind Abbr) u) (CHead e2
(Bind b2) v2))))) (\lambda (_: B).(\lambda (e2: C).(\lambda (_: T).(csubt g
-e1 e2)))) Abbr c3 u (refl_equal C (CHead c3 (Bind Abbr) u)) H12)))))))) H6))
-H5)))))))))) y c2 H0))) H)))))).
+e1 e2)))) Abbr c3 u (refl_equal C (CHead c3 (Bind Abbr) u)) H15))))))))))
+H7)) H6))))))))))) y c2 H0))) H)))))).
\forall (g: G).(\forall (c1: C).(\forall (d1: C).(\forall (t: T).(\forall
(n: nat).((getl n c1 (CHead d1 (Bind Abst) t)) \to (\forall (c2: C).((csubt g
c1 c2) \to (or (ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2:
-C).(getl n c2 (CHead d2 (Bind Abst) t)))) (ex3_2 C T (\lambda (d2:
+C).(getl n c2 (CHead d2 (Bind Abst) t)))) (ex4_2 C T (\lambda (d2:
C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u: T).(getl n
-c2 (CHead d2 (Bind Abbr) u)))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u
-t))))))))))))
+c2 (CHead d2 (Bind Abbr) u)))) (\lambda (_: C).(\lambda (u: T).(ty3 g d1 u
+t))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u t))))))))))))
\def
\lambda (g: G).(\lambda (c1: C).(\lambda (d1: C).(\lambda (t: T).(\lambda
(n: nat).(\lambda (H: (getl n c1 (CHead d1 (Bind Abst) t))).(let H0 \def
(getl_gen_all c1 (CHead d1 (Bind Abst) t) n H) in (ex2_ind C (\lambda (e:
C).(drop n O c1 e)) (\lambda (e: C).(clear e (CHead d1 (Bind Abst) t)))
(\forall (c2: C).((csubt g c1 c2) \to (or (ex2 C (\lambda (d2: C).(csubt g d1
-d2)) (\lambda (d2: C).(getl n c2 (CHead d2 (Bind Abst) t)))) (ex3_2 C T
+d2)) (\lambda (d2: C).(getl n c2 (CHead d2 (Bind Abst) t)))) (ex4_2 C T
(\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda
-(u: T).(getl n c2 (CHead d2 (Bind Abbr) u)))) (\lambda (d2: C).(\lambda (u:
-T).(ty3 g d2 u t))))))) (\lambda (x: C).(\lambda (H1: (drop n O c1
-x)).(\lambda (H2: (clear x (CHead d1 (Bind Abst) t))).(C_ind (\lambda (c:
-C).((drop n O c1 c) \to ((clear c (CHead d1 (Bind Abst) t)) \to (\forall (c2:
-C).((csubt g c1 c2) \to (or (ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda
-(d2: C).(getl n c2 (CHead d2 (Bind Abst) t)))) (ex3_2 C T (\lambda (d2:
-C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u: T).(getl n
-c2 (CHead d2 (Bind Abbr) u)))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u
-t)))))))))) (\lambda (n0: nat).(\lambda (_: (drop n O c1 (CSort
-n0))).(\lambda (H4: (clear (CSort n0) (CHead d1 (Bind Abst)
-t))).(clear_gen_sort (CHead d1 (Bind Abst) t) n0 H4 (\forall (c2: C).((csubt
-g c1 c2) \to (or (ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2:
-C).(getl n c2 (CHead d2 (Bind Abst) t)))) (ex3_2 C T (\lambda (d2:
-C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u: T).(getl n
-c2 (CHead d2 (Bind Abbr) u)))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u
-t))))))))))) (\lambda (x0: C).(\lambda (_: (((drop n O c1 x0) \to ((clear x0
+(u: T).(getl n c2 (CHead d2 (Bind Abbr) u)))) (\lambda (_: C).(\lambda (u:
+T).(ty3 g d1 u t))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u t)))))))
+(\lambda (x: C).(\lambda (H1: (drop n O c1 x)).(\lambda (H2: (clear x (CHead
+d1 (Bind Abst) t))).(C_ind (\lambda (c: C).((drop n O c1 c) \to ((clear c
(CHead d1 (Bind Abst) t)) \to (\forall (c2: C).((csubt g c1 c2) \to (or (ex2
C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2: C).(getl n c2 (CHead d2
-(Bind Abst) t)))) (ex3_2 C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1
+(Bind Abst) t)))) (ex4_2 C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1
d2))) (\lambda (d2: C).(\lambda (u: T).(getl n c2 (CHead d2 (Bind Abbr) u))))
-(\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u t))))))))))).(\lambda (k:
-K).(\lambda (t0: T).(\lambda (H3: (drop n O c1 (CHead x0 k t0))).(\lambda
-(H4: (clear (CHead x0 k t0) (CHead d1 (Bind Abst) t))).(K_ind (\lambda (k0:
-K).((drop n O c1 (CHead x0 k0 t0)) \to ((clear (CHead x0 k0 t0) (CHead d1
-(Bind Abst) t)) \to (\forall (c2: C).((csubt g c1 c2) \to (or (ex2 C (\lambda
-(d2: C).(csubt g d1 d2)) (\lambda (d2: C).(getl n c2 (CHead d2 (Bind Abst)
-t)))) (ex3_2 C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda
-(d2: C).(\lambda (u: T).(getl n c2 (CHead d2 (Bind Abbr) u)))) (\lambda (d2:
-C).(\lambda (u: T).(ty3 g d2 u t)))))))))) (\lambda (b: B).(\lambda (H5:
+(\lambda (_: C).(\lambda (u: T).(ty3 g d1 u t))) (\lambda (d2: C).(\lambda
+(u: T).(ty3 g d2 u t)))))))))) (\lambda (n0: nat).(\lambda (_: (drop n O c1
+(CSort n0))).(\lambda (H4: (clear (CSort n0) (CHead d1 (Bind Abst)
+t))).(clear_gen_sort (CHead d1 (Bind Abst) t) n0 H4 (\forall (c2: C).((csubt
+g c1 c2) \to (or (ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2:
+C).(getl n c2 (CHead d2 (Bind Abst) t)))) (ex4_2 C T (\lambda (d2:
+C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u: T).(getl n
+c2 (CHead d2 (Bind Abbr) u)))) (\lambda (_: C).(\lambda (u: T).(ty3 g d1 u
+t))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u t))))))))))) (\lambda (x0:
+C).(\lambda (_: (((drop n O c1 x0) \to ((clear x0 (CHead d1 (Bind Abst) t))
+\to (\forall (c2: C).((csubt g c1 c2) \to (or (ex2 C (\lambda (d2: C).(csubt
+g d1 d2)) (\lambda (d2: C).(getl n c2 (CHead d2 (Bind Abst) t)))) (ex4_2 C T
+(\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda
+(u: T).(getl n c2 (CHead d2 (Bind Abbr) u)))) (\lambda (_: C).(\lambda (u:
+T).(ty3 g d1 u t))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u
+t))))))))))).(\lambda (k: K).(\lambda (t0: T).(\lambda (H3: (drop n O c1
+(CHead x0 k t0))).(\lambda (H4: (clear (CHead x0 k t0) (CHead d1 (Bind Abst)
+t))).(K_ind (\lambda (k0: K).((drop n O c1 (CHead x0 k0 t0)) \to ((clear
+(CHead x0 k0 t0) (CHead d1 (Bind Abst) t)) \to (\forall (c2: C).((csubt g c1
+c2) \to (or (ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2: C).(getl n
+c2 (CHead d2 (Bind Abst) t)))) (ex4_2 C T (\lambda (d2: C).(\lambda (_:
+T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u: T).(getl n c2 (CHead d2
+(Bind Abbr) u)))) (\lambda (_: C).(\lambda (u: T).(ty3 g d1 u t))) (\lambda
+(d2: C).(\lambda (u: T).(ty3 g d2 u t)))))))))) (\lambda (b: B).(\lambda (H5:
(drop n O c1 (CHead x0 (Bind b) t0))).(\lambda (H6: (clear (CHead x0 (Bind b)
t0) (CHead d1 (Bind Abst) t))).(let H7 \def (f_equal C C (\lambda (e:
C).(match e in C return (\lambda (_: C).C) with [(CSort _) \Rightarrow d1 |
H13 Abst H10) in (let H15 \def (eq_ind_r C x0 (\lambda (c: C).(drop n O c1
(CHead c (Bind Abst) t))) H14 d1 H11) in (or_ind (ex2 C (\lambda (d2:
C).(csubt g d1 d2)) (\lambda (d2: C).(drop n O c2 (CHead d2 (Bind Abst) t))))
-(ex3_2 C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2:
-C).(\lambda (u: T).(drop n O c2 (CHead d2 (Bind Abbr) u)))) (\lambda (d2:
-C).(\lambda (u: T).(ty3 g d2 u t)))) (or (ex2 C (\lambda (d2: C).(csubt g d1
-d2)) (\lambda (d2: C).(getl n c2 (CHead d2 (Bind Abst) t)))) (ex3_2 C T
-(\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda
-(u: T).(getl n c2 (CHead d2 (Bind Abbr) u)))) (\lambda (d2: C).(\lambda (u:
-T).(ty3 g d2 u t))))) (\lambda (H16: (ex2 C (\lambda (d2: C).(csubt g d1 d2))
-(\lambda (d2: C).(drop n O c2 (CHead d2 (Bind Abst) t))))).(ex2_ind C
-(\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2: C).(drop n O c2 (CHead d2
-(Bind Abst) t))) (or (ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2:
-C).(getl n c2 (CHead d2 (Bind Abst) t)))) (ex3_2 C T (\lambda (d2:
+(ex4_2 C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2:
+C).(\lambda (u: T).(drop n O c2 (CHead d2 (Bind Abbr) u)))) (\lambda (_:
+C).(\lambda (u: T).(ty3 g d1 u t))) (\lambda (d2: C).(\lambda (u: T).(ty3 g
+d2 u t)))) (or (ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2:
+C).(getl n c2 (CHead d2 (Bind Abst) t)))) (ex4_2 C T (\lambda (d2:
C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u: T).(getl n
-c2 (CHead d2 (Bind Abbr) u)))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u
-t))))) (\lambda (x1: C).(\lambda (H17: (csubt g d1 x1)).(\lambda (H18: (drop
-n O c2 (CHead x1 (Bind Abst) t))).(or_introl (ex2 C (\lambda (d2: C).(csubt g
-d1 d2)) (\lambda (d2: C).(getl n c2 (CHead d2 (Bind Abst) t)))) (ex3_2 C T
+c2 (CHead d2 (Bind Abbr) u)))) (\lambda (_: C).(\lambda (u: T).(ty3 g d1 u
+t))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u t))))) (\lambda (H16: (ex2
+C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2: C).(drop n O c2 (CHead d2
+(Bind Abst) t))))).(ex2_ind C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2:
+C).(drop n O c2 (CHead d2 (Bind Abst) t))) (or (ex2 C (\lambda (d2: C).(csubt
+g d1 d2)) (\lambda (d2: C).(getl n c2 (CHead d2 (Bind Abst) t)))) (ex4_2 C T
(\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda
-(u: T).(getl n c2 (CHead d2 (Bind Abbr) u)))) (\lambda (d2: C).(\lambda (u:
-T).(ty3 g d2 u t)))) (ex_intro2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda
-(d2: C).(getl n c2 (CHead d2 (Bind Abst) t))) x1 H17 (getl_intro n c2 (CHead
-x1 (Bind Abst) t) (CHead x1 (Bind Abst) t) H18 (clear_bind Abst x1 t)))))))
-H16)) (\lambda (H16: (ex3_2 C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1
-d2))) (\lambda (d2: C).(\lambda (u: T).(drop n O c2 (CHead d2 (Bind Abbr)
-u)))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u t))))).(ex3_2_ind C T
+(u: T).(getl n c2 (CHead d2 (Bind Abbr) u)))) (\lambda (_: C).(\lambda (u:
+T).(ty3 g d1 u t))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u t)))))
+(\lambda (x1: C).(\lambda (H17: (csubt g d1 x1)).(\lambda (H18: (drop n O c2
+(CHead x1 (Bind Abst) t))).(or_introl (ex2 C (\lambda (d2: C).(csubt g d1
+d2)) (\lambda (d2: C).(getl n c2 (CHead d2 (Bind Abst) t)))) (ex4_2 C T
(\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda
-(u: T).(drop n O c2 (CHead d2 (Bind Abbr) u)))) (\lambda (d2: C).(\lambda (u:
-T).(ty3 g d2 u t))) (or (ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda
-(d2: C).(getl n c2 (CHead d2 (Bind Abst) t)))) (ex3_2 C T (\lambda (d2:
+(u: T).(getl n c2 (CHead d2 (Bind Abbr) u)))) (\lambda (_: C).(\lambda (u:
+T).(ty3 g d1 u t))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u t))))
+(ex_intro2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2: C).(getl n c2
+(CHead d2 (Bind Abst) t))) x1 H17 (getl_intro n c2 (CHead x1 (Bind Abst) t)
+(CHead x1 (Bind Abst) t) H18 (clear_bind Abst x1 t))))))) H16)) (\lambda
+(H16: (ex4_2 C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda
+(d2: C).(\lambda (u: T).(drop n O c2 (CHead d2 (Bind Abbr) u)))) (\lambda (_:
+C).(\lambda (u: T).(ty3 g d1 u t))) (\lambda (d2: C).(\lambda (u: T).(ty3 g
+d2 u t))))).(ex4_2_ind C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2)))
+(\lambda (d2: C).(\lambda (u: T).(drop n O c2 (CHead d2 (Bind Abbr) u))))
+(\lambda (_: C).(\lambda (u: T).(ty3 g d1 u t))) (\lambda (d2: C).(\lambda
+(u: T).(ty3 g d2 u t))) (or (ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda
+(d2: C).(getl n c2 (CHead d2 (Bind Abst) t)))) (ex4_2 C T (\lambda (d2:
C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u: T).(getl n
-c2 (CHead d2 (Bind Abbr) u)))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u
-t))))) (\lambda (x1: C).(\lambda (x2: T).(\lambda (H17: (csubt g d1
-x1)).(\lambda (H18: (drop n O c2 (CHead x1 (Bind Abbr) x2))).(\lambda (H19:
+c2 (CHead d2 (Bind Abbr) u)))) (\lambda (_: C).(\lambda (u: T).(ty3 g d1 u
+t))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u t))))) (\lambda (x1:
+C).(\lambda (x2: T).(\lambda (H17: (csubt g d1 x1)).(\lambda (H18: (drop n O
+c2 (CHead x1 (Bind Abbr) x2))).(\lambda (H19: (ty3 g d1 x2 t)).(\lambda (H20:
(ty3 g x1 x2 t)).(or_intror (ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda
-(d2: C).(getl n c2 (CHead d2 (Bind Abst) t)))) (ex3_2 C T (\lambda (d2:
+(d2: C).(getl n c2 (CHead d2 (Bind Abst) t)))) (ex4_2 C T (\lambda (d2:
C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u: T).(getl n
-c2 (CHead d2 (Bind Abbr) u)))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u
-t)))) (ex3_2_intro C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2)))
-(\lambda (d2: C).(\lambda (u: T).(getl n c2 (CHead d2 (Bind Abbr) u))))
-(\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u t))) x1 x2 H17 (getl_intro n c2
-(CHead x1 (Bind Abbr) x2) (CHead x1 (Bind Abbr) x2) H18 (clear_bind Abbr x1
-x2)) H19))))))) H16)) (csubt_drop_abst g n c1 c2 H12 d1 t H15)))))))))) H8))
-H7))))) (\lambda (f: F).(\lambda (H5: (drop n O c1 (CHead x0 (Flat f)
-t0))).(\lambda (H6: (clear (CHead x0 (Flat f) t0) (CHead d1 (Bind Abst)
-t))).(let H7 \def H5 in (unintro C c1 (\lambda (c: C).((drop n O c (CHead x0
-(Flat f) t0)) \to (\forall (c2: C).((csubt g c c2) \to (or (ex2 C (\lambda
-(d2: C).(csubt g d1 d2)) (\lambda (d2: C).(getl n c2 (CHead d2 (Bind Abst)
-t)))) (ex3_2 C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda
-(d2: C).(\lambda (u: T).(getl n c2 (CHead d2 (Bind Abbr) u)))) (\lambda (d2:
-C).(\lambda (u: T).(ty3 g d2 u t))))))))) (nat_ind (\lambda (n0:
-nat).(\forall (x1: C).((drop n0 O x1 (CHead x0 (Flat f) t0)) \to (\forall
-(c2: C).((csubt g x1 c2) \to (or (ex2 C (\lambda (d2: C).(csubt g d1 d2))
-(\lambda (d2: C).(getl n0 c2 (CHead d2 (Bind Abst) t)))) (ex3_2 C T (\lambda
-(d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u:
-T).(getl n0 c2 (CHead d2 (Bind Abbr) u)))) (\lambda (d2: C).(\lambda (u:
-T).(ty3 g d2 u t)))))))))) (\lambda (x1: C).(\lambda (H8: (drop O O x1 (CHead
-x0 (Flat f) t0))).(\lambda (c2: C).(\lambda (H9: (csubt g x1 c2)).(let H10
-\def (eq_ind C x1 (\lambda (c: C).(csubt g c c2)) H9 (CHead x0 (Flat f) t0)
-(drop_gen_refl x1 (CHead x0 (Flat f) t0) H8)) in (let H_y \def (clear_flat x0
-(CHead d1 (Bind Abst) t) (clear_gen_flat f x0 (CHead d1 (Bind Abst) t) t0 H6)
-f t0) in (let H11 \def (csubt_clear_conf g (CHead x0 (Flat f) t0) c2 H10
-(CHead d1 (Bind Abst) t) H_y) in (ex2_ind C (\lambda (e2: C).(csubt g (CHead
-d1 (Bind Abst) t) e2)) (\lambda (e2: C).(clear c2 e2)) (or (ex2 C (\lambda
-(d2: C).(csubt g d1 d2)) (\lambda (d2: C).(getl O c2 (CHead d2 (Bind Abst)
-t)))) (ex3_2 C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda
-(d2: C).(\lambda (u: T).(getl O c2 (CHead d2 (Bind Abbr) u)))) (\lambda (d2:
-C).(\lambda (u: T).(ty3 g d2 u t))))) (\lambda (x2: C).(\lambda (H12: (csubt
-g (CHead d1 (Bind Abst) t) x2)).(\lambda (H13: (clear c2 x2)).(let H14 \def
-(csubt_gen_abst g d1 x2 t H12) in (or_ind (ex2 C (\lambda (e2: C).(eq C x2
-(CHead e2 (Bind Abst) t))) (\lambda (e2: C).(csubt g d1 e2))) (ex3_2 C T
-(\lambda (e2: C).(\lambda (v2: T).(eq C x2 (CHead e2 (Bind Abbr) v2))))
-(\lambda (e2: C).(\lambda (_: T).(csubt g d1 e2))) (\lambda (e2: C).(\lambda
-(v2: T).(ty3 g e2 v2 t)))) (or (ex2 C (\lambda (d2: C).(csubt g d1 d2))
-(\lambda (d2: C).(getl O c2 (CHead d2 (Bind Abst) t)))) (ex3_2 C T (\lambda
-(d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u:
-T).(getl O c2 (CHead d2 (Bind Abbr) u)))) (\lambda (d2: C).(\lambda (u:
-T).(ty3 g d2 u t))))) (\lambda (H15: (ex2 C (\lambda (e2: C).(eq C x2 (CHead
-e2 (Bind Abst) t))) (\lambda (e2: C).(csubt g d1 e2)))).(ex2_ind C (\lambda
-(e2: C).(eq C x2 (CHead e2 (Bind Abst) t))) (\lambda (e2: C).(csubt g d1 e2))
-(or (ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2: C).(getl O c2
-(CHead d2 (Bind Abst) t)))) (ex3_2 C T (\lambda (d2: C).(\lambda (_:
-T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u: T).(getl O c2 (CHead d2
-(Bind Abbr) u)))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u t)))))
-(\lambda (x3: C).(\lambda (H16: (eq C x2 (CHead x3 (Bind Abst) t))).(\lambda
-(H17: (csubt g d1 x3)).(let H18 \def (eq_ind C x2 (\lambda (c: C).(clear c2
-c)) H13 (CHead x3 (Bind Abst) t) H16) in (or_introl (ex2 C (\lambda (d2:
-C).(csubt g d1 d2)) (\lambda (d2: C).(getl O c2 (CHead d2 (Bind Abst) t))))
-(ex3_2 C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2:
-C).(\lambda (u: T).(getl O c2 (CHead d2 (Bind Abbr) u)))) (\lambda (d2:
-C).(\lambda (u: T).(ty3 g d2 u t)))) (ex_intro2 C (\lambda (d2: C).(csubt g
-d1 d2)) (\lambda (d2: C).(getl O c2 (CHead d2 (Bind Abst) t))) x3 H17
-(getl_intro O c2 (CHead x3 (Bind Abst) t) c2 (drop_refl c2) H18))))))) H15))
-(\lambda (H15: (ex3_2 C T (\lambda (e2: C).(\lambda (v2: T).(eq C x2 (CHead
-e2 (Bind Abbr) v2)))) (\lambda (e2: C).(\lambda (_: T).(csubt g d1 e2)))
-(\lambda (e2: C).(\lambda (v2: T).(ty3 g e2 v2 t))))).(ex3_2_ind C T (\lambda
-(e2: C).(\lambda (v2: T).(eq C x2 (CHead e2 (Bind Abbr) v2)))) (\lambda (e2:
-C).(\lambda (_: T).(csubt g d1 e2))) (\lambda (e2: C).(\lambda (v2: T).(ty3 g
-e2 v2 t))) (or (ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2:
-C).(getl O c2 (CHead d2 (Bind Abst) t)))) (ex3_2 C T (\lambda (d2:
-C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u: T).(getl O
-c2 (CHead d2 (Bind Abbr) u)))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u
-t))))) (\lambda (x3: C).(\lambda (x4: T).(\lambda (H16: (eq C x2 (CHead x3
-(Bind Abbr) x4))).(\lambda (H17: (csubt g d1 x3)).(\lambda (H18: (ty3 g x3 x4
-t)).(let H19 \def (eq_ind C x2 (\lambda (c: C).(clear c2 c)) H13 (CHead x3
-(Bind Abbr) x4) H16) in (or_intror (ex2 C (\lambda (d2: C).(csubt g d1 d2))
-(\lambda (d2: C).(getl O c2 (CHead d2 (Bind Abst) t)))) (ex3_2 C T (\lambda
-(d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u:
-T).(getl O c2 (CHead d2 (Bind Abbr) u)))) (\lambda (d2: C).(\lambda (u:
-T).(ty3 g d2 u t)))) (ex3_2_intro C T (\lambda (d2: C).(\lambda (_: T).(csubt
-g d1 d2))) (\lambda (d2: C).(\lambda (u: T).(getl O c2 (CHead d2 (Bind Abbr)
-u)))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u t))) x3 x4 H17 (getl_intro
-O c2 (CHead x3 (Bind Abbr) x4) c2 (drop_refl c2) H19) H18)))))))) H15))
-H14))))) H11)))))))) (\lambda (n0: nat).(\lambda (H8: ((\forall (x1:
+c2 (CHead d2 (Bind Abbr) u)))) (\lambda (_: C).(\lambda (u: T).(ty3 g d1 u
+t))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u t)))) (ex4_2_intro C T
+(\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda
+(u: T).(getl n c2 (CHead d2 (Bind Abbr) u)))) (\lambda (_: C).(\lambda (u:
+T).(ty3 g d1 u t))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u t))) x1 x2
+H17 (getl_intro n c2 (CHead x1 (Bind Abbr) x2) (CHead x1 (Bind Abbr) x2) H18
+(clear_bind Abbr x1 x2)) H19 H20)))))))) H16)) (csubt_drop_abst g n c1 c2 H12
+d1 t H15)))))))))) H8)) H7))))) (\lambda (f: F).(\lambda (H5: (drop n O c1
+(CHead x0 (Flat f) t0))).(\lambda (H6: (clear (CHead x0 (Flat f) t0) (CHead
+d1 (Bind Abst) t))).(let H7 \def H5 in (unintro C c1 (\lambda (c: C).((drop n
+O c (CHead x0 (Flat f) t0)) \to (\forall (c2: C).((csubt g c c2) \to (or (ex2
+C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2: C).(getl n c2 (CHead d2
+(Bind Abst) t)))) (ex4_2 C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1
+d2))) (\lambda (d2: C).(\lambda (u: T).(getl n c2 (CHead d2 (Bind Abbr) u))))
+(\lambda (_: C).(\lambda (u: T).(ty3 g d1 u t))) (\lambda (d2: C).(\lambda
+(u: T).(ty3 g d2 u t))))))))) (nat_ind (\lambda (n0: nat).(\forall (x1:
C).((drop n0 O x1 (CHead x0 (Flat f) t0)) \to (\forall (c2: C).((csubt g x1
c2) \to (or (ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2: C).(getl
-n0 c2 (CHead d2 (Bind Abst) t)))) (ex3_2 C T (\lambda (d2: C).(\lambda (_:
+n0 c2 (CHead d2 (Bind Abst) t)))) (ex4_2 C T (\lambda (d2: C).(\lambda (_:
T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u: T).(getl n0 c2 (CHead d2
-(Bind Abbr) u)))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u
-t))))))))))).(\lambda (x1: C).(\lambda (H9: (drop (S n0) O x1 (CHead x0 (Flat
-f) t0))).(\lambda (c2: C).(\lambda (H10: (csubt g x1 c2)).(let H11 \def
-(drop_clear x1 (CHead x0 (Flat f) t0) n0 H9) in (ex2_3_ind B C T (\lambda (b:
-B).(\lambda (e: C).(\lambda (v: T).(clear x1 (CHead e (Bind b) v)))))
-(\lambda (_: B).(\lambda (e: C).(\lambda (_: T).(drop n0 O e (CHead x0 (Flat
-f) t0))))) (or (ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2:
-C).(getl (S n0) c2 (CHead d2 (Bind Abst) t)))) (ex3_2 C T (\lambda (d2:
-C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u: T).(getl
-(S n0) c2 (CHead d2 (Bind Abbr) u)))) (\lambda (d2: C).(\lambda (u: T).(ty3 g
+(Bind Abbr) u)))) (\lambda (_: C).(\lambda (u: T).(ty3 g d1 u t))) (\lambda
+(d2: C).(\lambda (u: T).(ty3 g d2 u t)))))))))) (\lambda (x1: C).(\lambda
+(H8: (drop O O x1 (CHead x0 (Flat f) t0))).(\lambda (c2: C).(\lambda (H9:
+(csubt g x1 c2)).(let H10 \def (eq_ind C x1 (\lambda (c: C).(csubt g c c2))
+H9 (CHead x0 (Flat f) t0) (drop_gen_refl x1 (CHead x0 (Flat f) t0) H8)) in
+(let H_y \def (clear_flat x0 (CHead d1 (Bind Abst) t) (clear_gen_flat f x0
+(CHead d1 (Bind Abst) t) t0 H6) f t0) in (let H11 \def (csubt_clear_conf g
+(CHead x0 (Flat f) t0) c2 H10 (CHead d1 (Bind Abst) t) H_y) in (ex2_ind C
+(\lambda (e2: C).(csubt g (CHead d1 (Bind Abst) t) e2)) (\lambda (e2:
+C).(clear c2 e2)) (or (ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2:
+C).(getl O c2 (CHead d2 (Bind Abst) t)))) (ex4_2 C T (\lambda (d2:
+C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u: T).(getl O
+c2 (CHead d2 (Bind Abbr) u)))) (\lambda (_: C).(\lambda (u: T).(ty3 g d1 u
+t))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u t))))) (\lambda (x2:
+C).(\lambda (H12: (csubt g (CHead d1 (Bind Abst) t) x2)).(\lambda (H13:
+(clear c2 x2)).(let H14 \def (csubt_gen_abst g d1 x2 t H12) in (or_ind (ex2 C
+(\lambda (e2: C).(eq C x2 (CHead e2 (Bind Abst) t))) (\lambda (e2: C).(csubt
+g d1 e2))) (ex4_2 C T (\lambda (e2: C).(\lambda (v2: T).(eq C x2 (CHead e2
+(Bind Abbr) v2)))) (\lambda (e2: C).(\lambda (_: T).(csubt g d1 e2)))
+(\lambda (_: C).(\lambda (v2: T).(ty3 g d1 v2 t))) (\lambda (e2: C).(\lambda
+(v2: T).(ty3 g e2 v2 t)))) (or (ex2 C (\lambda (d2: C).(csubt g d1 d2))
+(\lambda (d2: C).(getl O c2 (CHead d2 (Bind Abst) t)))) (ex4_2 C T (\lambda
+(d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u:
+T).(getl O c2 (CHead d2 (Bind Abbr) u)))) (\lambda (_: C).(\lambda (u:
+T).(ty3 g d1 u t))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u t)))))
+(\lambda (H15: (ex2 C (\lambda (e2: C).(eq C x2 (CHead e2 (Bind Abst) t)))
+(\lambda (e2: C).(csubt g d1 e2)))).(ex2_ind C (\lambda (e2: C).(eq C x2
+(CHead e2 (Bind Abst) t))) (\lambda (e2: C).(csubt g d1 e2)) (or (ex2 C
+(\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2: C).(getl O c2 (CHead d2 (Bind
+Abst) t)))) (ex4_2 C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2)))
+(\lambda (d2: C).(\lambda (u: T).(getl O c2 (CHead d2 (Bind Abbr) u))))
+(\lambda (_: C).(\lambda (u: T).(ty3 g d1 u t))) (\lambda (d2: C).(\lambda
+(u: T).(ty3 g d2 u t))))) (\lambda (x3: C).(\lambda (H16: (eq C x2 (CHead x3
+(Bind Abst) t))).(\lambda (H17: (csubt g d1 x3)).(let H18 \def (eq_ind C x2
+(\lambda (c: C).(clear c2 c)) H13 (CHead x3 (Bind Abst) t) H16) in (or_introl
+(ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2: C).(getl O c2 (CHead
+d2 (Bind Abst) t)))) (ex4_2 C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1
+d2))) (\lambda (d2: C).(\lambda (u: T).(getl O c2 (CHead d2 (Bind Abbr) u))))
+(\lambda (_: C).(\lambda (u: T).(ty3 g d1 u t))) (\lambda (d2: C).(\lambda
+(u: T).(ty3 g d2 u t)))) (ex_intro2 C (\lambda (d2: C).(csubt g d1 d2))
+(\lambda (d2: C).(getl O c2 (CHead d2 (Bind Abst) t))) x3 H17 (getl_intro O
+c2 (CHead x3 (Bind Abst) t) c2 (drop_refl c2) H18))))))) H15)) (\lambda (H15:
+(ex4_2 C T (\lambda (e2: C).(\lambda (v2: T).(eq C x2 (CHead e2 (Bind Abbr)
+v2)))) (\lambda (e2: C).(\lambda (_: T).(csubt g d1 e2))) (\lambda (_:
+C).(\lambda (v2: T).(ty3 g d1 v2 t))) (\lambda (e2: C).(\lambda (v2: T).(ty3
+g e2 v2 t))))).(ex4_2_ind C T (\lambda (e2: C).(\lambda (v2: T).(eq C x2
+(CHead e2 (Bind Abbr) v2)))) (\lambda (e2: C).(\lambda (_: T).(csubt g d1
+e2))) (\lambda (_: C).(\lambda (v2: T).(ty3 g d1 v2 t))) (\lambda (e2:
+C).(\lambda (v2: T).(ty3 g e2 v2 t))) (or (ex2 C (\lambda (d2: C).(csubt g d1
+d2)) (\lambda (d2: C).(getl O c2 (CHead d2 (Bind Abst) t)))) (ex4_2 C T
+(\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda
+(u: T).(getl O c2 (CHead d2 (Bind Abbr) u)))) (\lambda (_: C).(\lambda (u:
+T).(ty3 g d1 u t))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u t)))))
+(\lambda (x3: C).(\lambda (x4: T).(\lambda (H16: (eq C x2 (CHead x3 (Bind
+Abbr) x4))).(\lambda (H17: (csubt g d1 x3)).(\lambda (H18: (ty3 g d1 x4
+t)).(\lambda (H19: (ty3 g x3 x4 t)).(let H20 \def (eq_ind C x2 (\lambda (c:
+C).(clear c2 c)) H13 (CHead x3 (Bind Abbr) x4) H16) in (or_intror (ex2 C
+(\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2: C).(getl O c2 (CHead d2 (Bind
+Abst) t)))) (ex4_2 C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2)))
+(\lambda (d2: C).(\lambda (u: T).(getl O c2 (CHead d2 (Bind Abbr) u))))
+(\lambda (_: C).(\lambda (u: T).(ty3 g d1 u t))) (\lambda (d2: C).(\lambda
+(u: T).(ty3 g d2 u t)))) (ex4_2_intro C T (\lambda (d2: C).(\lambda (_:
+T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u: T).(getl O c2 (CHead d2
+(Bind Abbr) u)))) (\lambda (_: C).(\lambda (u: T).(ty3 g d1 u t))) (\lambda
+(d2: C).(\lambda (u: T).(ty3 g d2 u t))) x3 x4 H17 (getl_intro O c2 (CHead x3
+(Bind Abbr) x4) c2 (drop_refl c2) H20) H18 H19))))))))) H15)) H14)))))
+H11)))))))) (\lambda (n0: nat).(\lambda (H8: ((\forall (x1: C).((drop n0 O x1
+(CHead x0 (Flat f) t0)) \to (\forall (c2: C).((csubt g x1 c2) \to (or (ex2 C
+(\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2: C).(getl n0 c2 (CHead d2
+(Bind Abst) t)))) (ex4_2 C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1
+d2))) (\lambda (d2: C).(\lambda (u: T).(getl n0 c2 (CHead d2 (Bind Abbr)
+u)))) (\lambda (_: C).(\lambda (u: T).(ty3 g d1 u t))) (\lambda (d2:
+C).(\lambda (u: T).(ty3 g d2 u t))))))))))).(\lambda (x1: C).(\lambda (H9:
+(drop (S n0) O x1 (CHead x0 (Flat f) t0))).(\lambda (c2: C).(\lambda (H10:
+(csubt g x1 c2)).(let H11 \def (drop_clear x1 (CHead x0 (Flat f) t0) n0 H9)
+in (ex2_3_ind B C T (\lambda (b: B).(\lambda (e: C).(\lambda (v: T).(clear x1
+(CHead e (Bind b) v))))) (\lambda (_: B).(\lambda (e: C).(\lambda (_:
+T).(drop n0 O e (CHead x0 (Flat f) t0))))) (or (ex2 C (\lambda (d2: C).(csubt
+g d1 d2)) (\lambda (d2: C).(getl (S n0) c2 (CHead d2 (Bind Abst) t)))) (ex4_2
+C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2:
+C).(\lambda (u: T).(getl (S n0) c2 (CHead d2 (Bind Abbr) u)))) (\lambda (_:
+C).(\lambda (u: T).(ty3 g d1 u t))) (\lambda (d2: C).(\lambda (u: T).(ty3 g
d2 u t))))) (\lambda (x2: B).(\lambda (x3: C).(\lambda (x4: T).(\lambda (H12:
(clear x1 (CHead x3 (Bind x2) x4))).(\lambda (H13: (drop n0 O x3 (CHead x0
(Flat f) t0))).(let H14 \def (csubt_clear_conf g x1 c2 H10 (CHead x3 (Bind
x2) x4) H12) in (ex2_ind C (\lambda (e2: C).(csubt g (CHead x3 (Bind x2) x4)
e2)) (\lambda (e2: C).(clear c2 e2)) (or (ex2 C (\lambda (d2: C).(csubt g d1
-d2)) (\lambda (d2: C).(getl (S n0) c2 (CHead d2 (Bind Abst) t)))) (ex3_2 C T
+d2)) (\lambda (d2: C).(getl (S n0) c2 (CHead d2 (Bind Abst) t)))) (ex4_2 C T
(\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda
-(u: T).(getl (S n0) c2 (CHead d2 (Bind Abbr) u)))) (\lambda (d2: C).(\lambda
-(u: T).(ty3 g d2 u t))))) (\lambda (x5: C).(\lambda (H15: (csubt g (CHead x3
-(Bind x2) x4) x5)).(\lambda (H16: (clear c2 x5)).(let H17 \def
-(csubt_gen_bind g x2 x3 x5 x4 H15) in (ex2_3_ind B C T (\lambda (b2:
-B).(\lambda (e2: C).(\lambda (v2: T).(eq C x5 (CHead e2 (Bind b2) v2)))))
-(\lambda (_: B).(\lambda (e2: C).(\lambda (_: T).(csubt g x3 e2)))) (or (ex2
-C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2: C).(getl (S n0) c2 (CHead
-d2 (Bind Abst) t)))) (ex3_2 C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1
-d2))) (\lambda (d2: C).(\lambda (u: T).(getl (S n0) c2 (CHead d2 (Bind Abbr)
-u)))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u t))))) (\lambda (x6:
-B).(\lambda (x7: C).(\lambda (x8: T).(\lambda (H18: (eq C x5 (CHead x7 (Bind
-x6) x8))).(\lambda (H19: (csubt g x3 x7)).(let H20 \def (eq_ind C x5 (\lambda
-(c: C).(clear c2 c)) H16 (CHead x7 (Bind x6) x8) H18) in (let H21 \def (H8 x3
-H13 x7 H19) in (or_ind (ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2:
-C).(getl n0 x7 (CHead d2 (Bind Abst) t)))) (ex3_2 C T (\lambda (d2:
-C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u: T).(getl
-n0 x7 (CHead d2 (Bind Abbr) u)))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2
-u t)))) (or (ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2: C).(getl
-(S n0) c2 (CHead d2 (Bind Abst) t)))) (ex3_2 C T (\lambda (d2: C).(\lambda
-(_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u: T).(getl (S n0) c2
-(CHead d2 (Bind Abbr) u)))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u
-t))))) (\lambda (H22: (ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2:
-C).(getl n0 x7 (CHead d2 (Bind Abst) t))))).(ex2_ind C (\lambda (d2:
-C).(csubt g d1 d2)) (\lambda (d2: C).(getl n0 x7 (CHead d2 (Bind Abst) t)))
-(or (ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2: C).(getl (S n0) c2
-(CHead d2 (Bind Abst) t)))) (ex3_2 C T (\lambda (d2: C).(\lambda (_:
-T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u: T).(getl (S n0) c2 (CHead
-d2 (Bind Abbr) u)))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u t)))))
-(\lambda (x9: C).(\lambda (H23: (csubt g d1 x9)).(\lambda (H24: (getl n0 x7
-(CHead x9 (Bind Abst) t))).(or_introl (ex2 C (\lambda (d2: C).(csubt g d1
-d2)) (\lambda (d2: C).(getl (S n0) c2 (CHead d2 (Bind Abst) t)))) (ex3_2 C T
+(u: T).(getl (S n0) c2 (CHead d2 (Bind Abbr) u)))) (\lambda (_: C).(\lambda
+(u: T).(ty3 g d1 u t))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u t)))))
+(\lambda (x5: C).(\lambda (H15: (csubt g (CHead x3 (Bind x2) x4)
+x5)).(\lambda (H16: (clear c2 x5)).(let H17 \def (csubt_gen_bind g x2 x3 x5
+x4 H15) in (ex2_3_ind B C T (\lambda (b2: B).(\lambda (e2: C).(\lambda (v2:
+T).(eq C x5 (CHead e2 (Bind b2) v2))))) (\lambda (_: B).(\lambda (e2:
+C).(\lambda (_: T).(csubt g x3 e2)))) (or (ex2 C (\lambda (d2: C).(csubt g d1
+d2)) (\lambda (d2: C).(getl (S n0) c2 (CHead d2 (Bind Abst) t)))) (ex4_2 C T
(\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda
-(u: T).(getl (S n0) c2 (CHead d2 (Bind Abbr) u)))) (\lambda (d2: C).(\lambda
-(u: T).(ty3 g d2 u t)))) (ex_intro2 C (\lambda (d2: C).(csubt g d1 d2))
-(\lambda (d2: C).(getl (S n0) c2 (CHead d2 (Bind Abst) t))) x9 H23
-(getl_clear_bind x6 c2 x7 x8 H20 (CHead x9 (Bind Abst) t) n0 H24)))))) H22))
-(\lambda (H22: (ex3_2 C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2)))
+(u: T).(getl (S n0) c2 (CHead d2 (Bind Abbr) u)))) (\lambda (_: C).(\lambda
+(u: T).(ty3 g d1 u t))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u t)))))
+(\lambda (x6: B).(\lambda (x7: C).(\lambda (x8: T).(\lambda (H18: (eq C x5
+(CHead x7 (Bind x6) x8))).(\lambda (H19: (csubt g x3 x7)).(let H20 \def
+(eq_ind C x5 (\lambda (c: C).(clear c2 c)) H16 (CHead x7 (Bind x6) x8) H18)
+in (let H21 \def (H8 x3 H13 x7 H19) in (or_ind (ex2 C (\lambda (d2: C).(csubt
+g d1 d2)) (\lambda (d2: C).(getl n0 x7 (CHead d2 (Bind Abst) t)))) (ex4_2 C T
+(\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda
+(u: T).(getl n0 x7 (CHead d2 (Bind Abbr) u)))) (\lambda (_: C).(\lambda (u:
+T).(ty3 g d1 u t))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u t)))) (or
+(ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2: C).(getl (S n0) c2
+(CHead d2 (Bind Abst) t)))) (ex4_2 C T (\lambda (d2: C).(\lambda (_:
+T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u: T).(getl (S n0) c2 (CHead
+d2 (Bind Abbr) u)))) (\lambda (_: C).(\lambda (u: T).(ty3 g d1 u t)))
+(\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u t))))) (\lambda (H22: (ex2 C
+(\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2: C).(getl n0 x7 (CHead d2
+(Bind Abst) t))))).(ex2_ind C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2:
+C).(getl n0 x7 (CHead d2 (Bind Abst) t))) (or (ex2 C (\lambda (d2: C).(csubt
+g d1 d2)) (\lambda (d2: C).(getl (S n0) c2 (CHead d2 (Bind Abst) t)))) (ex4_2
+C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2:
+C).(\lambda (u: T).(getl (S n0) c2 (CHead d2 (Bind Abbr) u)))) (\lambda (_:
+C).(\lambda (u: T).(ty3 g d1 u t))) (\lambda (d2: C).(\lambda (u: T).(ty3 g
+d2 u t))))) (\lambda (x9: C).(\lambda (H23: (csubt g d1 x9)).(\lambda (H24:
+(getl n0 x7 (CHead x9 (Bind Abst) t))).(or_introl (ex2 C (\lambda (d2:
+C).(csubt g d1 d2)) (\lambda (d2: C).(getl (S n0) c2 (CHead d2 (Bind Abst)
+t)))) (ex4_2 C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda
+(d2: C).(\lambda (u: T).(getl (S n0) c2 (CHead d2 (Bind Abbr) u)))) (\lambda
+(_: C).(\lambda (u: T).(ty3 g d1 u t))) (\lambda (d2: C).(\lambda (u: T).(ty3
+g d2 u t)))) (ex_intro2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda (d2:
+C).(getl (S n0) c2 (CHead d2 (Bind Abst) t))) x9 H23 (getl_clear_bind x6 c2
+x7 x8 H20 (CHead x9 (Bind Abst) t) n0 H24)))))) H22)) (\lambda (H22: (ex4_2 C
+T (\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2:
+C).(\lambda (u: T).(getl n0 x7 (CHead d2 (Bind Abbr) u)))) (\lambda (_:
+C).(\lambda (u: T).(ty3 g d1 u t))) (\lambda (d2: C).(\lambda (u: T).(ty3 g
+d2 u t))))).(ex4_2_ind C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2)))
(\lambda (d2: C).(\lambda (u: T).(getl n0 x7 (CHead d2 (Bind Abbr) u))))
-(\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u t))))).(ex3_2_ind C T (\lambda
-(d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u:
-T).(getl n0 x7 (CHead d2 (Bind Abbr) u)))) (\lambda (d2: C).(\lambda (u:
-T).(ty3 g d2 u t))) (or (ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda
-(d2: C).(getl (S n0) c2 (CHead d2 (Bind Abst) t)))) (ex3_2 C T (\lambda (d2:
+(\lambda (_: C).(\lambda (u: T).(ty3 g d1 u t))) (\lambda (d2: C).(\lambda
+(u: T).(ty3 g d2 u t))) (or (ex2 C (\lambda (d2: C).(csubt g d1 d2)) (\lambda
+(d2: C).(getl (S n0) c2 (CHead d2 (Bind Abst) t)))) (ex4_2 C T (\lambda (d2:
C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u: T).(getl
-(S n0) c2 (CHead d2 (Bind Abbr) u)))) (\lambda (d2: C).(\lambda (u: T).(ty3 g
-d2 u t))))) (\lambda (x9: C).(\lambda (x10: T).(\lambda (H23: (csubt g d1
-x9)).(\lambda (H24: (getl n0 x7 (CHead x9 (Bind Abbr) x10))).(\lambda (H25:
-(ty3 g x9 x10 t)).(or_intror (ex2 C (\lambda (d2: C).(csubt g d1 d2))
-(\lambda (d2: C).(getl (S n0) c2 (CHead d2 (Bind Abst) t)))) (ex3_2 C T
+(S n0) c2 (CHead d2 (Bind Abbr) u)))) (\lambda (_: C).(\lambda (u: T).(ty3 g
+d1 u t))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u t))))) (\lambda (x9:
+C).(\lambda (x10: T).(\lambda (H23: (csubt g d1 x9)).(\lambda (H24: (getl n0
+x7 (CHead x9 (Bind Abbr) x10))).(\lambda (H25: (ty3 g d1 x10 t)).(\lambda
+(H26: (ty3 g x9 x10 t)).(or_intror (ex2 C (\lambda (d2: C).(csubt g d1 d2))
+(\lambda (d2: C).(getl (S n0) c2 (CHead d2 (Bind Abst) t)))) (ex4_2 C T
(\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda
-(u: T).(getl (S n0) c2 (CHead d2 (Bind Abbr) u)))) (\lambda (d2: C).(\lambda
-(u: T).(ty3 g d2 u t)))) (ex3_2_intro C T (\lambda (d2: C).(\lambda (_:
-T).(csubt g d1 d2))) (\lambda (d2: C).(\lambda (u: T).(getl (S n0) c2 (CHead
-d2 (Bind Abbr) u)))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u t))) x9 x10
-H23 (getl_clear_bind x6 c2 x7 x8 H20 (CHead x9 (Bind Abbr) x10) n0 H24)
-H25))))))) H22)) H21)))))))) H17))))) H14))))))) H11)))))))) n) H7))))) k H3
-H4))))))) x H1 H2)))) H0))))))).
+(u: T).(getl (S n0) c2 (CHead d2 (Bind Abbr) u)))) (\lambda (_: C).(\lambda
+(u: T).(ty3 g d1 u t))) (\lambda (d2: C).(\lambda (u: T).(ty3 g d2 u t))))
+(ex4_2_intro C T (\lambda (d2: C).(\lambda (_: T).(csubt g d1 d2))) (\lambda
+(d2: C).(\lambda (u: T).(getl (S n0) c2 (CHead d2 (Bind Abbr) u)))) (\lambda
+(_: C).(\lambda (u: T).(ty3 g d1 u t))) (\lambda (d2: C).(\lambda (u: T).(ty3
+g d2 u t))) x9 x10 H23 (getl_clear_bind x6 c2 x7 x8 H20 (CHead x9 (Bind Abbr)
+x10) n0 H24) H25 H26)))))))) H22)) H21)))))))) H17))))) H14)))))))
+H11)))))))) n) H7))))) k H3 H4))))))) x H1 H2)))) H0))))))).
((\forall (c2: C).((csubt g d c2) \to (ty3 g c2 u t))))).(\lambda (c2:
C).(\lambda (H3: (csubt g c c2)).(let H4 \def (csubt_getl_abst g c d u n H0
c2 H3) in (or_ind (ex2 C (\lambda (d2: C).(csubt g d d2)) (\lambda (d2:
-C).(getl n c2 (CHead d2 (Bind Abst) u)))) (ex3_2 C T (\lambda (d2:
+C).(getl n c2 (CHead d2 (Bind Abst) u)))) (ex4_2 C T (\lambda (d2:
C).(\lambda (_: T).(csubt g d d2))) (\lambda (d2: C).(\lambda (u0: T).(getl n
-c2 (CHead d2 (Bind Abbr) u0)))) (\lambda (d2: C).(\lambda (u0: T).(ty3 g d2
-u0 u)))) (ty3 g c2 (TLRef n) (lift (S n) O u)) (\lambda (H5: (ex2 C (\lambda
+c2 (CHead d2 (Bind Abbr) u0)))) (\lambda (_: C).(\lambda (u0: T).(ty3 g d u0
+u))) (\lambda (d2: C).(\lambda (u0: T).(ty3 g d2 u0 u)))) (ty3 g c2 (TLRef n)
+(lift (S n) O u)) (\lambda (H5: (ex2 C (\lambda (d2: C).(csubt g d d2))
+(\lambda (d2: C).(getl n c2 (CHead d2 (Bind Abst) u))))).(ex2_ind C (\lambda
(d2: C).(csubt g d d2)) (\lambda (d2: C).(getl n c2 (CHead d2 (Bind Abst)
-u))))).(ex2_ind C (\lambda (d2: C).(csubt g d d2)) (\lambda (d2: C).(getl n
-c2 (CHead d2 (Bind Abst) u))) (ty3 g c2 (TLRef n) (lift (S n) O u)) (\lambda
-(x: C).(\lambda (H6: (csubt g d x)).(\lambda (H7: (getl n c2 (CHead x (Bind
-Abst) u))).(ty3_abst g n c2 x u H7 t (H2 x H6))))) H5)) (\lambda (H5: (ex3_2
-C T (\lambda (d2: C).(\lambda (_: T).(csubt g d d2))) (\lambda (d2:
-C).(\lambda (u0: T).(getl n c2 (CHead d2 (Bind Abbr) u0)))) (\lambda (d2:
-C).(\lambda (u0: T).(ty3 g d2 u0 u))))).(ex3_2_ind C T (\lambda (d2:
+u))) (ty3 g c2 (TLRef n) (lift (S n) O u)) (\lambda (x: C).(\lambda (H6:
+(csubt g d x)).(\lambda (H7: (getl n c2 (CHead x (Bind Abst) u))).(ty3_abst g
+n c2 x u H7 t (H2 x H6))))) H5)) (\lambda (H5: (ex4_2 C T (\lambda (d2:
C).(\lambda (_: T).(csubt g d d2))) (\lambda (d2: C).(\lambda (u0: T).(getl n
-c2 (CHead d2 (Bind Abbr) u0)))) (\lambda (d2: C).(\lambda (u0: T).(ty3 g d2
-u0 u))) (ty3 g c2 (TLRef n) (lift (S n) O u)) (\lambda (x0: C).(\lambda (x1:
-T).(\lambda (_: (csubt g d x0)).(\lambda (H7: (getl n c2 (CHead x0 (Bind
-Abbr) x1))).(\lambda (H8: (ty3 g x0 x1 u)).(ty3_abbr g n c2 x0 x1 H7 u
-H8)))))) H5)) H4)))))))))))) (\lambda (c: C).(\lambda (u: T).(\lambda (t:
-T).(\lambda (_: (ty3 g c u t)).(\lambda (H1: ((\forall (c2: C).((csubt g c
-c2) \to (ty3 g c2 u t))))).(\lambda (b: B).(\lambda (t0: T).(\lambda (t3:
-T).(\lambda (_: (ty3 g (CHead c (Bind b) u) t0 t3)).(\lambda (H3: ((\forall
-(c2: C).((csubt g (CHead c (Bind b) u) c2) \to (ty3 g c2 t0 t3))))).(\lambda
-(c2: C).(\lambda (H4: (csubt g c c2)).(ty3_bind g c2 u t (H1 c2 H4) b t0 t3
-(H3 (CHead c2 (Bind b) u) (csubt_head g c c2 H4 (Bind b) u)))))))))))))))
-(\lambda (c: C).(\lambda (w: T).(\lambda (u: T).(\lambda (_: (ty3 g c w
-u)).(\lambda (H1: ((\forall (c2: C).((csubt g c c2) \to (ty3 g c2 w
-u))))).(\lambda (v: T).(\lambda (t: T).(\lambda (_: (ty3 g c v (THead (Bind
+c2 (CHead d2 (Bind Abbr) u0)))) (\lambda (_: C).(\lambda (u0: T).(ty3 g d u0
+u))) (\lambda (d2: C).(\lambda (u0: T).(ty3 g d2 u0 u))))).(ex4_2_ind C T
+(\lambda (d2: C).(\lambda (_: T).(csubt g d d2))) (\lambda (d2: C).(\lambda
+(u0: T).(getl n c2 (CHead d2 (Bind Abbr) u0)))) (\lambda (_: C).(\lambda (u0:
+T).(ty3 g d u0 u))) (\lambda (d2: C).(\lambda (u0: T).(ty3 g d2 u0 u))) (ty3
+g c2 (TLRef n) (lift (S n) O u)) (\lambda (x0: C).(\lambda (x1: T).(\lambda
+(_: (csubt g d x0)).(\lambda (H7: (getl n c2 (CHead x0 (Bind Abbr)
+x1))).(\lambda (_: (ty3 g d x1 u)).(\lambda (H9: (ty3 g x0 x1 u)).(ty3_abbr g
+n c2 x0 x1 H7 u H9))))))) H5)) H4)))))))))))) (\lambda (c: C).(\lambda (u:
+T).(\lambda (t: T).(\lambda (_: (ty3 g c u t)).(\lambda (H1: ((\forall (c2:
+C).((csubt g c c2) \to (ty3 g c2 u t))))).(\lambda (b: B).(\lambda (t0:
+T).(\lambda (t3: T).(\lambda (_: (ty3 g (CHead c (Bind b) u) t0 t3)).(\lambda
+(H3: ((\forall (c2: C).((csubt g (CHead c (Bind b) u) c2) \to (ty3 g c2 t0
+t3))))).(\lambda (c2: C).(\lambda (H4: (csubt g c c2)).(ty3_bind g c2 u t (H1
+c2 H4) b t0 t3 (H3 (CHead c2 (Bind b) u) (csubt_head g c c2 H4 (Bind b)
+u))))))))))))))) (\lambda (c: C).(\lambda (w: T).(\lambda (u: T).(\lambda (_:
+(ty3 g c w u)).(\lambda (H1: ((\forall (c2: C).((csubt g c c2) \to (ty3 g c2
+w u))))).(\lambda (v: T).(\lambda (t: T).(\lambda (_: (ty3 g c v (THead (Bind
Abst) u t))).(\lambda (H3: ((\forall (c2: C).((csubt g c c2) \to (ty3 g c2 v
(THead (Bind Abst) u t)))))).(\lambda (c2: C).(\lambda (H4: (csubt g c
c2)).(ty3_appl g c2 w u (H1 c2 H4) v t (H3 c2 H4))))))))))))) (\lambda (c:
\lambda (g: G).(\lambda (c: C).(\lambda (u: T).(\lambda (v: T).(\lambda (H:
(ty3 g c u v)).(\lambda (t1: T).(\lambda (t2: T).(\lambda (H0: (ty3 g (CHead
c (Bind Abst) v) t1 t2)).(csubt_ty3 g (CHead c (Bind Abst) v) t1 t2 H0 (CHead
-c (Bind Abbr) u) (csubt_abst g c c (csubt_refl g c) u v H))))))))).
+c (Bind Abbr) u) (csubt_abst g c c (csubt_refl g c) u v H H))))))))).
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+(* This file was automatically generated: do not edit *********************)
+
+include "LambdaDelta-1/csubv/defs.ma".
+
+include "LambdaDelta-1/clear/fwd.ma".
+
+theorem csubv_clear_conf:
+ \forall (c1: C).(\forall (c2: C).((csubv c1 c2) \to (\forall (b1:
+B).(\forall (d1: C).(\forall (v1: T).((clear c1 (CHead d1 (Bind b1) v1)) \to
+(ex2_3 B C T (\lambda (_: B).(\lambda (d2: C).(\lambda (_: T).(csubv d1
+d2)))) (\lambda (b2: B).(\lambda (d2: C).(\lambda (v2: T).(clear c2 (CHead d2
+(Bind b2) v2))))))))))))
+\def
+ \lambda (c1: C).(\lambda (c2: C).(\lambda (H: (csubv c1 c2)).(csubv_ind
+(\lambda (c: C).(\lambda (c0: C).(\forall (b1: B).(\forall (d1: C).(\forall
+(v1: T).((clear c (CHead d1 (Bind b1) v1)) \to (ex2_3 B C T (\lambda (_:
+B).(\lambda (d2: C).(\lambda (_: T).(csubv d1 d2)))) (\lambda (b2:
+B).(\lambda (d2: C).(\lambda (v2: T).(clear c0 (CHead d2 (Bind b2)
+v2)))))))))))) (\lambda (n: nat).(\lambda (b1: B).(\lambda (d1: C).(\lambda
+(v1: T).(\lambda (H0: (clear (CSort n) (CHead d1 (Bind b1)
+v1))).(clear_gen_sort (CHead d1 (Bind b1) v1) n H0 (ex2_3 B C T (\lambda (_:
+B).(\lambda (d2: C).(\lambda (_: T).(csubv d1 d2)))) (\lambda (b2:
+B).(\lambda (d2: C).(\lambda (v2: T).(clear (CSort n) (CHead d2 (Bind b2)
+v2)))))))))))) (\lambda (c3: C).(\lambda (c4: C).(\lambda (H0: (csubv c3
+c4)).(\lambda (_: ((\forall (b1: B).(\forall (d1: C).(\forall (v1: T).((clear
+c3 (CHead d1 (Bind b1) v1)) \to (ex2_3 B C T (\lambda (_: B).(\lambda (d2:
+C).(\lambda (_: T).(csubv d1 d2)))) (\lambda (b2: B).(\lambda (d2:
+C).(\lambda (v2: T).(clear c4 (CHead d2 (Bind b2) v2)))))))))))).(\lambda
+(v1: T).(\lambda (v2: T).(\lambda (b1: B).(\lambda (d1: C).(\lambda (v0:
+T).(\lambda (H2: (clear (CHead c3 (Bind Void) v1) (CHead d1 (Bind b1)
+v0))).(let H3 \def (f_equal C C (\lambda (e: C).(match e in C return (\lambda
+(_: C).C) with [(CSort _) \Rightarrow d1 | (CHead c _ _) \Rightarrow c]))
+(CHead d1 (Bind b1) v0) (CHead c3 (Bind Void) v1) (clear_gen_bind Void c3
+(CHead d1 (Bind b1) v0) v1 H2)) in ((let H4 \def (f_equal C B (\lambda (e:
+C).(match e in C return (\lambda (_: C).B) with [(CSort _) \Rightarrow b1 |
+(CHead _ k _) \Rightarrow (match k in K return (\lambda (_: K).B) with [(Bind
+b) \Rightarrow b | (Flat _) \Rightarrow b1])])) (CHead d1 (Bind b1) v0)
+(CHead c3 (Bind Void) v1) (clear_gen_bind Void c3 (CHead d1 (Bind b1) v0) v1
+H2)) in ((let H5 \def (f_equal C T (\lambda (e: C).(match e in C return
+(\lambda (_: C).T) with [(CSort _) \Rightarrow v0 | (CHead _ _ t) \Rightarrow
+t])) (CHead d1 (Bind b1) v0) (CHead c3 (Bind Void) v1) (clear_gen_bind Void
+c3 (CHead d1 (Bind b1) v0) v1 H2)) in (\lambda (_: (eq B b1 Void)).(\lambda
+(H7: (eq C d1 c3)).(eq_ind_r C c3 (\lambda (c: C).(ex2_3 B C T (\lambda (_:
+B).(\lambda (d2: C).(\lambda (_: T).(csubv c d2)))) (\lambda (b2: B).(\lambda
+(d2: C).(\lambda (v3: T).(clear (CHead c4 (Bind Void) v2) (CHead d2 (Bind b2)
+v3))))))) (ex2_3_intro B C T (\lambda (_: B).(\lambda (d2: C).(\lambda (_:
+T).(csubv c3 d2)))) (\lambda (b2: B).(\lambda (d2: C).(\lambda (v3: T).(clear
+(CHead c4 (Bind Void) v2) (CHead d2 (Bind b2) v3))))) Void c4 v2 H0
+(clear_bind Void c4 v2)) d1 H7)))) H4)) H3)))))))))))) (\lambda (c3:
+C).(\lambda (c4: C).(\lambda (H0: (csubv c3 c4)).(\lambda (_: ((\forall (b1:
+B).(\forall (d1: C).(\forall (v1: T).((clear c3 (CHead d1 (Bind b1) v1)) \to
+(ex2_3 B C T (\lambda (_: B).(\lambda (d2: C).(\lambda (_: T).(csubv d1
+d2)))) (\lambda (b2: B).(\lambda (d2: C).(\lambda (v2: T).(clear c4 (CHead d2
+(Bind b2) v2)))))))))))).(\lambda (b1: B).(\lambda (_: (not (eq B b1
+Void))).(\lambda (b2: B).(\lambda (v1: T).(\lambda (v2: T).(\lambda (b0:
+B).(\lambda (d1: C).(\lambda (v0: T).(\lambda (H3: (clear (CHead c3 (Bind b1)
+v1) (CHead d1 (Bind b0) v0))).(let H4 \def (f_equal C C (\lambda (e:
+C).(match e in C return (\lambda (_: C).C) with [(CSort _) \Rightarrow d1 |
+(CHead c _ _) \Rightarrow c])) (CHead d1 (Bind b0) v0) (CHead c3 (Bind b1)
+v1) (clear_gen_bind b1 c3 (CHead d1 (Bind b0) v0) v1 H3)) in ((let H5 \def
+(f_equal C B (\lambda (e: C).(match e in C return (\lambda (_: C).B) with
+[(CSort _) \Rightarrow b0 | (CHead _ k _) \Rightarrow (match k in K return
+(\lambda (_: K).B) with [(Bind b) \Rightarrow b | (Flat _) \Rightarrow
+b0])])) (CHead d1 (Bind b0) v0) (CHead c3 (Bind b1) v1) (clear_gen_bind b1 c3
+(CHead d1 (Bind b0) v0) v1 H3)) in ((let H6 \def (f_equal C T (\lambda (e:
+C).(match e in C return (\lambda (_: C).T) with [(CSort _) \Rightarrow v0 |
+(CHead _ _ t) \Rightarrow t])) (CHead d1 (Bind b0) v0) (CHead c3 (Bind b1)
+v1) (clear_gen_bind b1 c3 (CHead d1 (Bind b0) v0) v1 H3)) in (\lambda (_: (eq
+B b0 b1)).(\lambda (H8: (eq C d1 c3)).(eq_ind_r C c3 (\lambda (c: C).(ex2_3 B
+C T (\lambda (_: B).(\lambda (d2: C).(\lambda (_: T).(csubv c d2)))) (\lambda
+(b3: B).(\lambda (d2: C).(\lambda (v3: T).(clear (CHead c4 (Bind b2) v2)
+(CHead d2 (Bind b3) v3))))))) (ex2_3_intro B C T (\lambda (_: B).(\lambda
+(d2: C).(\lambda (_: T).(csubv c3 d2)))) (\lambda (b3: B).(\lambda (d2:
+C).(\lambda (v3: T).(clear (CHead c4 (Bind b2) v2) (CHead d2 (Bind b3)
+v3))))) b2 c4 v2 H0 (clear_bind b2 c4 v2)) d1 H8)))) H5)) H4)))))))))))))))
+(\lambda (c3: C).(\lambda (c4: C).(\lambda (_: (csubv c3 c4)).(\lambda (H1:
+((\forall (b1: B).(\forall (d1: C).(\forall (v1: T).((clear c3 (CHead d1
+(Bind b1) v1)) \to (ex2_3 B C T (\lambda (_: B).(\lambda (d2: C).(\lambda (_:
+T).(csubv d1 d2)))) (\lambda (b2: B).(\lambda (d2: C).(\lambda (v2: T).(clear
+c4 (CHead d2 (Bind b2) v2)))))))))))).(\lambda (f1: F).(\lambda (f2:
+F).(\lambda (v1: T).(\lambda (v2: T).(\lambda (b1: B).(\lambda (d1:
+C).(\lambda (v0: T).(\lambda (H2: (clear (CHead c3 (Flat f1) v1) (CHead d1
+(Bind b1) v0))).(let H_x \def (H1 b1 d1 v0 (clear_gen_flat f1 c3 (CHead d1
+(Bind b1) v0) v1 H2)) in (let H3 \def H_x in (ex2_3_ind B C T (\lambda (_:
+B).(\lambda (d2: C).(\lambda (_: T).(csubv d1 d2)))) (\lambda (b2:
+B).(\lambda (d2: C).(\lambda (v3: T).(clear c4 (CHead d2 (Bind b2) v3)))))
+(ex2_3 B C T (\lambda (_: B).(\lambda (d2: C).(\lambda (_: T).(csubv d1
+d2)))) (\lambda (b2: B).(\lambda (d2: C).(\lambda (v3: T).(clear (CHead c4
+(Flat f2) v2) (CHead d2 (Bind b2) v3)))))) (\lambda (x0: B).(\lambda (x1:
+C).(\lambda (x2: T).(\lambda (H4: (csubv d1 x1)).(\lambda (H5: (clear c4
+(CHead x1 (Bind x0) x2))).(ex2_3_intro B C T (\lambda (_: B).(\lambda (d2:
+C).(\lambda (_: T).(csubv d1 d2)))) (\lambda (b2: B).(\lambda (d2:
+C).(\lambda (v3: T).(clear (CHead c4 (Flat f2) v2) (CHead d2 (Bind b2)
+v3))))) x0 x1 x2 H4 (clear_flat c4 (CHead x1 (Bind x0) x2) H5 f2 v2)))))))
+H3))))))))))))))) c1 c2 H))).
+
+theorem csubv_clear_conf_void:
+ \forall (c1: C).(\forall (c2: C).((csubv c1 c2) \to (\forall (d1:
+C).(\forall (v1: T).((clear c1 (CHead d1 (Bind Void) v1)) \to (ex2_2 C T
+(\lambda (d2: C).(\lambda (_: T).(csubv d1 d2))) (\lambda (d2: C).(\lambda
+(v2: T).(clear c2 (CHead d2 (Bind Void) v2))))))))))
+\def
+ \lambda (c1: C).(\lambda (c2: C).(\lambda (H: (csubv c1 c2)).(csubv_ind
+(\lambda (c: C).(\lambda (c0: C).(\forall (d1: C).(\forall (v1: T).((clear c
+(CHead d1 (Bind Void) v1)) \to (ex2_2 C T (\lambda (d2: C).(\lambda (_:
+T).(csubv d1 d2))) (\lambda (d2: C).(\lambda (v2: T).(clear c0 (CHead d2
+(Bind Void) v2)))))))))) (\lambda (n: nat).(\lambda (d1: C).(\lambda (v1:
+T).(\lambda (H0: (clear (CSort n) (CHead d1 (Bind Void) v1))).(clear_gen_sort
+(CHead d1 (Bind Void) v1) n H0 (ex2_2 C T (\lambda (d2: C).(\lambda (_:
+T).(csubv d1 d2))) (\lambda (d2: C).(\lambda (v2: T).(clear (CSort n) (CHead
+d2 (Bind Void) v2)))))))))) (\lambda (c3: C).(\lambda (c4: C).(\lambda (H0:
+(csubv c3 c4)).(\lambda (_: ((\forall (d1: C).(\forall (v1: T).((clear c3
+(CHead d1 (Bind Void) v1)) \to (ex2_2 C T (\lambda (d2: C).(\lambda (_:
+T).(csubv d1 d2))) (\lambda (d2: C).(\lambda (v2: T).(clear c4 (CHead d2
+(Bind Void) v2)))))))))).(\lambda (v1: T).(\lambda (v2: T).(\lambda (d1:
+C).(\lambda (v0: T).(\lambda (H2: (clear (CHead c3 (Bind Void) v1) (CHead d1
+(Bind Void) v0))).(let H3 \def (f_equal C C (\lambda (e: C).(match e in C
+return (\lambda (_: C).C) with [(CSort _) \Rightarrow d1 | (CHead c _ _)
+\Rightarrow c])) (CHead d1 (Bind Void) v0) (CHead c3 (Bind Void) v1)
+(clear_gen_bind Void c3 (CHead d1 (Bind Void) v0) v1 H2)) in ((let H4 \def
+(f_equal C T (\lambda (e: C).(match e in C return (\lambda (_: C).T) with
+[(CSort _) \Rightarrow v0 | (CHead _ _ t) \Rightarrow t])) (CHead d1 (Bind
+Void) v0) (CHead c3 (Bind Void) v1) (clear_gen_bind Void c3 (CHead d1 (Bind
+Void) v0) v1 H2)) in (\lambda (H5: (eq C d1 c3)).(eq_ind_r C c3 (\lambda (c:
+C).(ex2_2 C T (\lambda (d2: C).(\lambda (_: T).(csubv c d2))) (\lambda (d2:
+C).(\lambda (v3: T).(clear (CHead c4 (Bind Void) v2) (CHead d2 (Bind Void)
+v3)))))) (ex2_2_intro C T (\lambda (d2: C).(\lambda (_: T).(csubv c3 d2)))
+(\lambda (d2: C).(\lambda (v3: T).(clear (CHead c4 (Bind Void) v2) (CHead d2
+(Bind Void) v3)))) c4 v2 H0 (clear_bind Void c4 v2)) d1 H5))) H3)))))))))))
+(\lambda (c3: C).(\lambda (c4: C).(\lambda (_: (csubv c3 c4)).(\lambda (_:
+((\forall (d1: C).(\forall (v1: T).((clear c3 (CHead d1 (Bind Void) v1)) \to
+(ex2_2 C T (\lambda (d2: C).(\lambda (_: T).(csubv d1 d2))) (\lambda (d2:
+C).(\lambda (v2: T).(clear c4 (CHead d2 (Bind Void) v2)))))))))).(\lambda
+(b1: B).(\lambda (H2: (not (eq B b1 Void))).(\lambda (b2: B).(\lambda (v1:
+T).(\lambda (v2: T).(\lambda (d1: C).(\lambda (v0: T).(\lambda (H3: (clear
+(CHead c3 (Bind b1) v1) (CHead d1 (Bind Void) v0))).(let H4 \def (f_equal C C
+(\lambda (e: C).(match e in C return (\lambda (_: C).C) with [(CSort _)
+\Rightarrow d1 | (CHead c _ _) \Rightarrow c])) (CHead d1 (Bind Void) v0)
+(CHead c3 (Bind b1) v1) (clear_gen_bind b1 c3 (CHead d1 (Bind Void) v0) v1
+H3)) in ((let H5 \def (f_equal C B (\lambda (e: C).(match e in C return
+(\lambda (_: C).B) with [(CSort _) \Rightarrow Void | (CHead _ k _)
+\Rightarrow (match k in K return (\lambda (_: K).B) with [(Bind b)
+\Rightarrow b | (Flat _) \Rightarrow Void])])) (CHead d1 (Bind Void) v0)
+(CHead c3 (Bind b1) v1) (clear_gen_bind b1 c3 (CHead d1 (Bind Void) v0) v1
+H3)) in ((let H6 \def (f_equal C T (\lambda (e: C).(match e in C return
+(\lambda (_: C).T) with [(CSort _) \Rightarrow v0 | (CHead _ _ t) \Rightarrow
+t])) (CHead d1 (Bind Void) v0) (CHead c3 (Bind b1) v1) (clear_gen_bind b1 c3
+(CHead d1 (Bind Void) v0) v1 H3)) in (\lambda (H7: (eq B Void b1)).(\lambda
+(H8: (eq C d1 c3)).(eq_ind_r C c3 (\lambda (c: C).(ex2_2 C T (\lambda (d2:
+C).(\lambda (_: T).(csubv c d2))) (\lambda (d2: C).(\lambda (v3: T).(clear
+(CHead c4 (Bind b2) v2) (CHead d2 (Bind Void) v3)))))) (let H9 \def (eq_ind_r
+B b1 (\lambda (b: B).(not (eq B b Void))) H2 Void H7) in (let H10 \def (match
+(H9 (refl_equal B Void)) in False return (\lambda (_: False).(ex2_2 C T
+(\lambda (d2: C).(\lambda (_: T).(csubv c3 d2))) (\lambda (d2: C).(\lambda
+(v3: T).(clear (CHead c4 (Bind b2) v2) (CHead d2 (Bind Void) v3)))))) with
+[]) in H10)) d1 H8)))) H5)) H4)))))))))))))) (\lambda (c3: C).(\lambda (c4:
+C).(\lambda (_: (csubv c3 c4)).(\lambda (H1: ((\forall (d1: C).(\forall (v1:
+T).((clear c3 (CHead d1 (Bind Void) v1)) \to (ex2_2 C T (\lambda (d2:
+C).(\lambda (_: T).(csubv d1 d2))) (\lambda (d2: C).(\lambda (v2: T).(clear
+c4 (CHead d2 (Bind Void) v2)))))))))).(\lambda (f1: F).(\lambda (f2:
+F).(\lambda (v1: T).(\lambda (v2: T).(\lambda (d1: C).(\lambda (v0:
+T).(\lambda (H2: (clear (CHead c3 (Flat f1) v1) (CHead d1 (Bind Void)
+v0))).(let H_x \def (H1 d1 v0 (clear_gen_flat f1 c3 (CHead d1 (Bind Void) v0)
+v1 H2)) in (let H3 \def H_x in (ex2_2_ind C T (\lambda (d2: C).(\lambda (_:
+T).(csubv d1 d2))) (\lambda (d2: C).(\lambda (v3: T).(clear c4 (CHead d2
+(Bind Void) v3)))) (ex2_2 C T (\lambda (d2: C).(\lambda (_: T).(csubv d1
+d2))) (\lambda (d2: C).(\lambda (v3: T).(clear (CHead c4 (Flat f2) v2) (CHead
+d2 (Bind Void) v3))))) (\lambda (x0: C).(\lambda (x1: T).(\lambda (H4: (csubv
+d1 x0)).(\lambda (H5: (clear c4 (CHead x0 (Bind Void) x1))).(ex2_2_intro C T
+(\lambda (d2: C).(\lambda (_: T).(csubv d1 d2))) (\lambda (d2: C).(\lambda
+(v3: T).(clear (CHead c4 (Flat f2) v2) (CHead d2 (Bind Void) v3)))) x0 x1 H4
+(clear_flat c4 (CHead x0 (Bind Void) x1) H5 f2 v2)))))) H3)))))))))))))) c1
+c2 H))).
+
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+(* This file was automatically generated: do not edit *********************)
+
+include "LambdaDelta-1/C/defs.ma".
+
+inductive csubv: C \to (C \to Prop) \def
+| csubv_sort: \forall (n: nat).(csubv (CSort n) (CSort n))
+| csubv_void: \forall (c1: C).(\forall (c2: C).((csubv c1 c2) \to (\forall
+(v1: T).(\forall (v2: T).(csubv (CHead c1 (Bind Void) v1) (CHead c2 (Bind
+Void) v2))))))
+| csubv_bind: \forall (c1: C).(\forall (c2: C).((csubv c1 c2) \to (\forall
+(b1: B).((not (eq B b1 Void)) \to (\forall (b2: B).(\forall (v1: T).(\forall
+(v2: T).(csubv (CHead c1 (Bind b1) v1) (CHead c2 (Bind b2) v2)))))))))
+| csubv_flat: \forall (c1: C).(\forall (c2: C).((csubv c1 c2) \to (\forall
+(f1: F).(\forall (f2: F).(\forall (v1: T).(\forall (v2: T).(csubv (CHead c1
+(Flat f1) v1) (CHead c2 (Flat f2) v2)))))))).
+
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+(* This file was automatically generated: do not edit *********************)
+
+include "LambdaDelta-1/csubv/props.ma".
+
+include "LambdaDelta-1/drop/fwd.ma".
+
+theorem csubv_drop_conf:
+ \forall (c1: C).(\forall (c2: C).((csubv c1 c2) \to (\forall (e1:
+C).(\forall (h: nat).((drop h O c1 e1) \to (ex2 C (\lambda (e2: C).(csubv e1
+e2)) (\lambda (e2: C).(drop h O c2 e2))))))))
+\def
+ \lambda (c1: C).(\lambda (c2: C).(\lambda (H: (csubv c1 c2)).(csubv_ind
+(\lambda (c: C).(\lambda (c0: C).(\forall (e1: C).(\forall (h: nat).((drop h
+O c e1) \to (ex2 C (\lambda (e2: C).(csubv e1 e2)) (\lambda (e2: C).(drop h O
+c0 e2)))))))) (\lambda (n: nat).(\lambda (e1: C).(\lambda (h: nat).(\lambda
+(H0: (drop h O (CSort n) e1)).(and3_ind (eq C e1 (CSort n)) (eq nat h O) (eq
+nat O O) (ex2 C (\lambda (e2: C).(csubv e1 e2)) (\lambda (e2: C).(drop h O
+(CSort n) e2))) (\lambda (H1: (eq C e1 (CSort n))).(\lambda (H2: (eq nat h
+O)).(\lambda (_: (eq nat O O)).(eq_ind_r nat O (\lambda (n0: nat).(ex2 C
+(\lambda (e2: C).(csubv e1 e2)) (\lambda (e2: C).(drop n0 O (CSort n) e2))))
+(eq_ind_r C (CSort n) (\lambda (c: C).(ex2 C (\lambda (e2: C).(csubv c e2))
+(\lambda (e2: C).(drop O O (CSort n) e2)))) (ex_intro2 C (\lambda (e2:
+C).(csubv (CSort n) e2)) (\lambda (e2: C).(drop O O (CSort n) e2)) (CSort n)
+(csubv_refl (CSort n)) (drop_refl (CSort n))) e1 H1) h H2)))) (drop_gen_sort
+n h O e1 H0)))))) (\lambda (c3: C).(\lambda (c4: C).(\lambda (H0: (csubv c3
+c4)).(\lambda (H1: ((\forall (e1: C).(\forall (h: nat).((drop h O c3 e1) \to
+(ex2 C (\lambda (e2: C).(csubv e1 e2)) (\lambda (e2: C).(drop h O c4
+e2)))))))).(\lambda (v1: T).(\lambda (v2: T).(\lambda (e1: C).(\lambda (h:
+nat).(\lambda (H2: (drop h O (CHead c3 (Bind Void) v1) e1)).(nat_ind (\lambda
+(n: nat).((drop n O (CHead c3 (Bind Void) v1) e1) \to (ex2 C (\lambda (e2:
+C).(csubv e1 e2)) (\lambda (e2: C).(drop n O (CHead c4 (Bind Void) v2)
+e2))))) (\lambda (H3: (drop O O (CHead c3 (Bind Void) v1) e1)).(eq_ind C
+(CHead c3 (Bind Void) v1) (\lambda (c: C).(ex2 C (\lambda (e2: C).(csubv c
+e2)) (\lambda (e2: C).(drop O O (CHead c4 (Bind Void) v2) e2)))) (ex_intro2 C
+(\lambda (e2: C).(csubv (CHead c3 (Bind Void) v1) e2)) (\lambda (e2: C).(drop
+O O (CHead c4 (Bind Void) v2) e2)) (CHead c4 (Bind Void) v2) (csubv_bind_same
+c3 c4 H0 Void v1 v2) (drop_refl (CHead c4 (Bind Void) v2))) e1 (drop_gen_refl
+(CHead c3 (Bind Void) v1) e1 H3))) (\lambda (h0: nat).(\lambda (_: (((drop h0
+O (CHead c3 (Bind Void) v1) e1) \to (ex2 C (\lambda (e2: C).(csubv e1 e2))
+(\lambda (e2: C).(drop h0 O (CHead c4 (Bind Void) v2) e2)))))).(\lambda (H3:
+(drop (S h0) O (CHead c3 (Bind Void) v1) e1)).(let H_x \def (H1 e1 (r (Bind
+Void) h0) (drop_gen_drop (Bind Void) c3 e1 v1 h0 H3)) in (let H4 \def H_x in
+(ex2_ind C (\lambda (e2: C).(csubv e1 e2)) (\lambda (e2: C).(drop h0 O c4
+e2)) (ex2 C (\lambda (e2: C).(csubv e1 e2)) (\lambda (e2: C).(drop (S h0) O
+(CHead c4 (Bind Void) v2) e2))) (\lambda (x: C).(\lambda (H5: (csubv e1
+x)).(\lambda (H6: (drop h0 O c4 x)).(ex_intro2 C (\lambda (e2: C).(csubv e1
+e2)) (\lambda (e2: C).(drop (S h0) O (CHead c4 (Bind Void) v2) e2)) x H5
+(drop_drop (Bind Void) h0 c4 x H6 v2))))) H4)))))) h H2)))))))))) (\lambda
+(c3: C).(\lambda (c4: C).(\lambda (H0: (csubv c3 c4)).(\lambda (H1: ((\forall
+(e1: C).(\forall (h: nat).((drop h O c3 e1) \to (ex2 C (\lambda (e2:
+C).(csubv e1 e2)) (\lambda (e2: C).(drop h O c4 e2)))))))).(\lambda (b1:
+B).(\lambda (H2: (not (eq B b1 Void))).(\lambda (b2: B).(\lambda (v1:
+T).(\lambda (v2: T).(\lambda (e1: C).(\lambda (h: nat).(\lambda (H3: (drop h
+O (CHead c3 (Bind b1) v1) e1)).(nat_ind (\lambda (n: nat).((drop n O (CHead
+c3 (Bind b1) v1) e1) \to (ex2 C (\lambda (e2: C).(csubv e1 e2)) (\lambda (e2:
+C).(drop n O (CHead c4 (Bind b2) v2) e2))))) (\lambda (H4: (drop O O (CHead
+c3 (Bind b1) v1) e1)).(eq_ind C (CHead c3 (Bind b1) v1) (\lambda (c: C).(ex2
+C (\lambda (e2: C).(csubv c e2)) (\lambda (e2: C).(drop O O (CHead c4 (Bind
+b2) v2) e2)))) (ex_intro2 C (\lambda (e2: C).(csubv (CHead c3 (Bind b1) v1)
+e2)) (\lambda (e2: C).(drop O O (CHead c4 (Bind b2) v2) e2)) (CHead c4 (Bind
+b2) v2) (csubv_bind c3 c4 H0 b1 H2 b2 v1 v2) (drop_refl (CHead c4 (Bind b2)
+v2))) e1 (drop_gen_refl (CHead c3 (Bind b1) v1) e1 H4))) (\lambda (h0:
+nat).(\lambda (_: (((drop h0 O (CHead c3 (Bind b1) v1) e1) \to (ex2 C
+(\lambda (e2: C).(csubv e1 e2)) (\lambda (e2: C).(drop h0 O (CHead c4 (Bind
+b2) v2) e2)))))).(\lambda (H4: (drop (S h0) O (CHead c3 (Bind b1) v1)
+e1)).(let H_x \def (H1 e1 (r (Bind b1) h0) (drop_gen_drop (Bind b1) c3 e1 v1
+h0 H4)) in (let H5 \def H_x in (ex2_ind C (\lambda (e2: C).(csubv e1 e2))
+(\lambda (e2: C).(drop h0 O c4 e2)) (ex2 C (\lambda (e2: C).(csubv e1 e2))
+(\lambda (e2: C).(drop (S h0) O (CHead c4 (Bind b2) v2) e2))) (\lambda (x:
+C).(\lambda (H6: (csubv e1 x)).(\lambda (H7: (drop h0 O c4 x)).(ex_intro2 C
+(\lambda (e2: C).(csubv e1 e2)) (\lambda (e2: C).(drop (S h0) O (CHead c4
+(Bind b2) v2) e2)) x H6 (drop_drop (Bind b2) h0 c4 x H7 v2))))) H5)))))) h
+H3))))))))))))) (\lambda (c3: C).(\lambda (c4: C).(\lambda (H0: (csubv c3
+c4)).(\lambda (H1: ((\forall (e1: C).(\forall (h: nat).((drop h O c3 e1) \to
+(ex2 C (\lambda (e2: C).(csubv e1 e2)) (\lambda (e2: C).(drop h O c4
+e2)))))))).(\lambda (f1: F).(\lambda (f2: F).(\lambda (v1: T).(\lambda (v2:
+T).(\lambda (e1: C).(\lambda (h: nat).(\lambda (H2: (drop h O (CHead c3 (Flat
+f1) v1) e1)).(nat_ind (\lambda (n: nat).((drop n O (CHead c3 (Flat f1) v1)
+e1) \to (ex2 C (\lambda (e2: C).(csubv e1 e2)) (\lambda (e2: C).(drop n O
+(CHead c4 (Flat f2) v2) e2))))) (\lambda (H3: (drop O O (CHead c3 (Flat f1)
+v1) e1)).(eq_ind C (CHead c3 (Flat f1) v1) (\lambda (c: C).(ex2 C (\lambda
+(e2: C).(csubv c e2)) (\lambda (e2: C).(drop O O (CHead c4 (Flat f2) v2)
+e2)))) (ex_intro2 C (\lambda (e2: C).(csubv (CHead c3 (Flat f1) v1) e2))
+(\lambda (e2: C).(drop O O (CHead c4 (Flat f2) v2) e2)) (CHead c4 (Flat f2)
+v2) (csubv_flat c3 c4 H0 f1 f2 v1 v2) (drop_refl (CHead c4 (Flat f2) v2))) e1
+(drop_gen_refl (CHead c3 (Flat f1) v1) e1 H3))) (\lambda (h0: nat).(\lambda
+(_: (((drop h0 O (CHead c3 (Flat f1) v1) e1) \to (ex2 C (\lambda (e2:
+C).(csubv e1 e2)) (\lambda (e2: C).(drop h0 O (CHead c4 (Flat f2) v2)
+e2)))))).(\lambda (H3: (drop (S h0) O (CHead c3 (Flat f1) v1) e1)).(let H_x
+\def (H1 e1 (r (Flat f1) h0) (drop_gen_drop (Flat f1) c3 e1 v1 h0 H3)) in
+(let H4 \def H_x in (ex2_ind C (\lambda (e2: C).(csubv e1 e2)) (\lambda (e2:
+C).(drop (S h0) O c4 e2)) (ex2 C (\lambda (e2: C).(csubv e1 e2)) (\lambda
+(e2: C).(drop (S h0) O (CHead c4 (Flat f2) v2) e2))) (\lambda (x: C).(\lambda
+(H5: (csubv e1 x)).(\lambda (H6: (drop (S h0) O c4 x)).(ex_intro2 C (\lambda
+(e2: C).(csubv e1 e2)) (\lambda (e2: C).(drop (S h0) O (CHead c4 (Flat f2)
+v2) e2)) x H5 (drop_drop (Flat f2) h0 c4 x H6 v2))))) H4)))))) h
+H2)))))))))))) c1 c2 H))).
+
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+(* This file was automatically generated: do not edit *********************)
+
+include "LambdaDelta-1/csubv/clear.ma".
+
+include "LambdaDelta-1/csubv/drop.ma".
+
+include "LambdaDelta-1/getl/fwd.ma".
+
+theorem csubv_getl_conf:
+ \forall (c1: C).(\forall (c2: C).((csubv c1 c2) \to (\forall (b1:
+B).(\forall (d1: C).(\forall (v1: T).(\forall (i: nat).((getl i c1 (CHead d1
+(Bind b1) v1)) \to (ex2_3 B C T (\lambda (_: B).(\lambda (d2: C).(\lambda (_:
+T).(csubv d1 d2)))) (\lambda (b2: B).(\lambda (d2: C).(\lambda (v2: T).(getl
+i c2 (CHead d2 (Bind b2) v2)))))))))))))
+\def
+ \lambda (c1: C).(\lambda (c2: C).(\lambda (H: (csubv c1 c2)).(\lambda (b1:
+B).(\lambda (d1: C).(\lambda (v1: T).(\lambda (i: nat).(\lambda (H0: (getl i
+c1 (CHead d1 (Bind b1) v1))).(let H1 \def (getl_gen_all c1 (CHead d1 (Bind
+b1) v1) i H0) in (ex2_ind C (\lambda (e: C).(drop i O c1 e)) (\lambda (e:
+C).(clear e (CHead d1 (Bind b1) v1))) (ex2_3 B C T (\lambda (_: B).(\lambda
+(d2: C).(\lambda (_: T).(csubv d1 d2)))) (\lambda (b2: B).(\lambda (d2:
+C).(\lambda (v2: T).(getl i c2 (CHead d2 (Bind b2) v2)))))) (\lambda (x:
+C).(\lambda (H2: (drop i O c1 x)).(\lambda (H3: (clear x (CHead d1 (Bind b1)
+v1))).(let H_x \def (csubv_drop_conf c1 c2 H x i H2) in (let H4 \def H_x in
+(ex2_ind C (\lambda (e2: C).(csubv x e2)) (\lambda (e2: C).(drop i O c2 e2))
+(ex2_3 B C T (\lambda (_: B).(\lambda (d2: C).(\lambda (_: T).(csubv d1
+d2)))) (\lambda (b2: B).(\lambda (d2: C).(\lambda (v2: T).(getl i c2 (CHead
+d2 (Bind b2) v2)))))) (\lambda (x0: C).(\lambda (H5: (csubv x x0)).(\lambda
+(H6: (drop i O c2 x0)).(let H_x0 \def (csubv_clear_conf x x0 H5 b1 d1 v1 H3)
+in (let H7 \def H_x0 in (ex2_3_ind B C T (\lambda (_: B).(\lambda (d2:
+C).(\lambda (_: T).(csubv d1 d2)))) (\lambda (b2: B).(\lambda (d2:
+C).(\lambda (v2: T).(clear x0 (CHead d2 (Bind b2) v2))))) (ex2_3 B C T
+(\lambda (_: B).(\lambda (d2: C).(\lambda (_: T).(csubv d1 d2)))) (\lambda
+(b2: B).(\lambda (d2: C).(\lambda (v2: T).(getl i c2 (CHead d2 (Bind b2)
+v2)))))) (\lambda (x1: B).(\lambda (x2: C).(\lambda (x3: T).(\lambda (H8:
+(csubv d1 x2)).(\lambda (H9: (clear x0 (CHead x2 (Bind x1) x3))).(ex2_3_intro
+B C T (\lambda (_: B).(\lambda (d2: C).(\lambda (_: T).(csubv d1 d2))))
+(\lambda (b2: B).(\lambda (d2: C).(\lambda (v2: T).(getl i c2 (CHead d2 (Bind
+b2) v2))))) x1 x2 x3 H8 (getl_intro i c2 (CHead x2 (Bind x1) x3) x0 H6
+H9))))))) H7)))))) H4)))))) H1))))))))).
+
+theorem csubv_getl_conf_void:
+ \forall (c1: C).(\forall (c2: C).((csubv c1 c2) \to (\forall (d1:
+C).(\forall (v1: T).(\forall (i: nat).((getl i c1 (CHead d1 (Bind Void) v1))
+\to (ex2_2 C T (\lambda (d2: C).(\lambda (_: T).(csubv d1 d2))) (\lambda (d2:
+C).(\lambda (v2: T).(getl i c2 (CHead d2 (Bind Void) v2)))))))))))
+\def
+ \lambda (c1: C).(\lambda (c2: C).(\lambda (H: (csubv c1 c2)).(\lambda (d1:
+C).(\lambda (v1: T).(\lambda (i: nat).(\lambda (H0: (getl i c1 (CHead d1
+(Bind Void) v1))).(let H1 \def (getl_gen_all c1 (CHead d1 (Bind Void) v1) i
+H0) in (ex2_ind C (\lambda (e: C).(drop i O c1 e)) (\lambda (e: C).(clear e
+(CHead d1 (Bind Void) v1))) (ex2_2 C T (\lambda (d2: C).(\lambda (_:
+T).(csubv d1 d2))) (\lambda (d2: C).(\lambda (v2: T).(getl i c2 (CHead d2
+(Bind Void) v2))))) (\lambda (x: C).(\lambda (H2: (drop i O c1 x)).(\lambda
+(H3: (clear x (CHead d1 (Bind Void) v1))).(let H_x \def (csubv_drop_conf c1
+c2 H x i H2) in (let H4 \def H_x in (ex2_ind C (\lambda (e2: C).(csubv x e2))
+(\lambda (e2: C).(drop i O c2 e2)) (ex2_2 C T (\lambda (d2: C).(\lambda (_:
+T).(csubv d1 d2))) (\lambda (d2: C).(\lambda (v2: T).(getl i c2 (CHead d2
+(Bind Void) v2))))) (\lambda (x0: C).(\lambda (H5: (csubv x x0)).(\lambda
+(H6: (drop i O c2 x0)).(let H_x0 \def (csubv_clear_conf_void x x0 H5 d1 v1
+H3) in (let H7 \def H_x0 in (ex2_2_ind C T (\lambda (d2: C).(\lambda (_:
+T).(csubv d1 d2))) (\lambda (d2: C).(\lambda (v2: T).(clear x0 (CHead d2
+(Bind Void) v2)))) (ex2_2 C T (\lambda (d2: C).(\lambda (_: T).(csubv d1
+d2))) (\lambda (d2: C).(\lambda (v2: T).(getl i c2 (CHead d2 (Bind Void)
+v2))))) (\lambda (x1: C).(\lambda (x2: T).(\lambda (H8: (csubv d1
+x1)).(\lambda (H9: (clear x0 (CHead x1 (Bind Void) x2))).(ex2_2_intro C T
+(\lambda (d2: C).(\lambda (_: T).(csubv d1 d2))) (\lambda (d2: C).(\lambda
+(v2: T).(getl i c2 (CHead d2 (Bind Void) v2)))) x1 x2 H8 (getl_intro i c2
+(CHead x1 (Bind Void) x2) x0 H6 H9)))))) H7)))))) H4)))))) H1)))))))).
+
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+(* This file was automatically generated: do not edit *********************)
+
+include "LambdaDelta-1/csubv/defs.ma".
+
+include "LambdaDelta-1/T/props.ma".
+
+theorem csubv_bind_same:
+ \forall (c1: C).(\forall (c2: C).((csubv c1 c2) \to (\forall (b: B).(\forall
+(v1: T).(\forall (v2: T).(csubv (CHead c1 (Bind b) v1) (CHead c2 (Bind b)
+v2)))))))
+\def
+ \lambda (c1: C).(\lambda (c2: C).(\lambda (H: (csubv c1 c2)).(\lambda (b:
+B).(B_ind (\lambda (b0: B).(\forall (v1: T).(\forall (v2: T).(csubv (CHead c1
+(Bind b0) v1) (CHead c2 (Bind b0) v2))))) (\lambda (v1: T).(\lambda (v2:
+T).(csubv_bind c1 c2 H Abbr (\lambda (H0: (eq B Abbr Void)).(not_abbr_void
+H0)) Abbr v1 v2))) (\lambda (v1: T).(\lambda (v2: T).(csubv_bind c1 c2 H Abst
+(sym_not_eq B Void Abst not_void_abst) Abst v1 v2))) (\lambda (v1:
+T).(\lambda (v2: T).(csubv_void c1 c2 H v1 v2))) b)))).
+
+theorem csubv_refl:
+ \forall (c: C).(csubv c c)
+\def
+ \lambda (c: C).(C_ind (\lambda (c0: C).(csubv c0 c0)) (\lambda (n:
+nat).(csubv_sort n)) (\lambda (c0: C).(\lambda (H: (csubv c0 c0)).(\lambda
+(k: K).(K_ind (\lambda (k0: K).(\forall (t: T).(csubv (CHead c0 k0 t) (CHead
+c0 k0 t)))) (\lambda (b: B).(\lambda (t: T).(csubv_bind_same c0 c0 H b t t)))
+(\lambda (f: F).(\lambda (t: T).(csubv_flat c0 c0 H f f t t))) k)))) c).
+
include "LambdaDelta-1/cimp/defs.ma".
+include "LambdaDelta-1/csubv/defs.ma".
+
include "LambdaDelta-1/subst/defs.ma".
include "LambdaDelta-1/subst1/defs.ma".
t2)) (S O)) H (le_plus_plus (cweight c2) (plus (cweight c2) (tweight t2)) (S
O) (S O) (le_plus_l (cweight c2) (tweight t2)) (le_n (S O))))))))))).
+theorem flt_trans:
+ \forall (c1: C).(\forall (c2: C).(\forall (t1: T).(\forall (t2: T).((flt c1
+t1 c2 t2) \to (\forall (c3: C).(\forall (t3: T).((flt c2 t2 c3 t3) \to (flt
+c1 t1 c3 t3))))))))
+\def
+ \lambda (c1: C).(\lambda (c2: C).(\lambda (t1: T).(\lambda (t2: T).(\lambda
+(H: (lt (fweight c1 t1) (fweight c2 t2))).(\lambda (c3: C).(\lambda (t3:
+T).(\lambda (H0: (lt (fweight c2 t2) (fweight c3 t3))).(lt_trans (fweight c1
+t1) (fweight c2 t2) (fweight c3 t3) H H0)))))))).
+
theorem flt_wf__q_ind:
\forall (P: ((C \to (T \to Prop)))).(((\forall (n: nat).((\lambda (P0: ((C
\to (T \to Prop)))).(\lambda (n0: nat).(\forall (c: C).(\forall (t: T).((eq
C).(\lambda (H1: (drop (S h) O (CHead c k u) x0)).(\lambda (H2: (clear x0
x)).(getl_intro (r k h) c x x0 (drop_gen_drop k c x0 u h H1) H2)))) H0))))))).
+theorem getl_gen_2:
+ \forall (c1: C).(\forall (c2: C).(\forall (i: nat).((getl i c1 c2) \to (ex_3
+B C T (\lambda (b: B).(\lambda (c: C).(\lambda (v: T).(eq C c2 (CHead c (Bind
+b) v)))))))))
+\def
+ \lambda (c1: C).(\lambda (c2: C).(\lambda (i: nat).(\lambda (H: (getl i c1
+c2)).(let H0 \def (getl_gen_all c1 c2 i H) in (ex2_ind C (\lambda (e:
+C).(drop i O c1 e)) (\lambda (e: C).(clear e c2)) (ex_3 B C T (\lambda (b:
+B).(\lambda (c: C).(\lambda (v: T).(eq C c2 (CHead c (Bind b) v))))))
+(\lambda (x: C).(\lambda (_: (drop i O c1 x)).(\lambda (H2: (clear x
+c2)).(let H3 \def (clear_gen_all x c2 H2) in (ex_3_ind B C T (\lambda (b:
+B).(\lambda (e: C).(\lambda (u: T).(eq C c2 (CHead e (Bind b) u))))) (ex_3 B
+C T (\lambda (b: B).(\lambda (c: C).(\lambda (v: T).(eq C c2 (CHead c (Bind
+b) v)))))) (\lambda (x0: B).(\lambda (x1: C).(\lambda (x2: T).(\lambda (H4:
+(eq C c2 (CHead x1 (Bind x0) x2))).(let H5 \def (eq_ind C c2 (\lambda (c:
+C).(clear x c)) H2 (CHead x1 (Bind x0) x2) H4) in (eq_ind_r C (CHead x1 (Bind
+x0) x2) (\lambda (c: C).(ex_3 B C T (\lambda (b: B).(\lambda (c0: C).(\lambda
+(v: T).(eq C c (CHead c0 (Bind b) v))))))) (ex_3_intro B C T (\lambda (b:
+B).(\lambda (c: C).(\lambda (v: T).(eq C (CHead x1 (Bind x0) x2) (CHead c
+(Bind b) v))))) x0 x1 x2 (refl_equal C (CHead x1 (Bind x0) x2))) c2 H4))))))
+H3))))) H0))))).
+
theorem getl_gen_flat:
\forall (f: F).(\forall (e: C).(\forall (d: C).(\forall (v: T).(\forall (i:
nat).((getl i (CHead e (Flat f) v) d) \to (getl i e d))))))
H1 H6)) x H5)))))) (lift_gen_flat f (lift h1 d1 t) (lift h1 d1 t0) x h2 (plus
d2 h1) H4))))) k H2))))))))))))) t1).
+theorem lifts_inj:
+ \forall (xs: TList).(\forall (ts: TList).(\forall (h: nat).(\forall (d:
+nat).((eq TList (lifts h d xs) (lifts h d ts)) \to (eq TList xs ts)))))
+\def
+ \lambda (xs: TList).(TList_ind (\lambda (t: TList).(\forall (ts:
+TList).(\forall (h: nat).(\forall (d: nat).((eq TList (lifts h d t) (lifts h
+d ts)) \to (eq TList t ts)))))) (\lambda (ts: TList).(TList_ind (\lambda (t:
+TList).(\forall (h: nat).(\forall (d: nat).((eq TList (lifts h d TNil) (lifts
+h d t)) \to (eq TList TNil t))))) (\lambda (_: nat).(\lambda (_:
+nat).(\lambda (_: (eq TList TNil TNil)).(refl_equal TList TNil)))) (\lambda
+(t: T).(\lambda (t0: TList).(\lambda (_: ((\forall (h: nat).(\forall (d:
+nat).((eq TList TNil (lifts h d t0)) \to (eq TList TNil t0)))))).(\lambda (h:
+nat).(\lambda (d: nat).(\lambda (H0: (eq TList TNil (TCons (lift h d t)
+(lifts h d t0)))).(let H1 \def (eq_ind TList TNil (\lambda (ee: TList).(match
+ee in TList return (\lambda (_: TList).Prop) with [TNil \Rightarrow True |
+(TCons _ _) \Rightarrow False])) I (TCons (lift h d t) (lifts h d t0)) H0) in
+(False_ind (eq TList TNil (TCons t t0)) H1)))))))) ts)) (\lambda (t:
+T).(\lambda (t0: TList).(\lambda (H: ((\forall (ts: TList).(\forall (h:
+nat).(\forall (d: nat).((eq TList (lifts h d t0) (lifts h d ts)) \to (eq
+TList t0 ts))))))).(\lambda (ts: TList).(TList_ind (\lambda (t1:
+TList).(\forall (h: nat).(\forall (d: nat).((eq TList (lifts h d (TCons t
+t0)) (lifts h d t1)) \to (eq TList (TCons t t0) t1))))) (\lambda (h:
+nat).(\lambda (d: nat).(\lambda (H0: (eq TList (TCons (lift h d t) (lifts h d
+t0)) TNil)).(let H1 \def (eq_ind TList (TCons (lift h d t) (lifts h d t0))
+(\lambda (ee: TList).(match ee in TList return (\lambda (_: TList).Prop) with
+[TNil \Rightarrow False | (TCons _ _) \Rightarrow True])) I TNil H0) in
+(False_ind (eq TList (TCons t t0) TNil) H1))))) (\lambda (t1: T).(\lambda
+(t2: TList).(\lambda (_: ((\forall (h: nat).(\forall (d: nat).((eq TList
+(TCons (lift h d t) (lifts h d t0)) (lifts h d t2)) \to (eq TList (TCons t
+t0) t2)))))).(\lambda (h: nat).(\lambda (d: nat).(\lambda (H1: (eq TList
+(TCons (lift h d t) (lifts h d t0)) (TCons (lift h d t1) (lifts h d
+t2)))).(let H2 \def (f_equal TList T (\lambda (e: TList).(match e in TList
+return (\lambda (_: TList).T) with [TNil \Rightarrow ((let rec lref_map (f:
+((nat \to nat))) (d0: nat) (t3: T) on t3: T \def (match t3 with [(TSort n)
+\Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef (match (blt i d0) with
+[true \Rightarrow i | false \Rightarrow (f i)])) | (THead k u t4) \Rightarrow
+(THead k (lref_map f d0 u) (lref_map f (s k d0) t4))]) in lref_map) (\lambda
+(x: nat).(plus x h)) d t) | (TCons t3 _) \Rightarrow t3])) (TCons (lift h d
+t) (lifts h d t0)) (TCons (lift h d t1) (lifts h d t2)) H1) in ((let H3 \def
+(f_equal TList TList (\lambda (e: TList).(match e in TList return (\lambda
+(_: TList).TList) with [TNil \Rightarrow ((let rec lifts (h0: nat) (d0: nat)
+(ts0: TList) on ts0: TList \def (match ts0 with [TNil \Rightarrow TNil |
+(TCons t3 ts1) \Rightarrow (TCons (lift h0 d0 t3) (lifts h0 d0 ts1))]) in
+lifts) h d t0) | (TCons _ t3) \Rightarrow t3])) (TCons (lift h d t) (lifts h
+d t0)) (TCons (lift h d t1) (lifts h d t2)) H1) in (\lambda (H4: (eq T (lift
+h d t) (lift h d t1))).(eq_ind T t (\lambda (t3: T).(eq TList (TCons t t0)
+(TCons t3 t2))) (f_equal2 T TList TList TCons t t t0 t2 (refl_equal T t) (H
+t2 h d H3)) t1 (lift_inj t t1 h d H4)))) H2)))))))) ts))))) xs).
+
theorem lift_free:
\forall (t: T).(\forall (h: nat).(\forall (k: nat).(\forall (d:
nat).(\forall (e: nat).((le e (plus d h)) \to ((le d e) \to (eq T (lift k e
T).((pr2 c (THead (Bind Void) u (lift (S O) O t)) t2) \to (eq T (THead (Bind
Void) u (lift (S O) O t)) t2))))).(\lambda (P: Prop).(nf2_gen__nf2_gen_aux
Void t u O (H t (pr2_free c (THead (Bind Void) u (lift (S O) O t)) t
-(pr0_zeta Void not_void_abst t t (pr0_refl t) u))) P))))).
+(pr0_zeta Void (sym_not_eq B Abst Void not_abst_void) t t (pr0_refl t) u)))
+P))))).
u x0 t x1 (refl_equal K (Bind Abst)) (H x0 H4) (H0 x1 (H5 Abst u))) t2
H3)))))) H2)))))))).
+theorem nfs2_tapp:
+ \forall (c: C).(\forall (t: T).(\forall (ts: TList).((nfs2 c (TApp ts t))
+\to (land (nfs2 c ts) (nf2 c t)))))
+\def
+ \lambda (c: C).(\lambda (t: T).(\lambda (ts: TList).(TList_ind (\lambda (t0:
+TList).((nfs2 c (TApp t0 t)) \to (land (nfs2 c t0) (nf2 c t)))) (\lambda (H:
+(land (nf2 c t) True)).(let H0 \def H in (land_ind (nf2 c t) True (land True
+(nf2 c t)) (\lambda (H1: (nf2 c t)).(\lambda (_: True).(conj True (nf2 c t) I
+H1))) H0))) (\lambda (t0: T).(\lambda (t1: TList).(\lambda (H: (((nfs2 c
+(TApp t1 t)) \to (land (nfs2 c t1) (nf2 c t))))).(\lambda (H0: (land (nf2 c
+t0) (nfs2 c (TApp t1 t)))).(let H1 \def H0 in (land_ind (nf2 c t0) (nfs2 c
+(TApp t1 t)) (land (land (nf2 c t0) (nfs2 c t1)) (nf2 c t)) (\lambda (H2:
+(nf2 c t0)).(\lambda (H3: (nfs2 c (TApp t1 t))).(let H_x \def (H H3) in (let
+H4 \def H_x in (land_ind (nfs2 c t1) (nf2 c t) (land (land (nf2 c t0) (nfs2 c
+t1)) (nf2 c t)) (\lambda (H5: (nfs2 c t1)).(\lambda (H6: (nf2 c t)).(conj
+(land (nf2 c t0) (nfs2 c t1)) (nf2 c t) (conj (nf2 c t0) (nfs2 c t1) H2 H5)
+H6))) H4))))) H1)))))) ts))).
+
theorem nf2_appls_lref:
\forall (c: C).(\forall (i: nat).((nf2 c (TLRef i)) \to (\forall (vs:
TList).((nfs2 c vs) \to (nf2 c (THeads (Flat Appl) vs (TLRef i)))))))
H_y0) in (eq_ind_r T t1 (\lambda (t: T).(eq T t1 t)) (refl_equal T t1) t2
H_y0))))))))) H2))))))).
+theorem pc3_nf2_unfold:
+ \forall (c: C).(\forall (t1: T).(\forall (t2: T).((pc3 c t1 t2) \to ((nf2 c
+t2) \to (pr3 c t1 t2)))))
+\def
+ \lambda (c: C).(\lambda (t1: T).(\lambda (t2: T).(\lambda (H: (pc3 c t1
+t2)).(\lambda (H0: (nf2 c t2)).(let H1 \def H in (ex2_ind T (\lambda (t:
+T).(pr3 c t1 t)) (\lambda (t: T).(pr3 c t2 t)) (pr3 c t1 t2) (\lambda (x:
+T).(\lambda (H2: (pr3 c t1 x)).(\lambda (H3: (pr3 c t2 x)).(let H_y \def
+(nf2_pr3_unfold c t2 x H3 H0) in (let H4 \def (eq_ind_r T x (\lambda (t:
+T).(pr3 c t1 t)) H2 t2 H_y) in H4))))) H1)))))).
+
t1)).(\lambda (t2: T).(\lambda (H0: (pc3 c t0 t2)).(pc3_t t0 c t1 (pc3_pr2_x
c t1 t0 H) t2 H0)))))).
+theorem pc3_pr3_conf:
+ \forall (c: C).(\forall (t: T).(\forall (t1: T).((pc3 c t t1) \to (\forall
+(t2: T).((pr3 c t t2) \to (pc3 c t2 t1))))))
+\def
+ \lambda (c: C).(\lambda (t: T).(\lambda (t1: T).(\lambda (H: (pc3 c t
+t1)).(\lambda (t2: T).(\lambda (H0: (pr3 c t t2)).(pc3_t t c t2 (pc3_pr3_x c
+t2 t H0) t1 H)))))).
+
theorem pc3_head_12:
\forall (c: C).(\forall (u1: T).(\forall (u2: T).((pc3 c u1 u2) \to (\forall
(k: K).(\forall (t1: T).(\forall (t2: T).((pc3 (CHead c k u2) t1 t2) \to (pc3
(lift (S O) O x)) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0
(THead (Bind Void) t (lift (S O) O x)) t2)) x (\lambda (H5: (eq T (THead
(Bind Void) t (lift (S O) O x)) x)).(\lambda (P: Prop).(thead_x_lift_y_y
-(Bind Void) x t (S O) O H5 P))) (pr0_zeta Void not_void_abst x x (pr0_refl x)
-t))) t0 H3))) H2))) H1))) b)) (\lambda (f: F).(F_ind (\lambda (f0: F).(or
-(\forall (t2: T).((pr0 (THead (Flat f0) t t0) t2) \to (eq T (THead (Flat f0)
-t t0) t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Flat f0) t t0) t2) \to
-(\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat f0) t t0) t2)))))
-(let H_x \def (binder_dec t0) in (let H1 \def H_x in (or_ind (ex_3 B T T
+(Bind Void) x t (S O) O H5 P))) (pr0_zeta Void (sym_not_eq B Abst Void
+not_abst_void) x x (pr0_refl x) t))) t0 H3))) H2))) H1))) b)) (\lambda (f:
+F).(F_ind (\lambda (f0: F).(or (\forall (t2: T).((pr0 (THead (Flat f0) t t0)
+t2) \to (eq T (THead (Flat f0) t t0) t2))) (ex2 T (\lambda (t2: T).((eq T
+(THead (Flat f0) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0
+(THead (Flat f0) t t0) t2))))) (let H_x \def (binder_dec t0) in (let H1 \def
+H_x in (or_ind (ex_3 B T T (\lambda (b: B).(\lambda (w: T).(\lambda (u:
+T).(eq T t0 (THead (Bind b) w u)))))) (\forall (b: B).(\forall (w:
+T).(\forall (u: T).((eq T t0 (THead (Bind b) w u)) \to (\forall (P:
+Prop).P))))) (or (\forall (t2: T).((pr0 (THead (Flat Appl) t t0) t2) \to (eq
+T (THead (Flat Appl) t t0) t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Flat
+Appl) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead
+(Flat Appl) t t0) t2)))) (\lambda (H2: (ex_3 B T T (\lambda (b: B).(\lambda
+(w: T).(\lambda (u: T).(eq T t0 (THead (Bind b) w u))))))).(ex_3_ind B T T
(\lambda (b: B).(\lambda (w: T).(\lambda (u: T).(eq T t0 (THead (Bind b) w
-u)))))) (\forall (b: B).(\forall (w: T).(\forall (u: T).((eq T t0 (THead
-(Bind b) w u)) \to (\forall (P: Prop).P))))) (or (\forall (t2: T).((pr0
-(THead (Flat Appl) t t0) t2) \to (eq T (THead (Flat Appl) t t0) t2))) (ex2 T
-(\lambda (t2: T).((eq T (THead (Flat Appl) t t0) t2) \to (\forall (P:
-Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) t t0) t2)))) (\lambda
-(H2: (ex_3 B T T (\lambda (b: B).(\lambda (w: T).(\lambda (u: T).(eq T t0
-(THead (Bind b) w u))))))).(ex_3_ind B T T (\lambda (b: B).(\lambda (w:
-T).(\lambda (u: T).(eq T t0 (THead (Bind b) w u))))) (or (\forall (t2:
-T).((pr0 (THead (Flat Appl) t t0) t2) \to (eq T (THead (Flat Appl) t t0)
-t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Flat Appl) t t0) t2) \to
-(\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) t t0) t2))))
-(\lambda (x0: B).(\lambda (x1: T).(\lambda (x2: T).(\lambda (H3: (eq T t0
-(THead (Bind x0) x1 x2))).(let H4 \def (eq_ind T t0 (\lambda (t2: T).(or
-(\forall (t3: T).((pr0 t2 t3) \to (eq T t2 t3))) (ex2 T (\lambda (t3: T).((eq
-T t2 t3) \to (\forall (P: Prop).P))) (\lambda (t3: T).(pr0 t2 t3))))) H0
-(THead (Bind x0) x1 x2) H3) in (eq_ind_r T (THead (Bind x0) x1 x2) (\lambda
-(t2: T).(or (\forall (t3: T).((pr0 (THead (Flat Appl) t t2) t3) \to (eq T
-(THead (Flat Appl) t t2) t3))) (ex2 T (\lambda (t3: T).((eq T (THead (Flat
-Appl) t t2) t3) \to (\forall (P: Prop).P))) (\lambda (t3: T).(pr0 (THead
-(Flat Appl) t t2) t3))))) (B_ind (\lambda (b: B).((or (\forall (t2: T).((pr0
-(THead (Bind b) x1 x2) t2) \to (eq T (THead (Bind b) x1 x2) t2))) (ex2 T
-(\lambda (t2: T).((eq T (THead (Bind b) x1 x2) t2) \to (\forall (P:
-Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind b) x1 x2) t2)))) \to (or
+u))))) (or (\forall (t2: T).((pr0 (THead (Flat Appl) t t0) t2) \to (eq T
+(THead (Flat Appl) t t0) t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Flat
+Appl) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead
+(Flat Appl) t t0) t2)))) (\lambda (x0: B).(\lambda (x1: T).(\lambda (x2:
+T).(\lambda (H3: (eq T t0 (THead (Bind x0) x1 x2))).(let H4 \def (eq_ind T t0
+(\lambda (t2: T).(or (\forall (t3: T).((pr0 t2 t3) \to (eq T t2 t3))) (ex2 T
+(\lambda (t3: T).((eq T t2 t3) \to (\forall (P: Prop).P))) (\lambda (t3:
+T).(pr0 t2 t3))))) H0 (THead (Bind x0) x1 x2) H3) in (eq_ind_r T (THead (Bind
+x0) x1 x2) (\lambda (t2: T).(or (\forall (t3: T).((pr0 (THead (Flat Appl) t
+t2) t3) \to (eq T (THead (Flat Appl) t t2) t3))) (ex2 T (\lambda (t3: T).((eq
+T (THead (Flat Appl) t t2) t3) \to (\forall (P: Prop).P))) (\lambda (t3:
+T).(pr0 (THead (Flat Appl) t t2) t3))))) (B_ind (\lambda (b: B).((or (\forall
+(t2: T).((pr0 (THead (Bind b) x1 x2) t2) \to (eq T (THead (Bind b) x1 x2)
+t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Bind b) x1 x2) t2) \to (\forall
+(P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Bind b) x1 x2) t2)))) \to (or
(\forall (t2: T).((pr0 (THead (Flat Appl) t (THead (Bind b) x1 x2)) t2) \to
(eq T (THead (Flat Appl) t (THead (Bind b) x1 x2)) t2))) (ex2 T (\lambda (t2:
T).((eq T (THead (Flat Appl) t (THead (Bind b) x1 x2)) t2) \to (\forall (P:
| (TLRef _) \Rightarrow False | (THead k0 _ _) \Rightarrow (match k0 in K
return (\lambda (_: K).Prop) with [(Bind _) \Rightarrow True | (Flat _)
\Rightarrow False])])])) I (THead (Bind Void) x1 (THead (Flat Appl) (lift (S
-O) O t) x2)) H6) in (False_ind P H7)))) (pr0_upsilon Void not_void_abst t t
-(pr0_refl t) x1 x1 (pr0_refl x1) x2 x2 (pr0_refl x2))))) x0 H4) t0 H3))))))
-H2)) (\lambda (H2: ((\forall (b: B).(\forall (w: T).(\forall (u: T).((eq T t0
-(THead (Bind b) w u)) \to (\forall (P: Prop).P))))))).(let H3 \def H in
-(or_ind (\forall (t2: T).((pr0 t t2) \to (eq T t t2))) (ex2 T (\lambda (t2:
-T).((eq T t t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 t t2))) (or
-(\forall (t2: T).((pr0 (THead (Flat Appl) t t0) t2) \to (eq T (THead (Flat
-Appl) t t0) t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Flat Appl) t t0) t2)
-\to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) t t0)
-t2)))) (\lambda (H4: ((\forall (t2: T).((pr0 t t2) \to (eq T t t2))))).(let
-H5 \def H0 in (or_ind (\forall (t2: T).((pr0 t0 t2) \to (eq T t0 t2))) (ex2 T
-(\lambda (t2: T).((eq T t0 t2) \to (\forall (P: Prop).P))) (\lambda (t2:
-T).(pr0 t0 t2))) (or (\forall (t2: T).((pr0 (THead (Flat Appl) t t0) t2) \to
-(eq T (THead (Flat Appl) t t0) t2))) (ex2 T (\lambda (t2: T).((eq T (THead
-(Flat Appl) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0
-(THead (Flat Appl) t t0) t2)))) (\lambda (H6: ((\forall (t2: T).((pr0 t0 t2)
-\to (eq T t0 t2))))).(or_introl (\forall (t2: T).((pr0 (THead (Flat Appl) t
+O) O t) x2)) H6) in (False_ind P H7)))) (pr0_upsilon Void (sym_not_eq B Abst
+Void not_abst_void) t t (pr0_refl t) x1 x1 (pr0_refl x1) x2 x2 (pr0_refl
+x2))))) x0 H4) t0 H3)))))) H2)) (\lambda (H2: ((\forall (b: B).(\forall (w:
+T).(\forall (u: T).((eq T t0 (THead (Bind b) w u)) \to (\forall (P:
+Prop).P))))))).(let H3 \def H in (or_ind (\forall (t2: T).((pr0 t t2) \to (eq
+T t t2))) (ex2 T (\lambda (t2: T).((eq T t t2) \to (\forall (P: Prop).P)))
+(\lambda (t2: T).(pr0 t t2))) (or (\forall (t2: T).((pr0 (THead (Flat Appl) t
t0) t2) \to (eq T (THead (Flat Appl) t t0) t2))) (ex2 T (\lambda (t2: T).((eq
T (THead (Flat Appl) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2:
-T).(pr0 (THead (Flat Appl) t t0) t2))) (\lambda (t2: T).(\lambda (H7: (pr0
-(THead (Flat Appl) t t0) t2)).(or3_ind (ex3_2 T T (\lambda (u2: T).(\lambda
-(t3: T).(eq T t2 (THead (Flat Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_:
-T).(pr0 t u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t0 t3)))) (ex4_4 T T T
-T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t0
-(THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2:
-T).(\lambda (t3: T).(eq T t2 (THead (Bind Abbr) u2 t3)))))) (\lambda (_:
-T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr0 t u2))))) (\lambda
-(_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 t3))))))
-(ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda
-(_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b:
-B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
-(_: T).(eq T t0 (THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_:
-T).(\lambda (_: T).(\lambda (u2: T).(\lambda (v2: T).(\lambda (t3: T).(eq T
-t2 (THead (Bind b) v2 (THead (Flat Appl) (lift (S O) O u2) t3)))))))))
-(\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_:
-T).(\lambda (_: T).(pr0 t u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda
-(_: T).(\lambda (_: T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1 v2)))))))
-(\lambda (_: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_:
-T).(\lambda (t3: T).(pr0 z1 t3)))))))) (eq T (THead (Flat Appl) t t0) t2)
-(\lambda (H8: (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead
-(Flat Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 t u2))) (\lambda
-(_: T).(\lambda (t3: T).(pr0 t0 t3))))).(ex3_2_ind T T (\lambda (u2:
-T).(\lambda (t3: T).(eq T t2 (THead (Flat Appl) u2 t3)))) (\lambda (u2:
-T).(\lambda (_: T).(pr0 t u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t0
-t3))) (eq T (THead (Flat Appl) t t0) t2) (\lambda (x0: T).(\lambda (x1:
-T).(\lambda (H9: (eq T t2 (THead (Flat Appl) x0 x1))).(\lambda (H10: (pr0 t
-x0)).(\lambda (H11: (pr0 t0 x1)).(let H_y \def (H6 x1 H11) in (let H_y0 \def
-(H4 x0 H10) in (let H12 \def (eq_ind_r T x1 (\lambda (t3: T).(pr0 t0 t3)) H11
-t0 H_y) in (let H13 \def (eq_ind_r T x1 (\lambda (t3: T).(eq T t2 (THead
-(Flat Appl) x0 t3))) H9 t0 H_y) in (let H14 \def (eq_ind_r T x0 (\lambda (t3:
-T).(pr0 t t3)) H10 t H_y0) in (let H15 \def (eq_ind_r T x0 (\lambda (t3:
-T).(eq T t2 (THead (Flat Appl) t3 t0))) H13 t H_y0) in (eq_ind_r T (THead
-(Flat Appl) t t0) (\lambda (t3: T).(eq T (THead (Flat Appl) t t0) t3))
-(refl_equal T (THead (Flat Appl) t t0)) t2 H15)))))))))))) H8)) (\lambda (H8:
-(ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_:
-T).(eq T t0 (THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_:
-T).(\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind Abbr) u2 t3))))))
-(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr0 t
-u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3:
-T).(pr0 z1 t3))))))).(ex4_4_ind T T T T (\lambda (y1: T).(\lambda (z1:
+T).(pr0 (THead (Flat Appl) t t0) t2)))) (\lambda (H4: ((\forall (t2: T).((pr0
+t t2) \to (eq T t t2))))).(let H5 \def H0 in (or_ind (\forall (t2: T).((pr0
+t0 t2) \to (eq T t0 t2))) (ex2 T (\lambda (t2: T).((eq T t0 t2) \to (\forall
+(P: Prop).P))) (\lambda (t2: T).(pr0 t0 t2))) (or (\forall (t2: T).((pr0
+(THead (Flat Appl) t t0) t2) \to (eq T (THead (Flat Appl) t t0) t2))) (ex2 T
+(\lambda (t2: T).((eq T (THead (Flat Appl) t t0) t2) \to (\forall (P:
+Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) t t0) t2)))) (\lambda
+(H6: ((\forall (t2: T).((pr0 t0 t2) \to (eq T t0 t2))))).(or_introl (\forall
+(t2: T).((pr0 (THead (Flat Appl) t t0) t2) \to (eq T (THead (Flat Appl) t t0)
+t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Flat Appl) t t0) t2) \to
+(\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) t t0) t2)))
+(\lambda (t2: T).(\lambda (H7: (pr0 (THead (Flat Appl) t t0) t2)).(or3_ind
+(ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Flat Appl) u2
+t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 t u2))) (\lambda (_: T).(\lambda
+(t3: T).(pr0 t0 t3)))) (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1:
T).(\lambda (_: T).(\lambda (_: T).(eq T t0 (THead (Bind Abst) y1 z1))))))
(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3: T).(eq T t2
(THead (Bind Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2:
T).(\lambda (_: T).(pr0 t u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda
-(_: T).(\lambda (t3: T).(pr0 z1 t3))))) (eq T (THead (Flat Appl) t t0) t2)
-(\lambda (x0: T).(\lambda (x1: T).(\lambda (x2: T).(\lambda (x3: T).(\lambda
-(H9: (eq T t0 (THead (Bind Abst) x0 x1))).(\lambda (H10: (eq T t2 (THead
-(Bind Abbr) x2 x3))).(\lambda (_: (pr0 t x2)).(\lambda (_: (pr0 x1
-x3)).(eq_ind_r T (THead (Bind Abbr) x2 x3) (\lambda (t3: T).(eq T (THead
-(Flat Appl) t t0) t3)) (let H13 \def (eq_ind T t0 (\lambda (t3: T).(\forall
-(t4: T).((pr0 t3 t4) \to (eq T t3 t4)))) H6 (THead (Bind Abst) x0 x1) H9) in
-(let H14 \def (eq_ind T t0 (\lambda (t3: T).(\forall (b: B).(\forall (w:
-T).(\forall (u: T).((eq T t3 (THead (Bind b) w u)) \to (\forall (P:
-Prop).P)))))) H2 (THead (Bind Abst) x0 x1) H9) in (eq_ind_r T (THead (Bind
-Abst) x0 x1) (\lambda (t3: T).(eq T (THead (Flat Appl) t t3) (THead (Bind
-Abbr) x2 x3))) (H14 Abst x0 x1 (H13 (THead (Bind Abst) x0 x1) (pr0_refl
-(THead (Bind Abst) x0 x1))) (eq T (THead (Flat Appl) t (THead (Bind Abst) x0
-x1)) (THead (Bind Abbr) x2 x3))) t0 H9))) t2 H10))))))))) H8)) (\lambda (H8:
-(ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda
-(_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b:
-B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
-(_: T).(eq T t0 (THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_:
-T).(\lambda (_: T).(\lambda (u2: T).(\lambda (v2: T).(\lambda (t3: T).(eq T
-t2 (THead (Bind b) v2 (THead (Flat Appl) (lift (S O) O u2) t3)))))))))
-(\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_:
-T).(\lambda (_: T).(pr0 t u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda
-(_: T).(\lambda (_: T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1 v2)))))))
-(\lambda (_: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_:
-T).(\lambda (t3: T).(pr0 z1 t3))))))))).(ex6_6_ind B T T T T T (\lambda (b:
+(_: T).(\lambda (t3: T).(pr0 z1 t3)))))) (ex6_6 B T T T T T (\lambda (b:
B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda
(_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda
(z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t0 (THead (Bind
u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_:
T).(\lambda (v2: T).(\lambda (_: T).(pr0 y1 v2))))))) (\lambda (_:
B).(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
-(t3: T).(pr0 z1 t3))))))) (eq T (THead (Flat Appl) t t0) t2) (\lambda (x0:
-B).(\lambda (x1: T).(\lambda (x2: T).(\lambda (x3: T).(\lambda (x4:
-T).(\lambda (x5: T).(\lambda (_: (not (eq B x0 Abst))).(\lambda (H10: (eq T
-t0 (THead (Bind x0) x1 x2))).(\lambda (H11: (eq T t2 (THead (Bind x0) x4
-(THead (Flat Appl) (lift (S O) O x3) x5)))).(\lambda (_: (pr0 t x3)).(\lambda
-(_: (pr0 x1 x4)).(\lambda (_: (pr0 x2 x5)).(eq_ind_r T (THead (Bind x0) x4
-(THead (Flat Appl) (lift (S O) O x3) x5)) (\lambda (t3: T).(eq T (THead (Flat
-Appl) t t0) t3)) (let H15 \def (eq_ind T t0 (\lambda (t3: T).(\forall (t4:
-T).((pr0 t3 t4) \to (eq T t3 t4)))) H6 (THead (Bind x0) x1 x2) H10) in (let
-H16 \def (eq_ind T t0 (\lambda (t3: T).(\forall (b: B).(\forall (w:
-T).(\forall (u: T).((eq T t3 (THead (Bind b) w u)) \to (\forall (P:
-Prop).P)))))) H2 (THead (Bind x0) x1 x2) H10) in (eq_ind_r T (THead (Bind x0)
-x1 x2) (\lambda (t3: T).(eq T (THead (Flat Appl) t t3) (THead (Bind x0) x4
-(THead (Flat Appl) (lift (S O) O x3) x5)))) (H16 x0 x1 x2 (H15 (THead (Bind
-x0) x1 x2) (pr0_refl (THead (Bind x0) x1 x2))) (eq T (THead (Flat Appl) t
-(THead (Bind x0) x1 x2)) (THead (Bind x0) x4 (THead (Flat Appl) (lift (S O) O
-x3) x5)))) t0 H10))) t2 H11))))))))))))) H8)) (pr0_gen_appl t t0 t2 H7))))))
-(\lambda (H6: (ex2 T (\lambda (t2: T).((eq T t0 t2) \to (\forall (P:
-Prop).P))) (\lambda (t2: T).(pr0 t0 t2)))).(ex2_ind T (\lambda (t2: T).((eq T
-t0 t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 t0 t2)) (or (\forall
-(t2: T).((pr0 (THead (Flat Appl) t t0) t2) \to (eq T (THead (Flat Appl) t t0)
-t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Flat Appl) t t0) t2) \to
-(\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) t t0) t2))))
-(\lambda (x: T).(\lambda (H7: (((eq T t0 x) \to (\forall (P:
-Prop).P)))).(\lambda (H8: (pr0 t0 x)).(or_intror (\forall (t2: T).((pr0
-(THead (Flat Appl) t t0) t2) \to (eq T (THead (Flat Appl) t t0) t2))) (ex2 T
-(\lambda (t2: T).((eq T (THead (Flat Appl) t t0) t2) \to (\forall (P:
-Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) t t0) t2))) (ex_intro2 T
-(\lambda (t2: T).((eq T (THead (Flat Appl) t t0) t2) \to (\forall (P:
-Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) t t0) t2)) (THead (Flat
-Appl) t x) (\lambda (H9: (eq T (THead (Flat Appl) t t0) (THead (Flat Appl) t
-x))).(\lambda (P: Prop).(let H10 \def (f_equal T T (\lambda (e: T).(match e
-in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t0 | (TLRef _)
-\Rightarrow t0 | (THead _ _ t2) \Rightarrow t2])) (THead (Flat Appl) t t0)
-(THead (Flat Appl) t x) H9) in (let H11 \def (eq_ind_r T x (\lambda (t2:
-T).(pr0 t0 t2)) H8 t0 H10) in (let H12 \def (eq_ind_r T x (\lambda (t2:
-T).((eq T t0 t2) \to (\forall (P0: Prop).P0))) H7 t0 H10) in (H12 (refl_equal
-T t0) P)))))) (pr0_comp t t (pr0_refl t) t0 x H8 (Flat Appl))))))) H6)) H5)))
-(\lambda (H4: (ex2 T (\lambda (t2: T).((eq T t t2) \to (\forall (P:
-Prop).P))) (\lambda (t2: T).(pr0 t t2)))).(ex2_ind T (\lambda (t2: T).((eq T
-t t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 t t2)) (or (\forall
-(t2: T).((pr0 (THead (Flat Appl) t t0) t2) \to (eq T (THead (Flat Appl) t t0)
-t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Flat Appl) t t0) t2) \to
-(\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) t t0) t2))))
-(\lambda (x: T).(\lambda (H5: (((eq T t x) \to (\forall (P:
+(t3: T).(pr0 z1 t3)))))))) (eq T (THead (Flat Appl) t t0) t2) (\lambda (H8:
+(ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Flat Appl) u2
+t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 t u2))) (\lambda (_: T).(\lambda
+(t3: T).(pr0 t0 t3))))).(ex3_2_ind T T (\lambda (u2: T).(\lambda (t3: T).(eq
+T t2 (THead (Flat Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr0 t
+u2))) (\lambda (_: T).(\lambda (t3: T).(pr0 t0 t3))) (eq T (THead (Flat Appl)
+t t0) t2) (\lambda (x0: T).(\lambda (x1: T).(\lambda (H9: (eq T t2 (THead
+(Flat Appl) x0 x1))).(\lambda (H10: (pr0 t x0)).(\lambda (H11: (pr0 t0
+x1)).(let H_y \def (H6 x1 H11) in (let H_y0 \def (H4 x0 H10) in (let H12 \def
+(eq_ind_r T x1 (\lambda (t3: T).(pr0 t0 t3)) H11 t0 H_y) in (let H13 \def
+(eq_ind_r T x1 (\lambda (t3: T).(eq T t2 (THead (Flat Appl) x0 t3))) H9 t0
+H_y) in (let H14 \def (eq_ind_r T x0 (\lambda (t3: T).(pr0 t t3)) H10 t H_y0)
+in (let H15 \def (eq_ind_r T x0 (\lambda (t3: T).(eq T t2 (THead (Flat Appl)
+t3 t0))) H13 t H_y0) in (eq_ind_r T (THead (Flat Appl) t t0) (\lambda (t3:
+T).(eq T (THead (Flat Appl) t t0) t3)) (refl_equal T (THead (Flat Appl) t
+t0)) t2 H15)))))))))))) H8)) (\lambda (H8: (ex4_4 T T T T (\lambda (y1:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t0 (THead (Bind
+Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda
+(t3: T).(eq T t2 (THead (Bind Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(pr0 t u2))))) (\lambda (_: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 t3))))))).(ex4_4_ind T T T T
+(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T t0
+(THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (t3: T).(eq T t2 (THead (Bind Abbr) u2 t3)))))) (\lambda (_:
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr0 t u2))))) (\lambda
+(_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 t3))))) (eq
+T (THead (Flat Appl) t t0) t2) (\lambda (x0: T).(\lambda (x1: T).(\lambda
+(x2: T).(\lambda (x3: T).(\lambda (H9: (eq T t0 (THead (Bind Abst) x0
+x1))).(\lambda (H10: (eq T t2 (THead (Bind Abbr) x2 x3))).(\lambda (_: (pr0 t
+x2)).(\lambda (_: (pr0 x1 x3)).(eq_ind_r T (THead (Bind Abbr) x2 x3) (\lambda
+(t3: T).(eq T (THead (Flat Appl) t t0) t3)) (let H13 \def (eq_ind T t0
+(\lambda (t3: T).(\forall (t4: T).((pr0 t3 t4) \to (eq T t3 t4)))) H6 (THead
+(Bind Abst) x0 x1) H9) in (let H14 \def (eq_ind T t0 (\lambda (t3:
+T).(\forall (b: B).(\forall (w: T).(\forall (u: T).((eq T t3 (THead (Bind b)
+w u)) \to (\forall (P: Prop).P)))))) H2 (THead (Bind Abst) x0 x1) H9) in
+(eq_ind_r T (THead (Bind Abst) x0 x1) (\lambda (t3: T).(eq T (THead (Flat
+Appl) t t3) (THead (Bind Abbr) x2 x3))) (H14 Abst x0 x1 (H13 (THead (Bind
+Abst) x0 x1) (pr0_refl (THead (Bind Abst) x0 x1))) (eq T (THead (Flat Appl) t
+(THead (Bind Abst) x0 x1)) (THead (Bind Abbr) x2 x3))) t0 H9))) t2
+H10))))))))) H8)) (\lambda (H8: (ex6_6 B T T T T T (\lambda (b: B).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not
+(eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda (z1:
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T t0 (THead (Bind b)
+y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (u2:
+T).(\lambda (v2: T).(\lambda (t3: T).(eq T t2 (THead (Bind b) v2 (THead (Flat
+Appl) (lift (S O) O u2) t3))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda
+(_: T).(\lambda (u2: T).(\lambda (_: T).(\lambda (_: T).(pr0 t u2)))))))
+(\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda
+(v2: T).(\lambda (_: T).(pr0 y1 v2))))))) (\lambda (_: B).(\lambda (_:
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1
+t3))))))))).(ex6_6_ind B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda
+(_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b
+Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_:
+T).(\lambda (_: T).(\lambda (_: T).(eq T t0 (THead (Bind b) y1 z1))))))))
+(\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda
+(v2: T).(\lambda (t3: T).(eq T t2 (THead (Bind b) v2 (THead (Flat Appl) (lift
+(S O) O u2) t3))))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_:
+T).(\lambda (u2: T).(\lambda (_: T).(\lambda (_: T).(pr0 t u2))))))) (\lambda
+(_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (v2:
+T).(\lambda (_: T).(pr0 y1 v2))))))) (\lambda (_: B).(\lambda (_: T).(\lambda
+(z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (t3: T).(pr0 z1 t3)))))))
+(eq T (THead (Flat Appl) t t0) t2) (\lambda (x0: B).(\lambda (x1: T).(\lambda
+(x2: T).(\lambda (x3: T).(\lambda (x4: T).(\lambda (x5: T).(\lambda (_: (not
+(eq B x0 Abst))).(\lambda (H10: (eq T t0 (THead (Bind x0) x1 x2))).(\lambda
+(H11: (eq T t2 (THead (Bind x0) x4 (THead (Flat Appl) (lift (S O) O x3)
+x5)))).(\lambda (_: (pr0 t x3)).(\lambda (_: (pr0 x1 x4)).(\lambda (_: (pr0
+x2 x5)).(eq_ind_r T (THead (Bind x0) x4 (THead (Flat Appl) (lift (S O) O x3)
+x5)) (\lambda (t3: T).(eq T (THead (Flat Appl) t t0) t3)) (let H15 \def
+(eq_ind T t0 (\lambda (t3: T).(\forall (t4: T).((pr0 t3 t4) \to (eq T t3
+t4)))) H6 (THead (Bind x0) x1 x2) H10) in (let H16 \def (eq_ind T t0 (\lambda
+(t3: T).(\forall (b: B).(\forall (w: T).(\forall (u: T).((eq T t3 (THead
+(Bind b) w u)) \to (\forall (P: Prop).P)))))) H2 (THead (Bind x0) x1 x2) H10)
+in (eq_ind_r T (THead (Bind x0) x1 x2) (\lambda (t3: T).(eq T (THead (Flat
+Appl) t t3) (THead (Bind x0) x4 (THead (Flat Appl) (lift (S O) O x3) x5))))
+(H16 x0 x1 x2 (H15 (THead (Bind x0) x1 x2) (pr0_refl (THead (Bind x0) x1
+x2))) (eq T (THead (Flat Appl) t (THead (Bind x0) x1 x2)) (THead (Bind x0) x4
+(THead (Flat Appl) (lift (S O) O x3) x5)))) t0 H10))) t2 H11)))))))))))))
+H8)) (pr0_gen_appl t t0 t2 H7)))))) (\lambda (H6: (ex2 T (\lambda (t2:
+T).((eq T t0 t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 t0
+t2)))).(ex2_ind T (\lambda (t2: T).((eq T t0 t2) \to (\forall (P: Prop).P)))
+(\lambda (t2: T).(pr0 t0 t2)) (or (\forall (t2: T).((pr0 (THead (Flat Appl) t
+t0) t2) \to (eq T (THead (Flat Appl) t t0) t2))) (ex2 T (\lambda (t2: T).((eq
+T (THead (Flat Appl) t t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2:
+T).(pr0 (THead (Flat Appl) t t0) t2)))) (\lambda (x: T).(\lambda (H7: (((eq T
+t0 x) \to (\forall (P: Prop).P)))).(\lambda (H8: (pr0 t0 x)).(or_intror
+(\forall (t2: T).((pr0 (THead (Flat Appl) t t0) t2) \to (eq T (THead (Flat
+Appl) t t0) t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Flat Appl) t t0) t2)
+\to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) t t0)
+t2))) (ex_intro2 T (\lambda (t2: T).((eq T (THead (Flat Appl) t t0) t2) \to
+(\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl) t t0) t2))
+(THead (Flat Appl) t x) (\lambda (H9: (eq T (THead (Flat Appl) t t0) (THead
+(Flat Appl) t x))).(\lambda (P: Prop).(let H10 \def (f_equal T T (\lambda (e:
+T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t0 |
+(TLRef _) \Rightarrow t0 | (THead _ _ t2) \Rightarrow t2])) (THead (Flat
+Appl) t t0) (THead (Flat Appl) t x) H9) in (let H11 \def (eq_ind_r T x
+(\lambda (t2: T).(pr0 t0 t2)) H8 t0 H10) in (let H12 \def (eq_ind_r T x
+(\lambda (t2: T).((eq T t0 t2) \to (\forall (P0: Prop).P0))) H7 t0 H10) in
+(H12 (refl_equal T t0) P)))))) (pr0_comp t t (pr0_refl t) t0 x H8 (Flat
+Appl))))))) H6)) H5))) (\lambda (H4: (ex2 T (\lambda (t2: T).((eq T t t2) \to
+(\forall (P: Prop).P))) (\lambda (t2: T).(pr0 t t2)))).(ex2_ind T (\lambda
+(t2: T).((eq T t t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 t t2))
+(or (\forall (t2: T).((pr0 (THead (Flat Appl) t t0) t2) \to (eq T (THead
+(Flat Appl) t t0) t2))) (ex2 T (\lambda (t2: T).((eq T (THead (Flat Appl) t
+t0) t2) \to (\forall (P: Prop).P))) (\lambda (t2: T).(pr0 (THead (Flat Appl)
+t t0) t2)))) (\lambda (x: T).(\lambda (H5: (((eq T t x) \to (\forall (P:
Prop).P)))).(\lambda (H6: (pr0 t x)).(or_intror (\forall (t2: T).((pr0 (THead
(Flat Appl) t t0) t2) \to (eq T (THead (Flat Appl) t t0) t2))) (ex2 T
(\lambda (t2: T).((eq T (THead (Flat Appl) t t0) t2) \to (\forall (P:
(lift1 is (TLRef i))) (\lambda (x0: C).(\lambda (H9: (getl (trans is i) c2
x0)).(\lambda (H10: (csubc g (CHead x (Bind Abbr) (lift1 (ptrans is i) u))
x0)).(let H_x1 \def (csubc_gen_head_l g x x0 (lift1 (ptrans is i) u) (Bind
-Abbr) H10) in (let H11 \def H_x1 in (or_ind (ex2 C (\lambda (c3: C).(eq C x0
+Abbr) H10) in (let H11 \def H_x1 in (or3_ind (ex2 C (\lambda (c3: C).(eq C x0
(CHead c3 (Bind Abbr) (lift1 (ptrans is i) u)))) (\lambda (c3: C).(csubc g x
c3))) (ex5_3 C T A (\lambda (_: C).(\lambda (_: T).(\lambda (_: A).(eq K
(Bind Abbr) (Bind Abst))))) (\lambda (c3: C).(\lambda (w: T).(\lambda (_:
A).(eq C x0 (CHead c3 (Bind Abbr) w))))) (\lambda (c3: C).(\lambda (_:
T).(\lambda (_: A).(csubc g x c3)))) (\lambda (_: C).(\lambda (_: T).(\lambda
(a1: A).(sc3 g (asucc g a1) x (lift1 (ptrans is i) u))))) (\lambda (c3:
-C).(\lambda (w: T).(\lambda (a1: A).(sc3 g a1 c3 w))))) (sc3 g a0 c2 (lift1
-is (TLRef i))) (\lambda (H12: (ex2 C (\lambda (c3: C).(eq C x0 (CHead c3
-(Bind Abbr) (lift1 (ptrans is i) u)))) (\lambda (c3: C).(csubc g x
-c3)))).(ex2_ind C (\lambda (c3: C).(eq C x0 (CHead c3 (Bind Abbr) (lift1
+C).(\lambda (w: T).(\lambda (a1: A).(sc3 g a1 c3 w))))) (ex4_3 B C T (\lambda
+(b: B).(\lambda (c3: C).(\lambda (v2: T).(eq C x0 (CHead c3 (Bind b) v2)))))
+(\lambda (_: B).(\lambda (_: C).(\lambda (_: T).(eq K (Bind Abbr) (Bind
+Void))))) (\lambda (b: B).(\lambda (_: C).(\lambda (_: T).(not (eq B b
+Void))))) (\lambda (_: B).(\lambda (c3: C).(\lambda (_: T).(csubc g x c3)))))
+(sc3 g a0 c2 (lift1 is (TLRef i))) (\lambda (H12: (ex2 C (\lambda (c3: C).(eq
+C x0 (CHead c3 (Bind Abbr) (lift1 (ptrans is i) u)))) (\lambda (c3: C).(csubc
+g x c3)))).(ex2_ind C (\lambda (c3: C).(eq C x0 (CHead c3 (Bind Abbr) (lift1
(ptrans is i) u)))) (\lambda (c3: C).(csubc g x c3)) (sc3 g a0 c2 (lift1 is
(TLRef i))) (\lambda (x1: C).(\lambda (H13: (eq C x0 (CHead x1 (Bind Abbr)
(lift1 (ptrans is i) u)))).(\lambda (_: (csubc g x x1)).(let H15 \def (eq_ind
(\lambda (_: B).Prop) with [Abbr \Rightarrow True | Abst \Rightarrow False |
Void \Rightarrow False]) | (Flat _) \Rightarrow False])) I (Bind Abst) H13)
in (False_ind (sc3 g a0 c2 (lift1 is (TLRef i))) H19))))))))))) H12))
-H11)))))) H8)))))) H5)))))))))))))))) (\lambda (c: C).(\lambda (d:
-C).(\lambda (u: T).(\lambda (i: nat).(\lambda (H0: (getl i c (CHead d (Bind
-Abst) u))).(\lambda (a0: A).(\lambda (H1: (arity g d u (asucc g
-a0))).(\lambda (_: ((\forall (d1: C).(\forall (is: PList).((drop1 is d1 d)
-\to (\forall (c2: C).((csubc g d1 c2) \to (sc3 g (asucc g a0) c2 (lift1 is
-u))))))))).(\lambda (d1: C).(\lambda (is: PList).(\lambda (H3: (drop1 is d1
-c)).(\lambda (c2: C).(\lambda (H4: (csubc g d1 c2)).(let H5 \def H0 in (let
-H_x \def (drop1_getl_trans is c d1 H3 Abst d u i H5) in (let H6 \def H_x in
-(ex2_ind C (\lambda (e2: C).(drop1 (ptrans is i) e2 d)) (\lambda (e2:
-C).(getl (trans is i) d1 (CHead e2 (Bind Abst) (lift1 (ptrans is i) u))))
-(sc3 g a0 c2 (lift1 is (TLRef i))) (\lambda (x: C).(\lambda (H7: (drop1
-(ptrans is i) x d)).(\lambda (H8: (getl (trans is i) d1 (CHead x (Bind Abst)
-(lift1 (ptrans is i) u)))).(let H_x0 \def (csubc_getl_conf g d1 (CHead x
-(Bind Abst) (lift1 (ptrans is i) u)) (trans is i) H8 c2 H4) in (let H9 \def
-H_x0 in (ex2_ind C (\lambda (e2: C).(getl (trans is i) c2 e2)) (\lambda (e2:
-C).(csubc g (CHead x (Bind Abst) (lift1 (ptrans is i) u)) e2)) (sc3 g a0 c2
-(lift1 is (TLRef i))) (\lambda (x0: C).(\lambda (H10: (getl (trans is i) c2
-x0)).(\lambda (H11: (csubc g (CHead x (Bind Abst) (lift1 (ptrans is i) u))
-x0)).(let H_x1 \def (csubc_gen_head_l g x x0 (lift1 (ptrans is i) u) (Bind
-Abst) H11) in (let H12 \def H_x1 in (or_ind (ex2 C (\lambda (c3: C).(eq C x0
+(\lambda (H12: (ex4_3 B C T (\lambda (b: B).(\lambda (c3: C).(\lambda (v2:
+T).(eq C x0 (CHead c3 (Bind b) v2))))) (\lambda (_: B).(\lambda (_:
+C).(\lambda (_: T).(eq K (Bind Abbr) (Bind Void))))) (\lambda (b: B).(\lambda
+(_: C).(\lambda (_: T).(not (eq B b Void))))) (\lambda (_: B).(\lambda (c3:
+C).(\lambda (_: T).(csubc g x c3)))))).(ex4_3_ind B C T (\lambda (b:
+B).(\lambda (c3: C).(\lambda (v2: T).(eq C x0 (CHead c3 (Bind b) v2)))))
+(\lambda (_: B).(\lambda (_: C).(\lambda (_: T).(eq K (Bind Abbr) (Bind
+Void))))) (\lambda (b: B).(\lambda (_: C).(\lambda (_: T).(not (eq B b
+Void))))) (\lambda (_: B).(\lambda (c3: C).(\lambda (_: T).(csubc g x c3))))
+(sc3 g a0 c2 (lift1 is (TLRef i))) (\lambda (x1: B).(\lambda (x2: C).(\lambda
+(x3: T).(\lambda (H13: (eq C x0 (CHead x2 (Bind x1) x3))).(\lambda (H14: (eq
+K (Bind Abbr) (Bind Void))).(\lambda (_: (not (eq B x1 Void))).(\lambda (_:
+(csubc g x x2)).(let H17 \def (eq_ind C x0 (\lambda (c0: C).(getl (trans is
+i) c2 c0)) H9 (CHead x2 (Bind x1) x3) H13) in (let H18 \def (eq_ind K (Bind
+Abbr) (\lambda (ee: K).(match ee in K return (\lambda (_: K).Prop) with
+[(Bind b) \Rightarrow (match b in B return (\lambda (_: B).Prop) with [Abbr
+\Rightarrow True | Abst \Rightarrow False | Void \Rightarrow False]) | (Flat
+_) \Rightarrow False])) I (Bind Void) H14) in (False_ind (sc3 g a0 c2 (lift1
+is (TLRef i))) H18)))))))))) H12)) H11)))))) H8)))))) H5))))))))))))))))
+(\lambda (c: C).(\lambda (d: C).(\lambda (u: T).(\lambda (i: nat).(\lambda
+(H0: (getl i c (CHead d (Bind Abst) u))).(\lambda (a0: A).(\lambda (H1:
+(arity g d u (asucc g a0))).(\lambda (_: ((\forall (d1: C).(\forall (is:
+PList).((drop1 is d1 d) \to (\forall (c2: C).((csubc g d1 c2) \to (sc3 g
+(asucc g a0) c2 (lift1 is u))))))))).(\lambda (d1: C).(\lambda (is:
+PList).(\lambda (H3: (drop1 is d1 c)).(\lambda (c2: C).(\lambda (H4: (csubc g
+d1 c2)).(let H5 \def H0 in (let H_x \def (drop1_getl_trans is c d1 H3 Abst d
+u i H5) in (let H6 \def H_x in (ex2_ind C (\lambda (e2: C).(drop1 (ptrans is
+i) e2 d)) (\lambda (e2: C).(getl (trans is i) d1 (CHead e2 (Bind Abst) (lift1
+(ptrans is i) u)))) (sc3 g a0 c2 (lift1 is (TLRef i))) (\lambda (x:
+C).(\lambda (H7: (drop1 (ptrans is i) x d)).(\lambda (H8: (getl (trans is i)
+d1 (CHead x (Bind Abst) (lift1 (ptrans is i) u)))).(let H_x0 \def
+(csubc_getl_conf g d1 (CHead x (Bind Abst) (lift1 (ptrans is i) u)) (trans is
+i) H8 c2 H4) in (let H9 \def H_x0 in (ex2_ind C (\lambda (e2: C).(getl (trans
+is i) c2 e2)) (\lambda (e2: C).(csubc g (CHead x (Bind Abst) (lift1 (ptrans
+is i) u)) e2)) (sc3 g a0 c2 (lift1 is (TLRef i))) (\lambda (x0: C).(\lambda
+(H10: (getl (trans is i) c2 x0)).(\lambda (H11: (csubc g (CHead x (Bind Abst)
+(lift1 (ptrans is i) u)) x0)).(let H_x1 \def (csubc_gen_head_l g x x0 (lift1
+(ptrans is i) u) (Bind Abst) H11) in (let H12 \def H_x1 in (or3_ind (ex2 C
+(\lambda (c3: C).(eq C x0 (CHead c3 (Bind Abst) (lift1 (ptrans is i) u))))
+(\lambda (c3: C).(csubc g x c3))) (ex5_3 C T A (\lambda (_: C).(\lambda (_:
+T).(\lambda (_: A).(eq K (Bind Abst) (Bind Abst))))) (\lambda (c3:
+C).(\lambda (w: T).(\lambda (_: A).(eq C x0 (CHead c3 (Bind Abbr) w)))))
+(\lambda (c3: C).(\lambda (_: T).(\lambda (_: A).(csubc g x c3)))) (\lambda
+(_: C).(\lambda (_: T).(\lambda (a1: A).(sc3 g (asucc g a1) x (lift1 (ptrans
+is i) u))))) (\lambda (c3: C).(\lambda (w: T).(\lambda (a1: A).(sc3 g a1 c3
+w))))) (ex4_3 B C T (\lambda (b: B).(\lambda (c3: C).(\lambda (v2: T).(eq C
+x0 (CHead c3 (Bind b) v2))))) (\lambda (_: B).(\lambda (_: C).(\lambda (_:
+T).(eq K (Bind Abst) (Bind Void))))) (\lambda (b: B).(\lambda (_: C).(\lambda
+(_: T).(not (eq B b Void))))) (\lambda (_: B).(\lambda (c3: C).(\lambda (_:
+T).(csubc g x c3))))) (sc3 g a0 c2 (lift1 is (TLRef i))) (\lambda (H13: (ex2
+C (\lambda (c3: C).(eq C x0 (CHead c3 (Bind Abst) (lift1 (ptrans is i) u))))
+(\lambda (c3: C).(csubc g x c3)))).(ex2_ind C (\lambda (c3: C).(eq C x0
(CHead c3 (Bind Abst) (lift1 (ptrans is i) u)))) (\lambda (c3: C).(csubc g x
-c3))) (ex5_3 C T A (\lambda (_: C).(\lambda (_: T).(\lambda (_: A).(eq K
-(Bind Abst) (Bind Abst))))) (\lambda (c3: C).(\lambda (w: T).(\lambda (_:
-A).(eq C x0 (CHead c3 (Bind Abbr) w))))) (\lambda (c3: C).(\lambda (_:
-T).(\lambda (_: A).(csubc g x c3)))) (\lambda (_: C).(\lambda (_: T).(\lambda
-(a1: A).(sc3 g (asucc g a1) x (lift1 (ptrans is i) u))))) (\lambda (c3:
-C).(\lambda (w: T).(\lambda (a1: A).(sc3 g a1 c3 w))))) (sc3 g a0 c2 (lift1
-is (TLRef i))) (\lambda (H13: (ex2 C (\lambda (c3: C).(eq C x0 (CHead c3
-(Bind Abst) (lift1 (ptrans is i) u)))) (\lambda (c3: C).(csubc g x
-c3)))).(ex2_ind C (\lambda (c3: C).(eq C x0 (CHead c3 (Bind Abst) (lift1
-(ptrans is i) u)))) (\lambda (c3: C).(csubc g x c3)) (sc3 g a0 c2 (lift1 is
-(TLRef i))) (\lambda (x1: C).(\lambda (H14: (eq C x0 (CHead x1 (Bind Abst)
-(lift1 (ptrans is i) u)))).(\lambda (_: (csubc g x x1)).(let H16 \def (eq_ind
-C x0 (\lambda (c0: C).(getl (trans is i) c2 c0)) H10 (CHead x1 (Bind Abst)
-(lift1 (ptrans is i) u)) H14) in (let H_y \def (sc3_abst g a0 TNil) in
-(eq_ind_r T (TLRef (trans is i)) (\lambda (t0: T).(sc3 g a0 c2 t0)) (H_y c2
-(trans is i) (csubc_arity_conf g d1 c2 H4 (TLRef (trans is i)) a0 (eq_ind T
-(lift1 is (TLRef i)) (\lambda (t0: T).(arity g d1 t0 a0)) (arity_lift1 g a0 c
-is d1 (TLRef i) H3 (arity_abst g c d u i H0 a0 H1)) (TLRef (trans is i))
-(lift1_lref is i))) (nf2_lref_abst c2 x1 (lift1 (ptrans is i) u) (trans is i)
-H16) I) (lift1 is (TLRef i)) (lift1_lref is i))))))) H13)) (\lambda (H13:
-(ex5_3 C T A (\lambda (_: C).(\lambda (_: T).(\lambda (_: A).(eq K (Bind
-Abst) (Bind Abst))))) (\lambda (c3: C).(\lambda (w: T).(\lambda (_: A).(eq C
-x0 (CHead c3 (Bind Abbr) w))))) (\lambda (c3: C).(\lambda (_: T).(\lambda (_:
-A).(csubc g x c3)))) (\lambda (_: C).(\lambda (_: T).(\lambda (a1: A).(sc3 g
-(asucc g a1) x (lift1 (ptrans is i) u))))) (\lambda (c3: C).(\lambda (w:
-T).(\lambda (a1: A).(sc3 g a1 c3 w)))))).(ex5_3_ind C T A (\lambda (_:
-C).(\lambda (_: T).(\lambda (_: A).(eq K (Bind Abst) (Bind Abst))))) (\lambda
-(c3: C).(\lambda (w: T).(\lambda (_: A).(eq C x0 (CHead c3 (Bind Abbr) w)))))
+c3)) (sc3 g a0 c2 (lift1 is (TLRef i))) (\lambda (x1: C).(\lambda (H14: (eq C
+x0 (CHead x1 (Bind Abst) (lift1 (ptrans is i) u)))).(\lambda (_: (csubc g x
+x1)).(let H16 \def (eq_ind C x0 (\lambda (c0: C).(getl (trans is i) c2 c0))
+H10 (CHead x1 (Bind Abst) (lift1 (ptrans is i) u)) H14) in (let H_y \def
+(sc3_abst g a0 TNil) in (eq_ind_r T (TLRef (trans is i)) (\lambda (t0:
+T).(sc3 g a0 c2 t0)) (H_y c2 (trans is i) (csubc_arity_conf g d1 c2 H4 (TLRef
+(trans is i)) a0 (eq_ind T (lift1 is (TLRef i)) (\lambda (t0: T).(arity g d1
+t0 a0)) (arity_lift1 g a0 c is d1 (TLRef i) H3 (arity_abst g c d u i H0 a0
+H1)) (TLRef (trans is i)) (lift1_lref is i))) (nf2_lref_abst c2 x1 (lift1
+(ptrans is i) u) (trans is i) H16) I) (lift1 is (TLRef i)) (lift1_lref is
+i))))))) H13)) (\lambda (H13: (ex5_3 C T A (\lambda (_: C).(\lambda (_:
+T).(\lambda (_: A).(eq K (Bind Abst) (Bind Abst))))) (\lambda (c3:
+C).(\lambda (w: T).(\lambda (_: A).(eq C x0 (CHead c3 (Bind Abbr) w)))))
(\lambda (c3: C).(\lambda (_: T).(\lambda (_: A).(csubc g x c3)))) (\lambda
(_: C).(\lambda (_: T).(\lambda (a1: A).(sc3 g (asucc g a1) x (lift1 (ptrans
is i) u))))) (\lambda (c3: C).(\lambda (w: T).(\lambda (a1: A).(sc3 g a1 c3
-w)))) (sc3 g a0 c2 (lift1 is (TLRef i))) (\lambda (x1: C).(\lambda (x2:
-T).(\lambda (x3: A).(\lambda (_: (eq K (Bind Abst) (Bind Abst))).(\lambda
-(H15: (eq C x0 (CHead x1 (Bind Abbr) x2))).(\lambda (_: (csubc g x
-x1)).(\lambda (H17: (sc3 g (asucc g x3) x (lift1 (ptrans is i) u))).(\lambda
-(H18: (sc3 g x3 x1 x2)).(let H19 \def (eq_ind C x0 (\lambda (c0: C).(getl
-(trans is i) c2 c0)) H10 (CHead x1 (Bind Abbr) x2) H15) in (let H_y \def
-(sc3_abbr g a0 TNil) in (eq_ind_r T (TLRef (trans is i)) (\lambda (t0:
-T).(sc3 g a0 c2 t0)) (H_y (trans is i) x1 x2 c2 (let H_y0 \def (arity_lift1 g
-(asucc g a0) d (ptrans is i) x u H7 H1) in (let H_y1 \def (sc3_arity_gen g x
-(lift1 (ptrans is i) u) (asucc g x3) H17) in (sc3_repl g x3 c2 (lift (S
-(trans is i)) O x2) (sc3_lift g x3 x1 x2 H18 c2 (S (trans is i)) O (getl_drop
-Abbr c2 x1 x2 (trans is i) H19)) a0 (asucc_inj g x3 a0 (arity_mono g x (lift1
-(ptrans is i) u) (asucc g x3) H_y1 (asucc g a0) H_y0))))) H19) (lift1 is
-(TLRef i)) (lift1_lref is i)))))))))))) H13)) H12)))))) H9))))))
-H6))))))))))))))))) (\lambda (b: B).(\lambda (H0: (not (eq B b
-Abst))).(\lambda (c: C).(\lambda (u: T).(\lambda (a1: A).(\lambda (_: (arity
-g c u a1)).(\lambda (H2: ((\forall (d1: C).(\forall (is: PList).((drop1 is d1
-c) \to (\forall (c2: C).((csubc g d1 c2) \to (sc3 g a1 c2 (lift1 is
-u))))))))).(\lambda (t0: T).(\lambda (a2: A).(\lambda (_: (arity g (CHead c
-(Bind b) u) t0 a2)).(\lambda (H4: ((\forall (d1: C).(\forall (is:
-PList).((drop1 is d1 (CHead c (Bind b) u)) \to (\forall (c2: C).((csubc g d1
-c2) \to (sc3 g a2 c2 (lift1 is t0))))))))).(\lambda (d1: C).(\lambda (is:
-PList).(\lambda (H5: (drop1 is d1 c)).(\lambda (c2: C).(\lambda (H6: (csubc g
-d1 c2)).(let H_y \def (sc3_bind g b H0 a1 a2 TNil) in (eq_ind_r T (THead
-(Bind b) (lift1 is u) (lift1 (Ss is) t0)) (\lambda (t1: T).(sc3 g a2 c2 t1))
-(H_y c2 (lift1 is u) (lift1 (Ss is) t0) (H4 (CHead d1 (Bind b) (lift1 is u))
-(Ss is) (drop1_skip_bind b c is d1 u H5) (CHead c2 (Bind b) (lift1 is u))
-(csubc_head g d1 c2 H6 (Bind b) (lift1 is u))) (H2 d1 is H5 c2 H6)) (lift1 is
-(THead (Bind b) u t0)) (lift1_bind b is u t0))))))))))))))))))) (\lambda (c:
+w)))))).(ex5_3_ind C T A (\lambda (_: C).(\lambda (_: T).(\lambda (_: A).(eq
+K (Bind Abst) (Bind Abst))))) (\lambda (c3: C).(\lambda (w: T).(\lambda (_:
+A).(eq C x0 (CHead c3 (Bind Abbr) w))))) (\lambda (c3: C).(\lambda (_:
+T).(\lambda (_: A).(csubc g x c3)))) (\lambda (_: C).(\lambda (_: T).(\lambda
+(a1: A).(sc3 g (asucc g a1) x (lift1 (ptrans is i) u))))) (\lambda (c3:
+C).(\lambda (w: T).(\lambda (a1: A).(sc3 g a1 c3 w)))) (sc3 g a0 c2 (lift1 is
+(TLRef i))) (\lambda (x1: C).(\lambda (x2: T).(\lambda (x3: A).(\lambda (_:
+(eq K (Bind Abst) (Bind Abst))).(\lambda (H15: (eq C x0 (CHead x1 (Bind Abbr)
+x2))).(\lambda (_: (csubc g x x1)).(\lambda (H17: (sc3 g (asucc g x3) x
+(lift1 (ptrans is i) u))).(\lambda (H18: (sc3 g x3 x1 x2)).(let H19 \def
+(eq_ind C x0 (\lambda (c0: C).(getl (trans is i) c2 c0)) H10 (CHead x1 (Bind
+Abbr) x2) H15) in (let H_y \def (sc3_abbr g a0 TNil) in (eq_ind_r T (TLRef
+(trans is i)) (\lambda (t0: T).(sc3 g a0 c2 t0)) (H_y (trans is i) x1 x2 c2
+(let H_y0 \def (arity_lift1 g (asucc g a0) d (ptrans is i) x u H7 H1) in (let
+H_y1 \def (sc3_arity_gen g x (lift1 (ptrans is i) u) (asucc g x3) H17) in
+(sc3_repl g x3 c2 (lift (S (trans is i)) O x2) (sc3_lift g x3 x1 x2 H18 c2 (S
+(trans is i)) O (getl_drop Abbr c2 x1 x2 (trans is i) H19)) a0 (asucc_inj g
+x3 a0 (arity_mono g x (lift1 (ptrans is i) u) (asucc g x3) H_y1 (asucc g a0)
+H_y0))))) H19) (lift1 is (TLRef i)) (lift1_lref is i)))))))))))) H13))
+(\lambda (H13: (ex4_3 B C T (\lambda (b: B).(\lambda (c3: C).(\lambda (v2:
+T).(eq C x0 (CHead c3 (Bind b) v2))))) (\lambda (_: B).(\lambda (_:
+C).(\lambda (_: T).(eq K (Bind Abst) (Bind Void))))) (\lambda (b: B).(\lambda
+(_: C).(\lambda (_: T).(not (eq B b Void))))) (\lambda (_: B).(\lambda (c3:
+C).(\lambda (_: T).(csubc g x c3)))))).(ex4_3_ind B C T (\lambda (b:
+B).(\lambda (c3: C).(\lambda (v2: T).(eq C x0 (CHead c3 (Bind b) v2)))))
+(\lambda (_: B).(\lambda (_: C).(\lambda (_: T).(eq K (Bind Abst) (Bind
+Void))))) (\lambda (b: B).(\lambda (_: C).(\lambda (_: T).(not (eq B b
+Void))))) (\lambda (_: B).(\lambda (c3: C).(\lambda (_: T).(csubc g x c3))))
+(sc3 g a0 c2 (lift1 is (TLRef i))) (\lambda (x1: B).(\lambda (x2: C).(\lambda
+(x3: T).(\lambda (H14: (eq C x0 (CHead x2 (Bind x1) x3))).(\lambda (H15: (eq
+K (Bind Abst) (Bind Void))).(\lambda (_: (not (eq B x1 Void))).(\lambda (_:
+(csubc g x x2)).(let H18 \def (eq_ind C x0 (\lambda (c0: C).(getl (trans is
+i) c2 c0)) H10 (CHead x2 (Bind x1) x3) H14) in (let H19 \def (eq_ind K (Bind
+Abst) (\lambda (ee: K).(match ee in K return (\lambda (_: K).Prop) with
+[(Bind b) \Rightarrow (match b in B return (\lambda (_: B).Prop) with [Abbr
+\Rightarrow False | Abst \Rightarrow True | Void \Rightarrow False]) | (Flat
+_) \Rightarrow False])) I (Bind Void) H15) in (False_ind (sc3 g a0 c2 (lift1
+is (TLRef i))) H19)))))))))) H13)) H12)))))) H9)))))) H6)))))))))))))))))
+(\lambda (b: B).(\lambda (H0: (not (eq B b Abst))).(\lambda (c: C).(\lambda
+(u: T).(\lambda (a1: A).(\lambda (_: (arity g c u a1)).(\lambda (H2:
+((\forall (d1: C).(\forall (is: PList).((drop1 is d1 c) \to (\forall (c2:
+C).((csubc g d1 c2) \to (sc3 g a1 c2 (lift1 is u))))))))).(\lambda (t0:
+T).(\lambda (a2: A).(\lambda (_: (arity g (CHead c (Bind b) u) t0
+a2)).(\lambda (H4: ((\forall (d1: C).(\forall (is: PList).((drop1 is d1
+(CHead c (Bind b) u)) \to (\forall (c2: C).((csubc g d1 c2) \to (sc3 g a2 c2
+(lift1 is t0))))))))).(\lambda (d1: C).(\lambda (is: PList).(\lambda (H5:
+(drop1 is d1 c)).(\lambda (c2: C).(\lambda (H6: (csubc g d1 c2)).(let H_y
+\def (sc3_bind g b H0 a1 a2 TNil) in (eq_ind_r T (THead (Bind b) (lift1 is u)
+(lift1 (Ss is) t0)) (\lambda (t1: T).(sc3 g a2 c2 t1)) (H_y c2 (lift1 is u)
+(lift1 (Ss is) t0) (H4 (CHead d1 (Bind b) (lift1 is u)) (Ss is)
+(drop1_skip_bind b c is d1 u H5) (CHead c2 (Bind b) (lift1 is u)) (csubc_head
+g d1 c2 H6 (Bind b) (lift1 is u))) (H2 d1 is H5 c2 H6)) (lift1 is (THead
+(Bind b) u t0)) (lift1_bind b is u t0))))))))))))))))))) (\lambda (c:
C).(\lambda (u: T).(\lambda (a1: A).(\lambda (H0: (arity g c u (asucc g
a1))).(\lambda (H1: ((\forall (d1: C).(\forall (is: PList).((drop1 is d1 c)
\to (\forall (c2: C).((csubc g d1 c2) \to (sc3 g (asucc g a1) c2 (lift1 is
include "LambdaDelta-1/theory.ma".
-theorem lifts_inj:
- \forall (xs: TList).(\forall (ts: TList).(\forall (h: nat).(\forall (d:
-nat).((eq TList (lifts h d xs) (lifts h d ts)) \to (eq TList xs ts)))))
-\def
- \lambda (xs: TList).(TList_ind (\lambda (t: TList).(\forall (ts:
-TList).(\forall (h: nat).(\forall (d: nat).((eq TList (lifts h d t) (lifts h
-d ts)) \to (eq TList t ts)))))) (\lambda (ts: TList).(TList_ind (\lambda (t:
-TList).(\forall (h: nat).(\forall (d: nat).((eq TList (lifts h d TNil) (lifts
-h d t)) \to (eq TList TNil t))))) (\lambda (_: nat).(\lambda (_:
-nat).(\lambda (H: (eq TList TNil TNil)).H))) (\lambda (t: T).(\lambda (t0:
-TList).(\lambda (_: ((\forall (h: nat).(\forall (d: nat).((eq TList TNil
-(lifts h d t0)) \to (eq TList TNil t0)))))).(\lambda (h: nat).(\lambda (d:
-nat).(\lambda (H0: (eq TList TNil (TCons (lift h d t) (lifts h d t0)))).(let
-H1 \def (eq_ind TList TNil (\lambda (ee: TList).(match ee in TList return
-(\lambda (_: TList).Prop) with [TNil \Rightarrow True | (TCons _ _)
-\Rightarrow False])) I (TCons (lift h d t) (lifts h d t0)) H0) in (False_ind
-(eq TList TNil (TCons t t0)) H1)))))))) ts)) (\lambda (t: T).(\lambda (t0:
-TList).(\lambda (H: ((\forall (ts: TList).(\forall (h: nat).(\forall (d:
-nat).((eq TList (lifts h d t0) (lifts h d ts)) \to (eq TList t0
-ts))))))).(\lambda (ts: TList).(TList_ind (\lambda (t1: TList).(\forall (h:
-nat).(\forall (d: nat).((eq TList (lifts h d (TCons t t0)) (lifts h d t1))
-\to (eq TList (TCons t t0) t1))))) (\lambda (h: nat).(\lambda (d:
-nat).(\lambda (H0: (eq TList (TCons (lift h d t) (lifts h d t0)) TNil)).(let
-H1 \def (eq_ind TList (TCons (lift h d t) (lifts h d t0)) (\lambda (ee:
-TList).(match ee in TList return (\lambda (_: TList).Prop) with [TNil
-\Rightarrow False | (TCons _ _) \Rightarrow True])) I TNil H0) in (False_ind
-(eq TList (TCons t t0) TNil) H1))))) (\lambda (t1: T).(\lambda (t2:
-TList).(\lambda (_: ((\forall (h: nat).(\forall (d: nat).((eq TList (TCons
-(lift h d t) (lifts h d t0)) (lifts h d t2)) \to (eq TList (TCons t t0)
-t2)))))).(\lambda (h: nat).(\lambda (d: nat).(\lambda (H1: (eq TList (TCons
-(lift h d t) (lifts h d t0)) (TCons (lift h d t1) (lifts h d t2)))).(let H2
-\def (f_equal TList T (\lambda (e: TList).(match e in TList return (\lambda
-(_: TList).T) with [TNil \Rightarrow ((let rec lref_map (f: ((nat \to nat)))
-(d0: nat) (t3: T) on t3: T \def (match t3 with [(TSort n) \Rightarrow (TSort
-n) | (TLRef i) \Rightarrow (TLRef (match (blt i d0) with [true \Rightarrow i
-| false \Rightarrow (f i)])) | (THead k u t4) \Rightarrow (THead k (lref_map
-f d0 u) (lref_map f (s k d0) t4))]) in lref_map) (\lambda (x: nat).(plus x
-h)) d t) | (TCons t3 _) \Rightarrow t3])) (TCons (lift h d t) (lifts h d t0))
-(TCons (lift h d t1) (lifts h d t2)) H1) in ((let H3 \def (f_equal TList
-TList (\lambda (e: TList).(match e in TList return (\lambda (_: TList).TList)
-with [TNil \Rightarrow ((let rec lifts (h0: nat) (d0: nat) (ts0: TList) on
-ts0: TList \def (match ts0 with [TNil \Rightarrow TNil | (TCons t3 ts1)
-\Rightarrow (TCons (lift h0 d0 t3) (lifts h0 d0 ts1))]) in lifts) h d t0) |
-(TCons _ t3) \Rightarrow t3])) (TCons (lift h d t) (lifts h d t0)) (TCons
-(lift h d t1) (lifts h d t2)) H1) in (\lambda (H4: (eq T (lift h d t) (lift h
-d t1))).(eq_ind T t (\lambda (t3: T).(eq TList (TCons t t0) (TCons t3 t2)))
-(f_equal2 T TList TList TCons t t t0 t2 (refl_equal T t) (H t2 h d H3)) t1
-(lift_inj t t1 h d H4)))) H2)))))))) ts))))) xs).
-
-theorem nfs2_tapp:
- \forall (c: C).(\forall (t: T).(\forall (ts: TList).((nfs2 c (TApp ts t))
-\to (land (nfs2 c ts) (nf2 c t)))))
-\def
- \lambda (c: C).(\lambda (t: T).(\lambda (ts: TList).(TList_ind (\lambda (t0:
-TList).((nfs2 c (TApp t0 t)) \to (land (nfs2 c t0) (nf2 c t)))) (\lambda (H:
-(land (nf2 c t) True)).(let H0 \def H in (land_ind (nf2 c t) True (land True
-(nf2 c t)) (\lambda (H1: (nf2 c t)).(\lambda (_: True).(conj True (nf2 c t) I
-H1))) H0))) (\lambda (t0: T).(\lambda (t1: TList).(\lambda (H: (((nfs2 c
-(TApp t1 t)) \to (land (nfs2 c t1) (nf2 c t))))).(\lambda (H0: (land (nf2 c
-t0) (nfs2 c (TApp t1 t)))).(let H1 \def H0 in (land_ind (nf2 c t0) (nfs2 c
-(TApp t1 t)) (land (land (nf2 c t0) (nfs2 c t1)) (nf2 c t)) (\lambda (H2:
-(nf2 c t0)).(\lambda (H3: (nfs2 c (TApp t1 t))).(let H_x \def (H H3) in (let
-H4 \def H_x in (land_ind (nfs2 c t1) (nf2 c t) (land (land (nf2 c t0) (nfs2 c
-t1)) (nf2 c t)) (\lambda (H5: (nfs2 c t1)).(\lambda (H6: (nf2 c t)).(conj
-(land (nf2 c t0) (nfs2 c t1)) (nf2 c t) (conj (nf2 c t0) (nfs2 c t1) H2 H5)
-H6))) H4))))) H1)))))) ts))).
-
-theorem pc3_nf2_unfold:
- \forall (c: C).(\forall (t1: T).(\forall (t2: T).((pc3 c t1 t2) \to ((nf2 c
-t2) \to (pr3 c t1 t2)))))
-\def
- \lambda (c: C).(\lambda (t1: T).(\lambda (t2: T).(\lambda (H: (pc3 c t1
-t2)).(\lambda (H0: (nf2 c t2)).(let H1 \def H in (ex2_ind T (\lambda (t:
-T).(pr3 c t1 t)) (\lambda (t: T).(pr3 c t2 t)) (pr3 c t1 t2) (\lambda (x:
-T).(\lambda (H2: (pr3 c t1 x)).(\lambda (H3: (pr3 c t2 x)).(let H_y \def
-(nf2_pr3_unfold c t2 x H3 H0) in (let H4 \def (eq_ind_r T x (\lambda (t:
-T).(pr3 c t1 t)) H2 t2 H_y) in H4))))) H1)))))).
-
-theorem pc3_pr3_conf:
- \forall (c: C).(\forall (t: T).(\forall (t1: T).((pc3 c t t1) \to (\forall
-(t2: T).((pr3 c t t2) \to (pc3 c t2 t1))))))
-\def
- \lambda (c: C).(\lambda (t: T).(\lambda (t1: T).(\lambda (H: (pc3 c t
-t1)).(\lambda (t2: T).(\lambda (H0: (pr3 c t t2)).(pc3_t t c t2 (pc3_pr3_x c
-t2 t H0) t1 H)))))).
-
axiom pc3_gen_appls_sort_abst:
\forall (c: C).(\forall (vs: TList).(\forall (w: T).(\forall (u: T).(\forall
(n: nat).((pc3 c (THeads (Flat Appl) vs (TSort n)) (THead (Bind Abst) w u))
(Flat Appl) ws (TSort n))) \to False))))))))
.
-inductive tys3 (g: G) (c: C): TList \to (T \to Prop) \def
-| tys3_nil: \forall (u: T).(\forall (u0: T).((ty3 g c u u0) \to (tys3 g c
-TNil u)))
-| tys3_cons: \forall (t: T).(\forall (u: T).((ty3 g c t u) \to (\forall (ts:
-TList).((tys3 g c ts u) \to (tys3 g c (TCons t ts) u))))).
-
-theorem tys3_gen_nil:
- \forall (g: G).(\forall (c: C).(\forall (u: T).((tys3 g c TNil u) \to (ex T
-(\lambda (u0: T).(ty3 g c u u0))))))
-\def
- \lambda (g: G).(\lambda (c: C).(\lambda (u: T).(\lambda (H: (tys3 g c TNil
-u)).(insert_eq TList TNil (\lambda (t: TList).(tys3 g c t u)) (\lambda (_:
-TList).(ex T (\lambda (u0: T).(ty3 g c u u0)))) (\lambda (y: TList).(\lambda
-(H0: (tys3 g c y u)).(tys3_ind g c (\lambda (t: TList).(\lambda (t0: T).((eq
-TList t TNil) \to (ex T (\lambda (u0: T).(ty3 g c t0 u0)))))) (\lambda (u0:
-T).(\lambda (u1: T).(\lambda (H1: (ty3 g c u0 u1)).(\lambda (_: (eq TList
-TNil TNil)).(ex_intro T (\lambda (u2: T).(ty3 g c u0 u2)) u1 H1))))) (\lambda
-(t: T).(\lambda (u0: T).(\lambda (_: (ty3 g c t u0)).(\lambda (ts:
-TList).(\lambda (_: (tys3 g c ts u0)).(\lambda (_: (((eq TList ts TNil) \to
-(ex T (\lambda (u1: T).(ty3 g c u0 u1)))))).(\lambda (H4: (eq TList (TCons t
-ts) TNil)).(let H5 \def (eq_ind TList (TCons t ts) (\lambda (ee:
-TList).(match ee in TList return (\lambda (_: TList).Prop) with [TNil
-\Rightarrow False | (TCons _ _) \Rightarrow True])) I TNil H4) in (False_ind
-(ex T (\lambda (u1: T).(ty3 g c u0 u1))) H5))))))))) y u H0))) H)))).
-
-theorem tys3_gen_cons:
- \forall (g: G).(\forall (c: C).(\forall (ts: TList).(\forall (t: T).(\forall
-(u: T).((tys3 g c (TCons t ts) u) \to (land (ty3 g c t u) (tys3 g c ts
-u)))))))
-\def
- \lambda (g: G).(\lambda (c: C).(\lambda (ts: TList).(\lambda (t: T).(\lambda
-(u: T).(\lambda (H: (tys3 g c (TCons t ts) u)).(insert_eq TList (TCons t ts)
-(\lambda (t0: TList).(tys3 g c t0 u)) (\lambda (_: TList).(land (ty3 g c t u)
-(tys3 g c ts u))) (\lambda (y: TList).(\lambda (H0: (tys3 g c y u)).(tys3_ind
-g c (\lambda (t0: TList).(\lambda (t1: T).((eq TList t0 (TCons t ts)) \to
-(land (ty3 g c t t1) (tys3 g c ts t1))))) (\lambda (u0: T).(\lambda (u1:
-T).(\lambda (_: (ty3 g c u0 u1)).(\lambda (H2: (eq TList TNil (TCons t
-ts))).(let H3 \def (eq_ind TList TNil (\lambda (ee: TList).(match ee in TList
-return (\lambda (_: TList).Prop) with [TNil \Rightarrow True | (TCons _ _)
-\Rightarrow False])) I (TCons t ts) H2) in (False_ind (land (ty3 g c t u0)
-(tys3 g c ts u0)) H3)))))) (\lambda (t0: T).(\lambda (u0: T).(\lambda (H1:
-(ty3 g c t0 u0)).(\lambda (ts0: TList).(\lambda (H2: (tys3 g c ts0
-u0)).(\lambda (H3: (((eq TList ts0 (TCons t ts)) \to (land (ty3 g c t u0)
-(tys3 g c ts u0))))).(\lambda (H4: (eq TList (TCons t0 ts0) (TCons t
-ts))).(let H5 \def (f_equal TList T (\lambda (e: TList).(match e in TList
-return (\lambda (_: TList).T) with [TNil \Rightarrow t0 | (TCons t1 _)
-\Rightarrow t1])) (TCons t0 ts0) (TCons t ts) H4) in ((let H6 \def (f_equal
-TList TList (\lambda (e: TList).(match e in TList return (\lambda (_:
-TList).TList) with [TNil \Rightarrow ts0 | (TCons _ t1) \Rightarrow t1]))
-(TCons t0 ts0) (TCons t ts) H4) in (\lambda (H7: (eq T t0 t)).(let H8 \def
-(eq_ind TList ts0 (\lambda (t1: TList).((eq TList t1 (TCons t ts)) \to (land
-(ty3 g c t u0) (tys3 g c ts u0)))) H3 ts H6) in (let H9 \def (eq_ind TList
-ts0 (\lambda (t1: TList).(tys3 g c t1 u0)) H2 ts H6) in (let H10 \def (eq_ind
-T t0 (\lambda (t1: T).(ty3 g c t1 u0)) H1 t H7) in (conj (ty3 g c t u0) (tys3
-g c ts u0) H10 H9)))))) H5))))))))) y u H0))) H)))))).
-
-theorem ty3_gen_appl_nf2:
- \forall (g: G).(\forall (c: C).(\forall (w: T).(\forall (v: T).(\forall (x:
-T).((ty3 g c (THead (Flat Appl) w v) x) \to (ex4_2 T T (\lambda (u:
-T).(\lambda (t: T).(pc3 c (THead (Flat Appl) w (THead (Bind Abst) u t)) x)))
-(\lambda (u: T).(\lambda (t: T).(ty3 g c v (THead (Bind Abst) u t))))
-(\lambda (u: T).(\lambda (_: T).(ty3 g c w u))) (\lambda (u: T).(\lambda (t:
-T).(nf2 c (THead (Bind Abst) u t))))))))))
-\def
- \lambda (g: G).(\lambda (c: C).(\lambda (w: T).(\lambda (v: T).(\lambda (x:
-T).(\lambda (H: (ty3 g c (THead (Flat Appl) w v) x)).(ex3_2_ind T T (\lambda
-(u: T).(\lambda (t: T).(pc3 c (THead (Flat Appl) w (THead (Bind Abst) u t))
-x))) (\lambda (u: T).(\lambda (t: T).(ty3 g c v (THead (Bind Abst) u t))))
-(\lambda (u: T).(\lambda (_: T).(ty3 g c w u))) (ex4_2 T T (\lambda (u:
-T).(\lambda (t: T).(pc3 c (THead (Flat Appl) w (THead (Bind Abst) u t)) x)))
-(\lambda (u: T).(\lambda (t: T).(ty3 g c v (THead (Bind Abst) u t))))
-(\lambda (u: T).(\lambda (_: T).(ty3 g c w u))) (\lambda (u: T).(\lambda (t:
-T).(nf2 c (THead (Bind Abst) u t))))) (\lambda (x0: T).(\lambda (x1:
-T).(\lambda (H0: (pc3 c (THead (Flat Appl) w (THead (Bind Abst) x0 x1))
-x)).(\lambda (H1: (ty3 g c v (THead (Bind Abst) x0 x1))).(\lambda (H2: (ty3 g
-c w x0)).(let H_x \def (ty3_correct g c v (THead (Bind Abst) x0 x1) H1) in
-(let H3 \def H_x in (ex_ind T (\lambda (t: T).(ty3 g c (THead (Bind Abst) x0
-x1) t)) (ex4_2 T T (\lambda (u: T).(\lambda (t: T).(pc3 c (THead (Flat Appl)
-w (THead (Bind Abst) u t)) x))) (\lambda (u: T).(\lambda (t: T).(ty3 g c v
-(THead (Bind Abst) u t)))) (\lambda (u: T).(\lambda (_: T).(ty3 g c w u)))
-(\lambda (u: T).(\lambda (t: T).(nf2 c (THead (Bind Abst) u t))))) (\lambda
-(x2: T).(\lambda (H4: (ty3 g c (THead (Bind Abst) x0 x1) x2)).(let H_x0 \def
-(ty3_correct g c w x0 H2) in (let H5 \def H_x0 in (ex_ind T (\lambda (t:
-T).(ty3 g c x0 t)) (ex4_2 T T (\lambda (u: T).(\lambda (t: T).(pc3 c (THead
-(Flat Appl) w (THead (Bind Abst) u t)) x))) (\lambda (u: T).(\lambda (t:
-T).(ty3 g c v (THead (Bind Abst) u t)))) (\lambda (u: T).(\lambda (_: T).(ty3
-g c w u))) (\lambda (u: T).(\lambda (t: T).(nf2 c (THead (Bind Abst) u t)))))
-(\lambda (x3: T).(\lambda (H6: (ty3 g c x0 x3)).(let H7 \def (ty3_sn3 g c
-(THead (Bind Abst) x0 x1) x2 H4) in (let H_x1 \def (nf2_sn3 c (THead (Bind
-Abst) x0 x1) H7) in (let H8 \def H_x1 in (ex2_ind T (\lambda (u: T).(pr3 c
-(THead (Bind Abst) x0 x1) u)) (\lambda (u: T).(nf2 c u)) (ex4_2 T T (\lambda
-(u: T).(\lambda (t: T).(pc3 c (THead (Flat Appl) w (THead (Bind Abst) u t))
-x))) (\lambda (u: T).(\lambda (t: T).(ty3 g c v (THead (Bind Abst) u t))))
-(\lambda (u: T).(\lambda (_: T).(ty3 g c w u))) (\lambda (u: T).(\lambda (t:
-T).(nf2 c (THead (Bind Abst) u t))))) (\lambda (x4: T).(\lambda (H9: (pr3 c
-(THead (Bind Abst) x0 x1) x4)).(\lambda (H10: (nf2 c x4)).(let H11 \def
-(pr3_gen_abst c x0 x1 x4 H9) in (ex3_2_ind T T (\lambda (u2: T).(\lambda (t2:
-T).(eq T x4 (THead (Bind Abst) u2 t2)))) (\lambda (u2: T).(\lambda (_:
-T).(pr3 c x0 u2))) (\lambda (_: T).(\lambda (t2: T).(\forall (b: B).(\forall
-(u: T).(pr3 (CHead c (Bind b) u) x1 t2))))) (ex4_2 T T (\lambda (u:
-T).(\lambda (t: T).(pc3 c (THead (Flat Appl) w (THead (Bind Abst) u t)) x)))
-(\lambda (u: T).(\lambda (t: T).(ty3 g c v (THead (Bind Abst) u t))))
-(\lambda (u: T).(\lambda (_: T).(ty3 g c w u))) (\lambda (u: T).(\lambda (t:
-T).(nf2 c (THead (Bind Abst) u t))))) (\lambda (x5: T).(\lambda (x6:
-T).(\lambda (H12: (eq T x4 (THead (Bind Abst) x5 x6))).(\lambda (H13: (pr3 c
-x0 x5)).(\lambda (H14: ((\forall (b: B).(\forall (u: T).(pr3 (CHead c (Bind
-b) u) x1 x6))))).(let H15 \def (eq_ind T x4 (\lambda (t: T).(nf2 c t)) H10
-(THead (Bind Abst) x5 x6) H12) in (let H16 \def (pr3_head_12 c x0 x5 H13
-(Bind Abst) x1 x6 (H14 Abst x5)) in (ex4_2_intro T T (\lambda (u: T).(\lambda
-(t: T).(pc3 c (THead (Flat Appl) w (THead (Bind Abst) u t)) x))) (\lambda (u:
-T).(\lambda (t: T).(ty3 g c v (THead (Bind Abst) u t)))) (\lambda (u:
-T).(\lambda (_: T).(ty3 g c w u))) (\lambda (u: T).(\lambda (t: T).(nf2 c
-(THead (Bind Abst) u t)))) x5 x6 (pc3_pr3_conf c (THead (Flat Appl) w (THead
-(Bind Abst) x0 x1)) x H0 (THead (Flat Appl) w (THead (Bind Abst) x5 x6))
-(pr3_thin_dx c (THead (Bind Abst) x0 x1) (THead (Bind Abst) x5 x6) H16 w
-Appl)) (ty3_conv g c (THead (Bind Abst) x5 x6) x2 (ty3_sred_pr3 c (THead
-(Bind Abst) x0 x1) (THead (Bind Abst) x5 x6) H16 g x2 H4) v (THead (Bind
-Abst) x0 x1) H1 (pc3_pr3_r c (THead (Bind Abst) x0 x1) (THead (Bind Abst) x5
-x6) H16)) (ty3_conv g c x5 x3 (ty3_sred_pr3 c x0 x5 H13 g x3 H6) w x0 H2
-(pc3_pr3_r c x0 x5 H13)) H15)))))))) H11))))) H8)))))) H5))))) H3))))))))
-(ty3_gen_appl g c w v x H))))))).
-
-theorem ty3_inv_lref_nf2_pc3:
- \forall (g: G).(\forall (c: C).(\forall (u1: T).(\forall (i: nat).((ty3 g c
-(TLRef i) u1) \to ((nf2 c (TLRef i)) \to (\forall (u2: T).((nf2 c u2) \to
-((pc3 c u1 u2) \to (ex T (\lambda (u: T).(eq T u2 (lift (S i) O u))))))))))))
-\def
- \lambda (g: G).(\lambda (c: C).(\lambda (u1: T).(\lambda (i: nat).(\lambda
-(H: (ty3 g c (TLRef i) u1)).(insert_eq T (TLRef i) (\lambda (t: T).(ty3 g c t
-u1)) (\lambda (t: T).((nf2 c t) \to (\forall (u2: T).((nf2 c u2) \to ((pc3 c
-u1 u2) \to (ex T (\lambda (u: T).(eq T u2 (lift (S i) O u))))))))) (\lambda
-(y: T).(\lambda (H0: (ty3 g c y u1)).(ty3_ind g (\lambda (c0: C).(\lambda (t:
-T).(\lambda (t0: T).((eq T t (TLRef i)) \to ((nf2 c0 t) \to (\forall (u2:
-T).((nf2 c0 u2) \to ((pc3 c0 t0 u2) \to (ex T (\lambda (u: T).(eq T u2 (lift
-(S i) O u)))))))))))) (\lambda (c0: C).(\lambda (t2: T).(\lambda (t:
-T).(\lambda (_: (ty3 g c0 t2 t)).(\lambda (_: (((eq T t2 (TLRef i)) \to ((nf2
-c0 t2) \to (\forall (u2: T).((nf2 c0 u2) \to ((pc3 c0 t u2) \to (ex T
-(\lambda (u: T).(eq T u2 (lift (S i) O u))))))))))).(\lambda (u: T).(\lambda
-(t1: T).(\lambda (H3: (ty3 g c0 u t1)).(\lambda (H4: (((eq T u (TLRef i)) \to
-((nf2 c0 u) \to (\forall (u2: T).((nf2 c0 u2) \to ((pc3 c0 t1 u2) \to (ex T
-(\lambda (u0: T).(eq T u2 (lift (S i) O u0))))))))))).(\lambda (H5: (pc3 c0
-t1 t2)).(\lambda (H6: (eq T u (TLRef i))).(\lambda (H7: (nf2 c0 u)).(\lambda
-(u2: T).(\lambda (H8: (nf2 c0 u2)).(\lambda (H9: (pc3 c0 t2 u2)).(let H10
-\def (eq_ind T u (\lambda (t0: T).(nf2 c0 t0)) H7 (TLRef i) H6) in (let H11
-\def (eq_ind T u (\lambda (t0: T).((eq T t0 (TLRef i)) \to ((nf2 c0 t0) \to
-(\forall (u3: T).((nf2 c0 u3) \to ((pc3 c0 t1 u3) \to (ex T (\lambda (u0:
-T).(eq T u3 (lift (S i) O u0)))))))))) H4 (TLRef i) H6) in (let H12 \def
-(eq_ind T u (\lambda (t0: T).(ty3 g c0 t0 t1)) H3 (TLRef i) H6) in (let H_y
-\def (H11 (refl_equal T (TLRef i)) H10 u2 H8) in (H_y (pc3_t t2 c0 t1 H5 u2
-H9))))))))))))))))))))) (\lambda (c0: C).(\lambda (m: nat).(\lambda (H1: (eq
-T (TSort m) (TLRef i))).(\lambda (_: (nf2 c0 (TSort m))).(\lambda (u2:
-T).(\lambda (_: (nf2 c0 u2)).(\lambda (_: (pc3 c0 (TSort (next g m))
-u2)).(let H5 \def (eq_ind T (TSort m) (\lambda (ee: T).(match ee in T return
-(\lambda (_: T).Prop) with [(TSort _) \Rightarrow True | (TLRef _)
-\Rightarrow False | (THead _ _ _) \Rightarrow False])) I (TLRef i) H1) in
-(False_ind (ex T (\lambda (u: T).(eq T u2 (lift (S i) O u)))) H5)))))))))
-(\lambda (n: nat).(\lambda (c0: C).(\lambda (d: C).(\lambda (u: T).(\lambda
-(H1: (getl n c0 (CHead d (Bind Abbr) u))).(\lambda (t: T).(\lambda (_: (ty3 g
-d u t)).(\lambda (_: (((eq T u (TLRef i)) \to ((nf2 d u) \to (\forall (u2:
-T).((nf2 d u2) \to ((pc3 d t u2) \to (ex T (\lambda (u0: T).(eq T u2 (lift (S
-i) O u0))))))))))).(\lambda (H4: (eq T (TLRef n) (TLRef i))).(\lambda (H5:
-(nf2 c0 (TLRef n))).(\lambda (u2: T).(\lambda (_: (nf2 c0 u2)).(\lambda (H7:
-(pc3 c0 (lift (S n) O t) u2)).(let H8 \def (f_equal T nat (\lambda (e:
-T).(match e in T return (\lambda (_: T).nat) with [(TSort _) \Rightarrow n |
-(TLRef n0) \Rightarrow n0 | (THead _ _ _) \Rightarrow n])) (TLRef n) (TLRef
-i) H4) in (let H9 \def (eq_ind nat n (\lambda (n0: nat).(pc3 c0 (lift (S n0)
-O t) u2)) H7 i H8) in (let H10 \def (eq_ind nat n (\lambda (n0: nat).(nf2 c0
-(TLRef n0))) H5 i H8) in (let H11 \def (eq_ind nat n (\lambda (n0: nat).(getl
-n0 c0 (CHead d (Bind Abbr) u))) H1 i H8) in (nf2_gen_lref c0 d u i H11 H10
-(ex T (\lambda (u0: T).(eq T u2 (lift (S i) O u0))))))))))))))))))))))
-(\lambda (n: nat).(\lambda (c0: C).(\lambda (d: C).(\lambda (u: T).(\lambda
-(H1: (getl n c0 (CHead d (Bind Abst) u))).(\lambda (t: T).(\lambda (_: (ty3 g
-d u t)).(\lambda (_: (((eq T u (TLRef i)) \to ((nf2 d u) \to (\forall (u2:
-T).((nf2 d u2) \to ((pc3 d t u2) \to (ex T (\lambda (u0: T).(eq T u2 (lift (S
-i) O u0))))))))))).(\lambda (H4: (eq T (TLRef n) (TLRef i))).(\lambda (H5:
-(nf2 c0 (TLRef n))).(\lambda (u2: T).(\lambda (H6: (nf2 c0 u2)).(\lambda (H7:
-(pc3 c0 (lift (S n) O u) u2)).(let H8 \def (f_equal T nat (\lambda (e:
-T).(match e in T return (\lambda (_: T).nat) with [(TSort _) \Rightarrow n |
-(TLRef n0) \Rightarrow n0 | (THead _ _ _) \Rightarrow n])) (TLRef n) (TLRef
-i) H4) in (let H9 \def (eq_ind nat n (\lambda (n0: nat).(pc3 c0 (lift (S n0)
-O u) u2)) H7 i H8) in (let H10 \def (eq_ind nat n (\lambda (n0: nat).(nf2 c0
-(TLRef n0))) H5 i H8) in (let H11 \def (eq_ind nat n (\lambda (n0: nat).(getl
-n0 c0 (CHead d (Bind Abst) u))) H1 i H8) in (let H_y \def (pc3_nf2_unfold c0
-(lift (S i) O u) u2 H9 H6) in (let H12 \def (pr3_gen_lift c0 u u2 (S i) O H_y
-d (getl_drop Abst c0 d u i H11)) in (ex2_ind T (\lambda (t2: T).(eq T u2
-(lift (S i) O t2))) (\lambda (t2: T).(pr3 d u t2)) (ex T (\lambda (u0: T).(eq
-T u2 (lift (S i) O u0)))) (\lambda (x: T).(\lambda (H13: (eq T u2 (lift (S i)
-O x))).(\lambda (_: (pr3 d u x)).(eq_ind_r T (lift (S i) O x) (\lambda (t0:
-T).(ex T (\lambda (u0: T).(eq T t0 (lift (S i) O u0))))) (ex_intro T (\lambda
-(u0: T).(eq T (lift (S i) O x) (lift (S i) O u0))) x (refl_equal T (lift (S
-i) O x))) u2 H13)))) H12)))))))))))))))))))) (\lambda (c0: C).(\lambda (u:
-T).(\lambda (t: T).(\lambda (_: (ty3 g c0 u t)).(\lambda (_: (((eq T u (TLRef
-i)) \to ((nf2 c0 u) \to (\forall (u2: T).((nf2 c0 u2) \to ((pc3 c0 t u2) \to
-(ex T (\lambda (u0: T).(eq T u2 (lift (S i) O u0))))))))))).(\lambda (b:
-B).(\lambda (t1: T).(\lambda (t2: T).(\lambda (_: (ty3 g (CHead c0 (Bind b)
-u) t1 t2)).(\lambda (_: (((eq T t1 (TLRef i)) \to ((nf2 (CHead c0 (Bind b) u)
-t1) \to (\forall (u2: T).((nf2 (CHead c0 (Bind b) u) u2) \to ((pc3 (CHead c0
-(Bind b) u) t2 u2) \to (ex T (\lambda (u0: T).(eq T u2 (lift (S i) O
-u0))))))))))).(\lambda (H5: (eq T (THead (Bind b) u t1) (TLRef i))).(\lambda
-(_: (nf2 c0 (THead (Bind b) u t1))).(\lambda (u2: T).(\lambda (_: (nf2 c0
-u2)).(\lambda (_: (pc3 c0 (THead (Bind b) u t2) u2)).(let H9 \def (eq_ind T
-(THead (Bind b) u t1) (\lambda (ee: T).(match ee in T return (\lambda (_:
-T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False |
-(THead _ _ _) \Rightarrow True])) I (TLRef i) H5) in (False_ind (ex T
-(\lambda (u0: T).(eq T u2 (lift (S i) O u0)))) H9))))))))))))))))) (\lambda
-(c0: C).(\lambda (w: T).(\lambda (u: T).(\lambda (_: (ty3 g c0 w u)).(\lambda
-(_: (((eq T w (TLRef i)) \to ((nf2 c0 w) \to (\forall (u2: T).((nf2 c0 u2)
-\to ((pc3 c0 u u2) \to (ex T (\lambda (u0: T).(eq T u2 (lift (S i) O
-u0))))))))))).(\lambda (v: T).(\lambda (t: T).(\lambda (_: (ty3 g c0 v (THead
-(Bind Abst) u t))).(\lambda (_: (((eq T v (TLRef i)) \to ((nf2 c0 v) \to
-(\forall (u2: T).((nf2 c0 u2) \to ((pc3 c0 (THead (Bind Abst) u t) u2) \to
-(ex T (\lambda (u0: T).(eq T u2 (lift (S i) O u0))))))))))).(\lambda (H5: (eq
-T (THead (Flat Appl) w v) (TLRef i))).(\lambda (_: (nf2 c0 (THead (Flat Appl)
-w v))).(\lambda (u2: T).(\lambda (_: (nf2 c0 u2)).(\lambda (_: (pc3 c0 (THead
-(Flat Appl) w (THead (Bind Abst) u t)) u2)).(let H9 \def (eq_ind T (THead
-(Flat Appl) w v) (\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop)
-with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _
-_) \Rightarrow True])) I (TLRef i) H5) in (False_ind (ex T (\lambda (u0:
-T).(eq T u2 (lift (S i) O u0)))) H9)))))))))))))))) (\lambda (c0: C).(\lambda
-(t1: T).(\lambda (t2: T).(\lambda (_: (ty3 g c0 t1 t2)).(\lambda (_: (((eq T
-t1 (TLRef i)) \to ((nf2 c0 t1) \to (\forall (u2: T).((nf2 c0 u2) \to ((pc3 c0
-t2 u2) \to (ex T (\lambda (u: T).(eq T u2 (lift (S i) O u))))))))))).(\lambda
-(t0: T).(\lambda (_: (ty3 g c0 t2 t0)).(\lambda (_: (((eq T t2 (TLRef i)) \to
-((nf2 c0 t2) \to (\forall (u2: T).((nf2 c0 u2) \to ((pc3 c0 t0 u2) \to (ex T
-(\lambda (u: T).(eq T u2 (lift (S i) O u))))))))))).(\lambda (H5: (eq T
-(THead (Flat Cast) t2 t1) (TLRef i))).(\lambda (_: (nf2 c0 (THead (Flat Cast)
-t2 t1))).(\lambda (u2: T).(\lambda (_: (nf2 c0 u2)).(\lambda (_: (pc3 c0
-(THead (Flat Cast) t0 t2) u2)).(let H9 \def (eq_ind T (THead (Flat Cast) t2
-t1) (\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with [(TSort
-_) \Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _ _)
-\Rightarrow True])) I (TLRef i) H5) in (False_ind (ex T (\lambda (u: T).(eq T
-u2 (lift (S i) O u)))) H9))))))))))))))) c y u1 H0))) H))))).
-
-theorem ty3_inv_lref_nf2:
- \forall (g: G).(\forall (c: C).(\forall (u: T).(\forall (i: nat).((ty3 g c
-(TLRef i) u) \to ((nf2 c (TLRef i)) \to ((nf2 c u) \to (ex T (\lambda (u0:
-T).(eq T u (lift (S i) O u0))))))))))
-\def
- \lambda (g: G).(\lambda (c: C).(\lambda (u: T).(\lambda (i: nat).(\lambda
-(H: (ty3 g c (TLRef i) u)).(\lambda (H0: (nf2 c (TLRef i))).(\lambda (H1:
-(nf2 c u)).(ty3_inv_lref_nf2_pc3 g c u i H H0 u H1 (pc3_refl c u)))))))).
-
-theorem ty3_inv_appls_lref_nf2:
- \forall (g: G).(\forall (c: C).(\forall (vs: TList).(\forall (u1:
-T).(\forall (i: nat).((ty3 g c (THeads (Flat Appl) vs (TLRef i)) u1) \to
-((nf2 c (TLRef i)) \to ((nf2 c u1) \to (ex2 T (\lambda (u: T).(nf2 c (lift (S
-i) O u))) (\lambda (u: T).(pc3 c (THeads (Flat Appl) vs (lift (S i) O u))
-u1))))))))))
-\def
- \lambda (g: G).(\lambda (c: C).(\lambda (vs: TList).(TList_ind (\lambda (t:
-TList).(\forall (u1: T).(\forall (i: nat).((ty3 g c (THeads (Flat Appl) t
-(TLRef i)) u1) \to ((nf2 c (TLRef i)) \to ((nf2 c u1) \to (ex2 T (\lambda (u:
-T).(nf2 c (lift (S i) O u))) (\lambda (u: T).(pc3 c (THeads (Flat Appl) t
-(lift (S i) O u)) u1))))))))) (\lambda (u1: T).(\lambda (i: nat).(\lambda (H:
-(ty3 g c (TLRef i) u1)).(\lambda (H0: (nf2 c (TLRef i))).(\lambda (H1: (nf2 c
-u1)).(let H_x \def (ty3_inv_lref_nf2 g c u1 i H H0 H1) in (let H2 \def H_x in
-(ex_ind T (\lambda (u0: T).(eq T u1 (lift (S i) O u0))) (ex2 T (\lambda (u:
-T).(nf2 c (lift (S i) O u))) (\lambda (u: T).(pc3 c (lift (S i) O u) u1)))
-(\lambda (x: T).(\lambda (H3: (eq T u1 (lift (S i) O x))).(let H4 \def
-(eq_ind T u1 (\lambda (t: T).(nf2 c t)) H1 (lift (S i) O x) H3) in (eq_ind_r
-T (lift (S i) O x) (\lambda (t: T).(ex2 T (\lambda (u: T).(nf2 c (lift (S i)
-O u))) (\lambda (u: T).(pc3 c (lift (S i) O u) t)))) (ex_intro2 T (\lambda
-(u: T).(nf2 c (lift (S i) O u))) (\lambda (u: T).(pc3 c (lift (S i) O u)
-(lift (S i) O x))) x H4 (pc3_refl c (lift (S i) O x))) u1 H3)))) H2))))))))
-(\lambda (t: T).(\lambda (t0: TList).(\lambda (H: ((\forall (u1: T).(\forall
-(i: nat).((ty3 g c (THeads (Flat Appl) t0 (TLRef i)) u1) \to ((nf2 c (TLRef
-i)) \to ((nf2 c u1) \to (ex2 T (\lambda (u: T).(nf2 c (lift (S i) O u)))
-(\lambda (u: T).(pc3 c (THeads (Flat Appl) t0 (lift (S i) O u))
-u1)))))))))).(\lambda (u1: T).(\lambda (i: nat).(\lambda (H0: (ty3 g c (THead
-(Flat Appl) t (THeads (Flat Appl) t0 (TLRef i))) u1)).(\lambda (H1: (nf2 c
-(TLRef i))).(\lambda (_: (nf2 c u1)).(let H_x \def (ty3_gen_appl_nf2 g c t
-(THeads (Flat Appl) t0 (TLRef i)) u1 H0) in (let H3 \def H_x in (ex4_2_ind T
-T (\lambda (u: T).(\lambda (t1: T).(pc3 c (THead (Flat Appl) t (THead (Bind
-Abst) u t1)) u1))) (\lambda (u: T).(\lambda (t1: T).(ty3 g c (THeads (Flat
-Appl) t0 (TLRef i)) (THead (Bind Abst) u t1)))) (\lambda (u: T).(\lambda (_:
-T).(ty3 g c t u))) (\lambda (u: T).(\lambda (t1: T).(nf2 c (THead (Bind Abst)
-u t1)))) (ex2 T (\lambda (u: T).(nf2 c (lift (S i) O u))) (\lambda (u:
-T).(pc3 c (THead (Flat Appl) t (THeads (Flat Appl) t0 (lift (S i) O u)))
-u1))) (\lambda (x0: T).(\lambda (x1: T).(\lambda (H4: (pc3 c (THead (Flat
-Appl) t (THead (Bind Abst) x0 x1)) u1)).(\lambda (H5: (ty3 g c (THeads (Flat
-Appl) t0 (TLRef i)) (THead (Bind Abst) x0 x1))).(\lambda (_: (ty3 g c t
-x0)).(\lambda (H7: (nf2 c (THead (Bind Abst) x0 x1))).(let H8 \def
-(nf2_gen_abst c x0 x1 H7) in (land_ind (nf2 c x0) (nf2 (CHead c (Bind Abst)
-x0) x1) (ex2 T (\lambda (u: T).(nf2 c (lift (S i) O u))) (\lambda (u: T).(pc3
-c (THead (Flat Appl) t (THeads (Flat Appl) t0 (lift (S i) O u))) u1)))
-(\lambda (H9: (nf2 c x0)).(\lambda (H10: (nf2 (CHead c (Bind Abst) x0)
-x1)).(let H_y \def (H (THead (Bind Abst) x0 x1) i H5 H1) in (let H11 \def
-(H_y (nf2_abst_shift c x0 H9 x1 H10)) in (ex2_ind T (\lambda (u: T).(nf2 c
-(lift (S i) O u))) (\lambda (u: T).(pc3 c (THeads (Flat Appl) t0 (lift (S i)
-O u)) (THead (Bind Abst) x0 x1))) (ex2 T (\lambda (u: T).(nf2 c (lift (S i) O
-u))) (\lambda (u: T).(pc3 c (THead (Flat Appl) t (THeads (Flat Appl) t0 (lift
-(S i) O u))) u1))) (\lambda (x: T).(\lambda (H12: (nf2 c (lift (S i) O
-x))).(\lambda (H13: (pc3 c (THeads (Flat Appl) t0 (lift (S i) O x)) (THead
-(Bind Abst) x0 x1))).(ex_intro2 T (\lambda (u: T).(nf2 c (lift (S i) O u)))
-(\lambda (u: T).(pc3 c (THead (Flat Appl) t (THeads (Flat Appl) t0 (lift (S
-i) O u))) u1)) x H12 (pc3_t (THead (Flat Appl) t (THead (Bind Abst) x0 x1)) c
-(THead (Flat Appl) t (THeads (Flat Appl) t0 (lift (S i) O x))) (pc3_thin_dx c
-(THeads (Flat Appl) t0 (lift (S i) O x)) (THead (Bind Abst) x0 x1) H13 t
-Appl) u1 H4))))) H11))))) H8)))))))) H3))))))))))) vs))).
-
-theorem ty3_inv_lref_lref_nf2:
- \forall (g: G).(\forall (c: C).(\forall (i: nat).(\forall (j: nat).((ty3 g c
-(TLRef i) (TLRef j)) \to ((nf2 c (TLRef i)) \to ((nf2 c (TLRef j)) \to (lt i
-j)))))))
-\def
- \lambda (g: G).(\lambda (c: C).(\lambda (i: nat).(\lambda (j: nat).(\lambda
-(H: (ty3 g c (TLRef i) (TLRef j))).(\lambda (H0: (nf2 c (TLRef i))).(\lambda
-(H1: (nf2 c (TLRef j))).(let H_x \def (ty3_inv_lref_nf2 g c (TLRef j) i H H0
-H1) in (let H2 \def H_x in (ex_ind T (\lambda (u0: T).(eq T (TLRef j) (lift
-(S i) O u0))) (lt i j) (\lambda (x: T).(\lambda (H3: (eq T (TLRef j) (lift (S
-i) O x))).(let H_x0 \def (lift_gen_lref x O (S i) j H3) in (let H4 \def H_x0
-in (or_ind (land (lt j O) (eq T x (TLRef j))) (land (le (S i) j) (eq T x
-(TLRef (minus j (S i))))) (lt i j) (\lambda (H5: (land (lt j O) (eq T x
-(TLRef j)))).(land_ind (lt j O) (eq T x (TLRef j)) (lt i j) (\lambda (H6: (lt
-j O)).(\lambda (_: (eq T x (TLRef j))).(lt_x_O j H6 (lt i j)))) H5)) (\lambda
-(H5: (land (le (S i) j) (eq T x (TLRef (minus j (S i)))))).(land_ind (le (S
-i) j) (eq T x (TLRef (minus j (S i)))) (lt i j) (\lambda (H6: (le (S i)
-j)).(\lambda (_: (eq T x (TLRef (minus j (S i))))).H6)) H5)) H4)))))
-H2))))))))).
-
include "LambdaDelta-1/ty3/sty0.ma".
+include "LambdaDelta-1/csubt/csuba.ma".
+
+include "LambdaDelta-1/ty3/fwd_nf2.ma".
+
include "LambdaDelta-1/ty3/nf2.ma".
include "LambdaDelta-1/wf3/props.ma".
x0)).(\lambda (H13: (arity g (CHead c0 (Bind Void) u) t4 (asucc g
x0))).(ex_intro2 A (\lambda (a1: A).(arity g c0 (THead (Bind Void) u t3) a1))
(\lambda (a1: A).(arity g c0 (THead (Bind Void) u t4) (asucc g a1))) x0
-(arity_bind g Void not_void_abst c0 u x H5 t3 x0 H12) (arity_bind g Void
-not_void_abst c0 u x H5 t4 (asucc g x0) H13)))) b H8 H9))) H10)))))) H7)))))
-H4)))))))))))) (\lambda (c0: C).(\lambda (w: T).(\lambda (u: T).(\lambda (_:
-(ty3 g c0 w u)).(\lambda (H1: (ex2 A (\lambda (a1: A).(arity g c0 w a1))
-(\lambda (a1: A).(arity g c0 u (asucc g a1))))).(\lambda (v: T).(\lambda (t:
-T).(\lambda (_: (ty3 g c0 v (THead (Bind Abst) u t))).(\lambda (H3: (ex2 A
-(\lambda (a1: A).(arity g c0 v a1)) (\lambda (a1: A).(arity g c0 (THead (Bind
-Abst) u t) (asucc g a1))))).(let H4 \def H1 in (ex2_ind A (\lambda (a1:
-A).(arity g c0 w a1)) (\lambda (a1: A).(arity g c0 u (asucc g a1))) (ex2 A
-(\lambda (a1: A).(arity g c0 (THead (Flat Appl) w v) a1)) (\lambda (a1:
-A).(arity g c0 (THead (Flat Appl) w (THead (Bind Abst) u t)) (asucc g a1))))
-(\lambda (x: A).(\lambda (H5: (arity g c0 w x)).(\lambda (H6: (arity g c0 u
-(asucc g x))).(let H7 \def H3 in (ex2_ind A (\lambda (a1: A).(arity g c0 v
-a1)) (\lambda (a1: A).(arity g c0 (THead (Bind Abst) u t) (asucc g a1))) (ex2
-A (\lambda (a1: A).(arity g c0 (THead (Flat Appl) w v) a1)) (\lambda (a1:
-A).(arity g c0 (THead (Flat Appl) w (THead (Bind Abst) u t)) (asucc g a1))))
-(\lambda (x0: A).(\lambda (H8: (arity g c0 v x0)).(\lambda (H9: (arity g c0
-(THead (Bind Abst) u t) (asucc g x0))).(let H10 \def (arity_gen_abst g c0 u t
-(asucc g x0) H9) in (ex3_2_ind A A (\lambda (a1: A).(\lambda (a2: A).(eq A
-(asucc g x0) (AHead a1 a2)))) (\lambda (a1: A).(\lambda (_: A).(arity g c0 u
-(asucc g a1)))) (\lambda (_: A).(\lambda (a2: A).(arity g (CHead c0 (Bind
-Abst) u) t a2))) (ex2 A (\lambda (a1: A).(arity g c0 (THead (Flat Appl) w v)
+(arity_bind g Void (sym_not_eq B Abst Void not_abst_void) c0 u x H5 t3 x0
+H12) (arity_bind g Void (sym_not_eq B Abst Void not_abst_void) c0 u x H5 t4
+(asucc g x0) H13)))) b H8 H9))) H10)))))) H7))))) H4)))))))))))) (\lambda
+(c0: C).(\lambda (w: T).(\lambda (u: T).(\lambda (_: (ty3 g c0 w u)).(\lambda
+(H1: (ex2 A (\lambda (a1: A).(arity g c0 w a1)) (\lambda (a1: A).(arity g c0
+u (asucc g a1))))).(\lambda (v: T).(\lambda (t: T).(\lambda (_: (ty3 g c0 v
+(THead (Bind Abst) u t))).(\lambda (H3: (ex2 A (\lambda (a1: A).(arity g c0 v
+a1)) (\lambda (a1: A).(arity g c0 (THead (Bind Abst) u t) (asucc g
+a1))))).(let H4 \def H1 in (ex2_ind A (\lambda (a1: A).(arity g c0 w a1))
+(\lambda (a1: A).(arity g c0 u (asucc g a1))) (ex2 A (\lambda (a1: A).(arity
+g c0 (THead (Flat Appl) w v) a1)) (\lambda (a1: A).(arity g c0 (THead (Flat
+Appl) w (THead (Bind Abst) u t)) (asucc g a1)))) (\lambda (x: A).(\lambda
+(H5: (arity g c0 w x)).(\lambda (H6: (arity g c0 u (asucc g x))).(let H7 \def
+H3 in (ex2_ind A (\lambda (a1: A).(arity g c0 v a1)) (\lambda (a1: A).(arity
+g c0 (THead (Bind Abst) u t) (asucc g a1))) (ex2 A (\lambda (a1: A).(arity g
+c0 (THead (Flat Appl) w v) a1)) (\lambda (a1: A).(arity g c0 (THead (Flat
+Appl) w (THead (Bind Abst) u t)) (asucc g a1)))) (\lambda (x0: A).(\lambda
+(H8: (arity g c0 v x0)).(\lambda (H9: (arity g c0 (THead (Bind Abst) u t)
+(asucc g x0))).(let H10 \def (arity_gen_abst g c0 u t (asucc g x0) H9) in
+(ex3_2_ind A A (\lambda (a1: A).(\lambda (a2: A).(eq A (asucc g x0) (AHead a1
+a2)))) (\lambda (a1: A).(\lambda (_: A).(arity g c0 u (asucc g a1))))
+(\lambda (_: A).(\lambda (a2: A).(arity g (CHead c0 (Bind Abst) u) t a2)))
+(ex2 A (\lambda (a1: A).(arity g c0 (THead (Flat Appl) w v) a1)) (\lambda
+(a1: A).(arity g c0 (THead (Flat Appl) w (THead (Bind Abst) u t)) (asucc g
+a1)))) (\lambda (x1: A).(\lambda (x2: A).(\lambda (H11: (eq A (asucc g x0)
+(AHead x1 x2))).(\lambda (H12: (arity g c0 u (asucc g x1))).(\lambda (H13:
+(arity g (CHead c0 (Bind Abst) u) t x2)).(let H14 \def (sym_eq A (asucc g x0)
+(AHead x1 x2) H11) in (let H15 \def (asucc_gen_head g x1 x2 x0 H14) in
+(ex2_ind A (\lambda (a0: A).(eq A x0 (AHead x1 a0))) (\lambda (a0: A).(eq A
+x2 (asucc g a0))) (ex2 A (\lambda (a1: A).(arity g c0 (THead (Flat Appl) w v)
a1)) (\lambda (a1: A).(arity g c0 (THead (Flat Appl) w (THead (Bind Abst) u
-t)) (asucc g a1)))) (\lambda (x1: A).(\lambda (x2: A).(\lambda (H11: (eq A
-(asucc g x0) (AHead x1 x2))).(\lambda (H12: (arity g c0 u (asucc g
-x1))).(\lambda (H13: (arity g (CHead c0 (Bind Abst) u) t x2)).(let H14 \def
-(sym_eq A (asucc g x0) (AHead x1 x2) H11) in (let H15 \def (asucc_gen_head g
-x1 x2 x0 H14) in (ex2_ind A (\lambda (a0: A).(eq A x0 (AHead x1 a0)))
-(\lambda (a0: A).(eq A x2 (asucc g a0))) (ex2 A (\lambda (a1: A).(arity g c0
-(THead (Flat Appl) w v) a1)) (\lambda (a1: A).(arity g c0 (THead (Flat Appl)
-w (THead (Bind Abst) u t)) (asucc g a1)))) (\lambda (x3: A).(\lambda (H16:
-(eq A x0 (AHead x1 x3))).(\lambda (H17: (eq A x2 (asucc g x3))).(let H18 \def
-(eq_ind A x2 (\lambda (a: A).(arity g (CHead c0 (Bind Abst) u) t a)) H13
-(asucc g x3) H17) in (let H19 \def (eq_ind A x0 (\lambda (a: A).(arity g c0 v
-a)) H8 (AHead x1 x3) H16) in (ex_intro2 A (\lambda (a1: A).(arity g c0 (THead
-(Flat Appl) w v) a1)) (\lambda (a1: A).(arity g c0 (THead (Flat Appl) w
-(THead (Bind Abst) u t)) (asucc g a1))) x3 (arity_appl g c0 w x1 (arity_repl
-g c0 w x H5 x1 (leq_sym g x1 x (asucc_inj g x1 x (arity_mono g c0 u (asucc g
-x1) H12 (asucc g x) H6)))) v x3 H19) (arity_appl g c0 w x H5 (THead (Bind
-Abst) u t) (asucc g x3) (arity_head g c0 u x H6 t (asucc g x3) H18))))))))
-H15)))))))) H10))))) H7))))) H4))))))))))) (\lambda (c0: C).(\lambda (t3:
-T).(\lambda (t4: T).(\lambda (_: (ty3 g c0 t3 t4)).(\lambda (H1: (ex2 A
-(\lambda (a1: A).(arity g c0 t3 a1)) (\lambda (a1: A).(arity g c0 t4 (asucc g
+t)) (asucc g a1)))) (\lambda (x3: A).(\lambda (H16: (eq A x0 (AHead x1
+x3))).(\lambda (H17: (eq A x2 (asucc g x3))).(let H18 \def (eq_ind A x2
+(\lambda (a: A).(arity g (CHead c0 (Bind Abst) u) t a)) H13 (asucc g x3) H17)
+in (let H19 \def (eq_ind A x0 (\lambda (a: A).(arity g c0 v a)) H8 (AHead x1
+x3) H16) in (ex_intro2 A (\lambda (a1: A).(arity g c0 (THead (Flat Appl) w v)
+a1)) (\lambda (a1: A).(arity g c0 (THead (Flat Appl) w (THead (Bind Abst) u
+t)) (asucc g a1))) x3 (arity_appl g c0 w x1 (arity_repl g c0 w x H5 x1
+(leq_sym g x1 x (asucc_inj g x1 x (arity_mono g c0 u (asucc g x1) H12 (asucc
+g x) H6)))) v x3 H19) (arity_appl g c0 w x H5 (THead (Bind Abst) u t) (asucc
+g x3) (arity_head g c0 u x H6 t (asucc g x3) H18)))))))) H15)))))))) H10)))))
+H7))))) H4))))))))))) (\lambda (c0: C).(\lambda (t3: T).(\lambda (t4:
+T).(\lambda (_: (ty3 g c0 t3 t4)).(\lambda (H1: (ex2 A (\lambda (a1:
+A).(arity g c0 t3 a1)) (\lambda (a1: A).(arity g c0 t4 (asucc g
a1))))).(\lambda (t0: T).(\lambda (_: (ty3 g c0 t4 t0)).(\lambda (H3: (ex2 A
(\lambda (a1: A).(arity g c0 t4 a1)) (\lambda (a1: A).(arity g c0 t0 (asucc g
a1))))).(let H4 \def H1 in (ex2_ind A (\lambda (a1: A).(arity g c0 t3 a1))
\to (\forall (t0: T).((ty3 g c t2 t0) \to (ty3 g c (THead (Flat Cast) t2 t1)
(THead (Flat Cast) t0 t2))))))).
+inductive tys3 (g: G) (c: C): TList \to (T \to Prop) \def
+| tys3_nil: \forall (u: T).(\forall (u0: T).((ty3 g c u u0) \to (tys3 g c
+TNil u)))
+| tys3_cons: \forall (t: T).(\forall (u: T).((ty3 g c t u) \to (\forall (ts:
+TList).((tys3 g c ts u) \to (tys3 g c (TCons t ts) u))))).
+
include "LambdaDelta-1/pc3/fsubst0.ma".
-include "LambdaDelta-1/csubst0/props.ma".
-
include "LambdaDelta-1/getl/getl.ma".
theorem ty3_fsubst0:
(\lambda (t5: T).(ty3 g c0 t2 t5)) t4 (pc3_refl c0 (THead (Flat Cast) t4 t2))
H14 H10))) t3 H8))))))) H6))))))))))) c y x H0))) H)))))).
+theorem tys3_gen_nil:
+ \forall (g: G).(\forall (c: C).(\forall (u: T).((tys3 g c TNil u) \to (ex T
+(\lambda (u0: T).(ty3 g c u u0))))))
+\def
+ \lambda (g: G).(\lambda (c: C).(\lambda (u: T).(\lambda (H: (tys3 g c TNil
+u)).(insert_eq TList TNil (\lambda (t: TList).(tys3 g c t u)) (\lambda (_:
+TList).(ex T (\lambda (u0: T).(ty3 g c u u0)))) (\lambda (y: TList).(\lambda
+(H0: (tys3 g c y u)).(tys3_ind g c (\lambda (t: TList).(\lambda (t0: T).((eq
+TList t TNil) \to (ex T (\lambda (u0: T).(ty3 g c t0 u0)))))) (\lambda (u0:
+T).(\lambda (u1: T).(\lambda (H1: (ty3 g c u0 u1)).(\lambda (_: (eq TList
+TNil TNil)).(ex_intro T (\lambda (u2: T).(ty3 g c u0 u2)) u1 H1))))) (\lambda
+(t: T).(\lambda (u0: T).(\lambda (_: (ty3 g c t u0)).(\lambda (ts:
+TList).(\lambda (_: (tys3 g c ts u0)).(\lambda (_: (((eq TList ts TNil) \to
+(ex T (\lambda (u1: T).(ty3 g c u0 u1)))))).(\lambda (H4: (eq TList (TCons t
+ts) TNil)).(let H5 \def (eq_ind TList (TCons t ts) (\lambda (ee:
+TList).(match ee in TList return (\lambda (_: TList).Prop) with [TNil
+\Rightarrow False | (TCons _ _) \Rightarrow True])) I TNil H4) in (False_ind
+(ex T (\lambda (u1: T).(ty3 g c u0 u1))) H5))))))))) y u H0))) H)))).
+
+theorem tys3_gen_cons:
+ \forall (g: G).(\forall (c: C).(\forall (ts: TList).(\forall (t: T).(\forall
+(u: T).((tys3 g c (TCons t ts) u) \to (land (ty3 g c t u) (tys3 g c ts
+u)))))))
+\def
+ \lambda (g: G).(\lambda (c: C).(\lambda (ts: TList).(\lambda (t: T).(\lambda
+(u: T).(\lambda (H: (tys3 g c (TCons t ts) u)).(insert_eq TList (TCons t ts)
+(\lambda (t0: TList).(tys3 g c t0 u)) (\lambda (_: TList).(land (ty3 g c t u)
+(tys3 g c ts u))) (\lambda (y: TList).(\lambda (H0: (tys3 g c y u)).(tys3_ind
+g c (\lambda (t0: TList).(\lambda (t1: T).((eq TList t0 (TCons t ts)) \to
+(land (ty3 g c t t1) (tys3 g c ts t1))))) (\lambda (u0: T).(\lambda (u1:
+T).(\lambda (_: (ty3 g c u0 u1)).(\lambda (H2: (eq TList TNil (TCons t
+ts))).(let H3 \def (eq_ind TList TNil (\lambda (ee: TList).(match ee in TList
+return (\lambda (_: TList).Prop) with [TNil \Rightarrow True | (TCons _ _)
+\Rightarrow False])) I (TCons t ts) H2) in (False_ind (land (ty3 g c t u0)
+(tys3 g c ts u0)) H3)))))) (\lambda (t0: T).(\lambda (u0: T).(\lambda (H1:
+(ty3 g c t0 u0)).(\lambda (ts0: TList).(\lambda (H2: (tys3 g c ts0
+u0)).(\lambda (H3: (((eq TList ts0 (TCons t ts)) \to (land (ty3 g c t u0)
+(tys3 g c ts u0))))).(\lambda (H4: (eq TList (TCons t0 ts0) (TCons t
+ts))).(let H5 \def (f_equal TList T (\lambda (e: TList).(match e in TList
+return (\lambda (_: TList).T) with [TNil \Rightarrow t0 | (TCons t1 _)
+\Rightarrow t1])) (TCons t0 ts0) (TCons t ts) H4) in ((let H6 \def (f_equal
+TList TList (\lambda (e: TList).(match e in TList return (\lambda (_:
+TList).TList) with [TNil \Rightarrow ts0 | (TCons _ t1) \Rightarrow t1]))
+(TCons t0 ts0) (TCons t ts) H4) in (\lambda (H7: (eq T t0 t)).(let H8 \def
+(eq_ind TList ts0 (\lambda (t1: TList).((eq TList t1 (TCons t ts)) \to (land
+(ty3 g c t u0) (tys3 g c ts u0)))) H3 ts H6) in (let H9 \def (eq_ind TList
+ts0 (\lambda (t1: TList).(tys3 g c t1 u0)) H2 ts H6) in (let H10 \def (eq_ind
+T t0 (\lambda (t1: T).(ty3 g c t1 u0)) H1 t H7) in (conj (ty3 g c t u0) (tys3
+g c ts u0) H10 H9)))))) H5))))))))) y u H0))) H)))))).
+
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+(* This file was automatically generated: do not edit *********************)
+
+include "LambdaDelta-1/ty3/arity_props.ma".
+
+include "LambdaDelta-1/pc3/nf2.ma".
+
+include "LambdaDelta-1/nf2/fwd.ma".
+
+theorem ty3_gen_appl_nf2:
+ \forall (g: G).(\forall (c: C).(\forall (w: T).(\forall (v: T).(\forall (x:
+T).((ty3 g c (THead (Flat Appl) w v) x) \to (ex4_2 T T (\lambda (u:
+T).(\lambda (t: T).(pc3 c (THead (Flat Appl) w (THead (Bind Abst) u t)) x)))
+(\lambda (u: T).(\lambda (t: T).(ty3 g c v (THead (Bind Abst) u t))))
+(\lambda (u: T).(\lambda (_: T).(ty3 g c w u))) (\lambda (u: T).(\lambda (t:
+T).(nf2 c (THead (Bind Abst) u t))))))))))
+\def
+ \lambda (g: G).(\lambda (c: C).(\lambda (w: T).(\lambda (v: T).(\lambda (x:
+T).(\lambda (H: (ty3 g c (THead (Flat Appl) w v) x)).(ex3_2_ind T T (\lambda
+(u: T).(\lambda (t: T).(pc3 c (THead (Flat Appl) w (THead (Bind Abst) u t))
+x))) (\lambda (u: T).(\lambda (t: T).(ty3 g c v (THead (Bind Abst) u t))))
+(\lambda (u: T).(\lambda (_: T).(ty3 g c w u))) (ex4_2 T T (\lambda (u:
+T).(\lambda (t: T).(pc3 c (THead (Flat Appl) w (THead (Bind Abst) u t)) x)))
+(\lambda (u: T).(\lambda (t: T).(ty3 g c v (THead (Bind Abst) u t))))
+(\lambda (u: T).(\lambda (_: T).(ty3 g c w u))) (\lambda (u: T).(\lambda (t:
+T).(nf2 c (THead (Bind Abst) u t))))) (\lambda (x0: T).(\lambda (x1:
+T).(\lambda (H0: (pc3 c (THead (Flat Appl) w (THead (Bind Abst) x0 x1))
+x)).(\lambda (H1: (ty3 g c v (THead (Bind Abst) x0 x1))).(\lambda (H2: (ty3 g
+c w x0)).(let H_x \def (ty3_correct g c v (THead (Bind Abst) x0 x1) H1) in
+(let H3 \def H_x in (ex_ind T (\lambda (t: T).(ty3 g c (THead (Bind Abst) x0
+x1) t)) (ex4_2 T T (\lambda (u: T).(\lambda (t: T).(pc3 c (THead (Flat Appl)
+w (THead (Bind Abst) u t)) x))) (\lambda (u: T).(\lambda (t: T).(ty3 g c v
+(THead (Bind Abst) u t)))) (\lambda (u: T).(\lambda (_: T).(ty3 g c w u)))
+(\lambda (u: T).(\lambda (t: T).(nf2 c (THead (Bind Abst) u t))))) (\lambda
+(x2: T).(\lambda (H4: (ty3 g c (THead (Bind Abst) x0 x1) x2)).(let H_x0 \def
+(ty3_correct g c w x0 H2) in (let H5 \def H_x0 in (ex_ind T (\lambda (t:
+T).(ty3 g c x0 t)) (ex4_2 T T (\lambda (u: T).(\lambda (t: T).(pc3 c (THead
+(Flat Appl) w (THead (Bind Abst) u t)) x))) (\lambda (u: T).(\lambda (t:
+T).(ty3 g c v (THead (Bind Abst) u t)))) (\lambda (u: T).(\lambda (_: T).(ty3
+g c w u))) (\lambda (u: T).(\lambda (t: T).(nf2 c (THead (Bind Abst) u t)))))
+(\lambda (x3: T).(\lambda (H6: (ty3 g c x0 x3)).(let H7 \def (ty3_sn3 g c
+(THead (Bind Abst) x0 x1) x2 H4) in (let H_x1 \def (nf2_sn3 c (THead (Bind
+Abst) x0 x1) H7) in (let H8 \def H_x1 in (ex2_ind T (\lambda (u: T).(pr3 c
+(THead (Bind Abst) x0 x1) u)) (\lambda (u: T).(nf2 c u)) (ex4_2 T T (\lambda
+(u: T).(\lambda (t: T).(pc3 c (THead (Flat Appl) w (THead (Bind Abst) u t))
+x))) (\lambda (u: T).(\lambda (t: T).(ty3 g c v (THead (Bind Abst) u t))))
+(\lambda (u: T).(\lambda (_: T).(ty3 g c w u))) (\lambda (u: T).(\lambda (t:
+T).(nf2 c (THead (Bind Abst) u t))))) (\lambda (x4: T).(\lambda (H9: (pr3 c
+(THead (Bind Abst) x0 x1) x4)).(\lambda (H10: (nf2 c x4)).(let H11 \def
+(pr3_gen_abst c x0 x1 x4 H9) in (ex3_2_ind T T (\lambda (u2: T).(\lambda (t2:
+T).(eq T x4 (THead (Bind Abst) u2 t2)))) (\lambda (u2: T).(\lambda (_:
+T).(pr3 c x0 u2))) (\lambda (_: T).(\lambda (t2: T).(\forall (b: B).(\forall
+(u: T).(pr3 (CHead c (Bind b) u) x1 t2))))) (ex4_2 T T (\lambda (u:
+T).(\lambda (t: T).(pc3 c (THead (Flat Appl) w (THead (Bind Abst) u t)) x)))
+(\lambda (u: T).(\lambda (t: T).(ty3 g c v (THead (Bind Abst) u t))))
+(\lambda (u: T).(\lambda (_: T).(ty3 g c w u))) (\lambda (u: T).(\lambda (t:
+T).(nf2 c (THead (Bind Abst) u t))))) (\lambda (x5: T).(\lambda (x6:
+T).(\lambda (H12: (eq T x4 (THead (Bind Abst) x5 x6))).(\lambda (H13: (pr3 c
+x0 x5)).(\lambda (H14: ((\forall (b: B).(\forall (u: T).(pr3 (CHead c (Bind
+b) u) x1 x6))))).(let H15 \def (eq_ind T x4 (\lambda (t: T).(nf2 c t)) H10
+(THead (Bind Abst) x5 x6) H12) in (let H16 \def (pr3_head_12 c x0 x5 H13
+(Bind Abst) x1 x6 (H14 Abst x5)) in (ex4_2_intro T T (\lambda (u: T).(\lambda
+(t: T).(pc3 c (THead (Flat Appl) w (THead (Bind Abst) u t)) x))) (\lambda (u:
+T).(\lambda (t: T).(ty3 g c v (THead (Bind Abst) u t)))) (\lambda (u:
+T).(\lambda (_: T).(ty3 g c w u))) (\lambda (u: T).(\lambda (t: T).(nf2 c
+(THead (Bind Abst) u t)))) x5 x6 (pc3_pr3_conf c (THead (Flat Appl) w (THead
+(Bind Abst) x0 x1)) x H0 (THead (Flat Appl) w (THead (Bind Abst) x5 x6))
+(pr3_thin_dx c (THead (Bind Abst) x0 x1) (THead (Bind Abst) x5 x6) H16 w
+Appl)) (ty3_conv g c (THead (Bind Abst) x5 x6) x2 (ty3_sred_pr3 c (THead
+(Bind Abst) x0 x1) (THead (Bind Abst) x5 x6) H16 g x2 H4) v (THead (Bind
+Abst) x0 x1) H1 (pc3_pr3_r c (THead (Bind Abst) x0 x1) (THead (Bind Abst) x5
+x6) H16)) (ty3_conv g c x5 x3 (ty3_sred_pr3 c x0 x5 H13 g x3 H6) w x0 H2
+(pc3_pr3_r c x0 x5 H13)) H15)))))))) H11))))) H8)))))) H5))))) H3))))))))
+(ty3_gen_appl g c w v x H))))))).
+
+theorem ty3_inv_lref_nf2_pc3:
+ \forall (g: G).(\forall (c: C).(\forall (u1: T).(\forall (i: nat).((ty3 g c
+(TLRef i) u1) \to ((nf2 c (TLRef i)) \to (\forall (u2: T).((nf2 c u2) \to
+((pc3 c u1 u2) \to (ex T (\lambda (u: T).(eq T u2 (lift (S i) O u))))))))))))
+\def
+ \lambda (g: G).(\lambda (c: C).(\lambda (u1: T).(\lambda (i: nat).(\lambda
+(H: (ty3 g c (TLRef i) u1)).(insert_eq T (TLRef i) (\lambda (t: T).(ty3 g c t
+u1)) (\lambda (t: T).((nf2 c t) \to (\forall (u2: T).((nf2 c u2) \to ((pc3 c
+u1 u2) \to (ex T (\lambda (u: T).(eq T u2 (lift (S i) O u))))))))) (\lambda
+(y: T).(\lambda (H0: (ty3 g c y u1)).(ty3_ind g (\lambda (c0: C).(\lambda (t:
+T).(\lambda (t0: T).((eq T t (TLRef i)) \to ((nf2 c0 t) \to (\forall (u2:
+T).((nf2 c0 u2) \to ((pc3 c0 t0 u2) \to (ex T (\lambda (u: T).(eq T u2 (lift
+(S i) O u)))))))))))) (\lambda (c0: C).(\lambda (t2: T).(\lambda (t:
+T).(\lambda (_: (ty3 g c0 t2 t)).(\lambda (_: (((eq T t2 (TLRef i)) \to ((nf2
+c0 t2) \to (\forall (u2: T).((nf2 c0 u2) \to ((pc3 c0 t u2) \to (ex T
+(\lambda (u: T).(eq T u2 (lift (S i) O u))))))))))).(\lambda (u: T).(\lambda
+(t1: T).(\lambda (H3: (ty3 g c0 u t1)).(\lambda (H4: (((eq T u (TLRef i)) \to
+((nf2 c0 u) \to (\forall (u2: T).((nf2 c0 u2) \to ((pc3 c0 t1 u2) \to (ex T
+(\lambda (u0: T).(eq T u2 (lift (S i) O u0))))))))))).(\lambda (H5: (pc3 c0
+t1 t2)).(\lambda (H6: (eq T u (TLRef i))).(\lambda (H7: (nf2 c0 u)).(\lambda
+(u2: T).(\lambda (H8: (nf2 c0 u2)).(\lambda (H9: (pc3 c0 t2 u2)).(let H10
+\def (eq_ind T u (\lambda (t0: T).(nf2 c0 t0)) H7 (TLRef i) H6) in (let H11
+\def (eq_ind T u (\lambda (t0: T).((eq T t0 (TLRef i)) \to ((nf2 c0 t0) \to
+(\forall (u3: T).((nf2 c0 u3) \to ((pc3 c0 t1 u3) \to (ex T (\lambda (u0:
+T).(eq T u3 (lift (S i) O u0)))))))))) H4 (TLRef i) H6) in (let H12 \def
+(eq_ind T u (\lambda (t0: T).(ty3 g c0 t0 t1)) H3 (TLRef i) H6) in (let H_y
+\def (H11 (refl_equal T (TLRef i)) H10 u2 H8) in (H_y (pc3_t t2 c0 t1 H5 u2
+H9))))))))))))))))))))) (\lambda (c0: C).(\lambda (m: nat).(\lambda (H1: (eq
+T (TSort m) (TLRef i))).(\lambda (_: (nf2 c0 (TSort m))).(\lambda (u2:
+T).(\lambda (_: (nf2 c0 u2)).(\lambda (_: (pc3 c0 (TSort (next g m))
+u2)).(let H5 \def (eq_ind T (TSort m) (\lambda (ee: T).(match ee in T return
+(\lambda (_: T).Prop) with [(TSort _) \Rightarrow True | (TLRef _)
+\Rightarrow False | (THead _ _ _) \Rightarrow False])) I (TLRef i) H1) in
+(False_ind (ex T (\lambda (u: T).(eq T u2 (lift (S i) O u)))) H5)))))))))
+(\lambda (n: nat).(\lambda (c0: C).(\lambda (d: C).(\lambda (u: T).(\lambda
+(H1: (getl n c0 (CHead d (Bind Abbr) u))).(\lambda (t: T).(\lambda (_: (ty3 g
+d u t)).(\lambda (_: (((eq T u (TLRef i)) \to ((nf2 d u) \to (\forall (u2:
+T).((nf2 d u2) \to ((pc3 d t u2) \to (ex T (\lambda (u0: T).(eq T u2 (lift (S
+i) O u0))))))))))).(\lambda (H4: (eq T (TLRef n) (TLRef i))).(\lambda (H5:
+(nf2 c0 (TLRef n))).(\lambda (u2: T).(\lambda (_: (nf2 c0 u2)).(\lambda (H7:
+(pc3 c0 (lift (S n) O t) u2)).(let H8 \def (f_equal T nat (\lambda (e:
+T).(match e in T return (\lambda (_: T).nat) with [(TSort _) \Rightarrow n |
+(TLRef n0) \Rightarrow n0 | (THead _ _ _) \Rightarrow n])) (TLRef n) (TLRef
+i) H4) in (let H9 \def (eq_ind nat n (\lambda (n0: nat).(pc3 c0 (lift (S n0)
+O t) u2)) H7 i H8) in (let H10 \def (eq_ind nat n (\lambda (n0: nat).(nf2 c0
+(TLRef n0))) H5 i H8) in (let H11 \def (eq_ind nat n (\lambda (n0: nat).(getl
+n0 c0 (CHead d (Bind Abbr) u))) H1 i H8) in (nf2_gen_lref c0 d u i H11 H10
+(ex T (\lambda (u0: T).(eq T u2 (lift (S i) O u0))))))))))))))))))))))
+(\lambda (n: nat).(\lambda (c0: C).(\lambda (d: C).(\lambda (u: T).(\lambda
+(H1: (getl n c0 (CHead d (Bind Abst) u))).(\lambda (t: T).(\lambda (_: (ty3 g
+d u t)).(\lambda (_: (((eq T u (TLRef i)) \to ((nf2 d u) \to (\forall (u2:
+T).((nf2 d u2) \to ((pc3 d t u2) \to (ex T (\lambda (u0: T).(eq T u2 (lift (S
+i) O u0))))))))))).(\lambda (H4: (eq T (TLRef n) (TLRef i))).(\lambda (H5:
+(nf2 c0 (TLRef n))).(\lambda (u2: T).(\lambda (H6: (nf2 c0 u2)).(\lambda (H7:
+(pc3 c0 (lift (S n) O u) u2)).(let H8 \def (f_equal T nat (\lambda (e:
+T).(match e in T return (\lambda (_: T).nat) with [(TSort _) \Rightarrow n |
+(TLRef n0) \Rightarrow n0 | (THead _ _ _) \Rightarrow n])) (TLRef n) (TLRef
+i) H4) in (let H9 \def (eq_ind nat n (\lambda (n0: nat).(pc3 c0 (lift (S n0)
+O u) u2)) H7 i H8) in (let H10 \def (eq_ind nat n (\lambda (n0: nat).(nf2 c0
+(TLRef n0))) H5 i H8) in (let H11 \def (eq_ind nat n (\lambda (n0: nat).(getl
+n0 c0 (CHead d (Bind Abst) u))) H1 i H8) in (let H_y \def (pc3_nf2_unfold c0
+(lift (S i) O u) u2 H9 H6) in (let H12 \def (pr3_gen_lift c0 u u2 (S i) O H_y
+d (getl_drop Abst c0 d u i H11)) in (ex2_ind T (\lambda (t2: T).(eq T u2
+(lift (S i) O t2))) (\lambda (t2: T).(pr3 d u t2)) (ex T (\lambda (u0: T).(eq
+T u2 (lift (S i) O u0)))) (\lambda (x: T).(\lambda (H13: (eq T u2 (lift (S i)
+O x))).(\lambda (_: (pr3 d u x)).(eq_ind_r T (lift (S i) O x) (\lambda (t0:
+T).(ex T (\lambda (u0: T).(eq T t0 (lift (S i) O u0))))) (ex_intro T (\lambda
+(u0: T).(eq T (lift (S i) O x) (lift (S i) O u0))) x (refl_equal T (lift (S
+i) O x))) u2 H13)))) H12)))))))))))))))))))) (\lambda (c0: C).(\lambda (u:
+T).(\lambda (t: T).(\lambda (_: (ty3 g c0 u t)).(\lambda (_: (((eq T u (TLRef
+i)) \to ((nf2 c0 u) \to (\forall (u2: T).((nf2 c0 u2) \to ((pc3 c0 t u2) \to
+(ex T (\lambda (u0: T).(eq T u2 (lift (S i) O u0))))))))))).(\lambda (b:
+B).(\lambda (t1: T).(\lambda (t2: T).(\lambda (_: (ty3 g (CHead c0 (Bind b)
+u) t1 t2)).(\lambda (_: (((eq T t1 (TLRef i)) \to ((nf2 (CHead c0 (Bind b) u)
+t1) \to (\forall (u2: T).((nf2 (CHead c0 (Bind b) u) u2) \to ((pc3 (CHead c0
+(Bind b) u) t2 u2) \to (ex T (\lambda (u0: T).(eq T u2 (lift (S i) O
+u0))))))))))).(\lambda (H5: (eq T (THead (Bind b) u t1) (TLRef i))).(\lambda
+(_: (nf2 c0 (THead (Bind b) u t1))).(\lambda (u2: T).(\lambda (_: (nf2 c0
+u2)).(\lambda (_: (pc3 c0 (THead (Bind b) u t2) u2)).(let H9 \def (eq_ind T
+(THead (Bind b) u t1) (\lambda (ee: T).(match ee in T return (\lambda (_:
+T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False |
+(THead _ _ _) \Rightarrow True])) I (TLRef i) H5) in (False_ind (ex T
+(\lambda (u0: T).(eq T u2 (lift (S i) O u0)))) H9))))))))))))))))) (\lambda
+(c0: C).(\lambda (w: T).(\lambda (u: T).(\lambda (_: (ty3 g c0 w u)).(\lambda
+(_: (((eq T w (TLRef i)) \to ((nf2 c0 w) \to (\forall (u2: T).((nf2 c0 u2)
+\to ((pc3 c0 u u2) \to (ex T (\lambda (u0: T).(eq T u2 (lift (S i) O
+u0))))))))))).(\lambda (v: T).(\lambda (t: T).(\lambda (_: (ty3 g c0 v (THead
+(Bind Abst) u t))).(\lambda (_: (((eq T v (TLRef i)) \to ((nf2 c0 v) \to
+(\forall (u2: T).((nf2 c0 u2) \to ((pc3 c0 (THead (Bind Abst) u t) u2) \to
+(ex T (\lambda (u0: T).(eq T u2 (lift (S i) O u0))))))))))).(\lambda (H5: (eq
+T (THead (Flat Appl) w v) (TLRef i))).(\lambda (_: (nf2 c0 (THead (Flat Appl)
+w v))).(\lambda (u2: T).(\lambda (_: (nf2 c0 u2)).(\lambda (_: (pc3 c0 (THead
+(Flat Appl) w (THead (Bind Abst) u t)) u2)).(let H9 \def (eq_ind T (THead
+(Flat Appl) w v) (\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop)
+with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _
+_) \Rightarrow True])) I (TLRef i) H5) in (False_ind (ex T (\lambda (u0:
+T).(eq T u2 (lift (S i) O u0)))) H9)))))))))))))))) (\lambda (c0: C).(\lambda
+(t1: T).(\lambda (t2: T).(\lambda (_: (ty3 g c0 t1 t2)).(\lambda (_: (((eq T
+t1 (TLRef i)) \to ((nf2 c0 t1) \to (\forall (u2: T).((nf2 c0 u2) \to ((pc3 c0
+t2 u2) \to (ex T (\lambda (u: T).(eq T u2 (lift (S i) O u))))))))))).(\lambda
+(t0: T).(\lambda (_: (ty3 g c0 t2 t0)).(\lambda (_: (((eq T t2 (TLRef i)) \to
+((nf2 c0 t2) \to (\forall (u2: T).((nf2 c0 u2) \to ((pc3 c0 t0 u2) \to (ex T
+(\lambda (u: T).(eq T u2 (lift (S i) O u))))))))))).(\lambda (H5: (eq T
+(THead (Flat Cast) t2 t1) (TLRef i))).(\lambda (_: (nf2 c0 (THead (Flat Cast)
+t2 t1))).(\lambda (u2: T).(\lambda (_: (nf2 c0 u2)).(\lambda (_: (pc3 c0
+(THead (Flat Cast) t0 t2) u2)).(let H9 \def (eq_ind T (THead (Flat Cast) t2
+t1) (\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with [(TSort
+_) \Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _ _)
+\Rightarrow True])) I (TLRef i) H5) in (False_ind (ex T (\lambda (u: T).(eq T
+u2 (lift (S i) O u)))) H9))))))))))))))) c y u1 H0))) H))))).
+
+theorem ty3_inv_lref_nf2:
+ \forall (g: G).(\forall (c: C).(\forall (u: T).(\forall (i: nat).((ty3 g c
+(TLRef i) u) \to ((nf2 c (TLRef i)) \to ((nf2 c u) \to (ex T (\lambda (u0:
+T).(eq T u (lift (S i) O u0))))))))))
+\def
+ \lambda (g: G).(\lambda (c: C).(\lambda (u: T).(\lambda (i: nat).(\lambda
+(H: (ty3 g c (TLRef i) u)).(\lambda (H0: (nf2 c (TLRef i))).(\lambda (H1:
+(nf2 c u)).(ty3_inv_lref_nf2_pc3 g c u i H H0 u H1 (pc3_refl c u)))))))).
+
+theorem ty3_inv_appls_lref_nf2:
+ \forall (g: G).(\forall (c: C).(\forall (vs: TList).(\forall (u1:
+T).(\forall (i: nat).((ty3 g c (THeads (Flat Appl) vs (TLRef i)) u1) \to
+((nf2 c (TLRef i)) \to ((nf2 c u1) \to (ex2 T (\lambda (u: T).(nf2 c (lift (S
+i) O u))) (\lambda (u: T).(pc3 c (THeads (Flat Appl) vs (lift (S i) O u))
+u1))))))))))
+\def
+ \lambda (g: G).(\lambda (c: C).(\lambda (vs: TList).(TList_ind (\lambda (t:
+TList).(\forall (u1: T).(\forall (i: nat).((ty3 g c (THeads (Flat Appl) t
+(TLRef i)) u1) \to ((nf2 c (TLRef i)) \to ((nf2 c u1) \to (ex2 T (\lambda (u:
+T).(nf2 c (lift (S i) O u))) (\lambda (u: T).(pc3 c (THeads (Flat Appl) t
+(lift (S i) O u)) u1))))))))) (\lambda (u1: T).(\lambda (i: nat).(\lambda (H:
+(ty3 g c (TLRef i) u1)).(\lambda (H0: (nf2 c (TLRef i))).(\lambda (H1: (nf2 c
+u1)).(let H_x \def (ty3_inv_lref_nf2 g c u1 i H H0 H1) in (let H2 \def H_x in
+(ex_ind T (\lambda (u0: T).(eq T u1 (lift (S i) O u0))) (ex2 T (\lambda (u:
+T).(nf2 c (lift (S i) O u))) (\lambda (u: T).(pc3 c (lift (S i) O u) u1)))
+(\lambda (x: T).(\lambda (H3: (eq T u1 (lift (S i) O x))).(let H4 \def
+(eq_ind T u1 (\lambda (t: T).(nf2 c t)) H1 (lift (S i) O x) H3) in (eq_ind_r
+T (lift (S i) O x) (\lambda (t: T).(ex2 T (\lambda (u: T).(nf2 c (lift (S i)
+O u))) (\lambda (u: T).(pc3 c (lift (S i) O u) t)))) (ex_intro2 T (\lambda
+(u: T).(nf2 c (lift (S i) O u))) (\lambda (u: T).(pc3 c (lift (S i) O u)
+(lift (S i) O x))) x H4 (pc3_refl c (lift (S i) O x))) u1 H3)))) H2))))))))
+(\lambda (t: T).(\lambda (t0: TList).(\lambda (H: ((\forall (u1: T).(\forall
+(i: nat).((ty3 g c (THeads (Flat Appl) t0 (TLRef i)) u1) \to ((nf2 c (TLRef
+i)) \to ((nf2 c u1) \to (ex2 T (\lambda (u: T).(nf2 c (lift (S i) O u)))
+(\lambda (u: T).(pc3 c (THeads (Flat Appl) t0 (lift (S i) O u))
+u1)))))))))).(\lambda (u1: T).(\lambda (i: nat).(\lambda (H0: (ty3 g c (THead
+(Flat Appl) t (THeads (Flat Appl) t0 (TLRef i))) u1)).(\lambda (H1: (nf2 c
+(TLRef i))).(\lambda (_: (nf2 c u1)).(let H_x \def (ty3_gen_appl_nf2 g c t
+(THeads (Flat Appl) t0 (TLRef i)) u1 H0) in (let H3 \def H_x in (ex4_2_ind T
+T (\lambda (u: T).(\lambda (t1: T).(pc3 c (THead (Flat Appl) t (THead (Bind
+Abst) u t1)) u1))) (\lambda (u: T).(\lambda (t1: T).(ty3 g c (THeads (Flat
+Appl) t0 (TLRef i)) (THead (Bind Abst) u t1)))) (\lambda (u: T).(\lambda (_:
+T).(ty3 g c t u))) (\lambda (u: T).(\lambda (t1: T).(nf2 c (THead (Bind Abst)
+u t1)))) (ex2 T (\lambda (u: T).(nf2 c (lift (S i) O u))) (\lambda (u:
+T).(pc3 c (THead (Flat Appl) t (THeads (Flat Appl) t0 (lift (S i) O u)))
+u1))) (\lambda (x0: T).(\lambda (x1: T).(\lambda (H4: (pc3 c (THead (Flat
+Appl) t (THead (Bind Abst) x0 x1)) u1)).(\lambda (H5: (ty3 g c (THeads (Flat
+Appl) t0 (TLRef i)) (THead (Bind Abst) x0 x1))).(\lambda (_: (ty3 g c t
+x0)).(\lambda (H7: (nf2 c (THead (Bind Abst) x0 x1))).(let H8 \def
+(nf2_gen_abst c x0 x1 H7) in (land_ind (nf2 c x0) (nf2 (CHead c (Bind Abst)
+x0) x1) (ex2 T (\lambda (u: T).(nf2 c (lift (S i) O u))) (\lambda (u: T).(pc3
+c (THead (Flat Appl) t (THeads (Flat Appl) t0 (lift (S i) O u))) u1)))
+(\lambda (H9: (nf2 c x0)).(\lambda (H10: (nf2 (CHead c (Bind Abst) x0)
+x1)).(let H_y \def (H (THead (Bind Abst) x0 x1) i H5 H1) in (let H11 \def
+(H_y (nf2_abst_shift c x0 H9 x1 H10)) in (ex2_ind T (\lambda (u: T).(nf2 c
+(lift (S i) O u))) (\lambda (u: T).(pc3 c (THeads (Flat Appl) t0 (lift (S i)
+O u)) (THead (Bind Abst) x0 x1))) (ex2 T (\lambda (u: T).(nf2 c (lift (S i) O
+u))) (\lambda (u: T).(pc3 c (THead (Flat Appl) t (THeads (Flat Appl) t0 (lift
+(S i) O u))) u1))) (\lambda (x: T).(\lambda (H12: (nf2 c (lift (S i) O
+x))).(\lambda (H13: (pc3 c (THeads (Flat Appl) t0 (lift (S i) O x)) (THead
+(Bind Abst) x0 x1))).(ex_intro2 T (\lambda (u: T).(nf2 c (lift (S i) O u)))
+(\lambda (u: T).(pc3 c (THead (Flat Appl) t (THeads (Flat Appl) t0 (lift (S
+i) O u))) u1)) x H12 (pc3_t (THead (Flat Appl) t (THead (Bind Abst) x0 x1)) c
+(THead (Flat Appl) t (THeads (Flat Appl) t0 (lift (S i) O x))) (pc3_thin_dx c
+(THeads (Flat Appl) t0 (lift (S i) O x)) (THead (Bind Abst) x0 x1) H13 t
+Appl) u1 H4))))) H11))))) H8)))))))) H3))))))))))) vs))).
+
+theorem ty3_inv_lref_lref_nf2:
+ \forall (g: G).(\forall (c: C).(\forall (i: nat).(\forall (j: nat).((ty3 g c
+(TLRef i) (TLRef j)) \to ((nf2 c (TLRef i)) \to ((nf2 c (TLRef j)) \to (lt i
+j)))))))
+\def
+ \lambda (g: G).(\lambda (c: C).(\lambda (i: nat).(\lambda (j: nat).(\lambda
+(H: (ty3 g c (TLRef i) (TLRef j))).(\lambda (H0: (nf2 c (TLRef i))).(\lambda
+(H1: (nf2 c (TLRef j))).(let H_x \def (ty3_inv_lref_nf2 g c (TLRef j) i H H0
+H1) in (let H2 \def H_x in (ex_ind T (\lambda (u0: T).(eq T (TLRef j) (lift
+(S i) O u0))) (lt i j) (\lambda (x: T).(\lambda (H3: (eq T (TLRef j) (lift (S
+i) O x))).(let H_x0 \def (lift_gen_lref x O (S i) j H3) in (let H4 \def H_x0
+in (or_ind (land (lt j O) (eq T x (TLRef j))) (land (le (S i) j) (eq T x
+(TLRef (minus j (S i))))) (lt i j) (\lambda (H5: (land (lt j O) (eq T x
+(TLRef j)))).(land_ind (lt j O) (eq T x (TLRef j)) (lt i j) (\lambda (H6: (lt
+j O)).(\lambda (_: (eq T x (TLRef j))).(lt_x_O j H6 (lt i j)))) H5)) (\lambda
+(H5: (land (le (S i) j) (eq T x (TLRef (minus j (S i)))))).(land_ind (le (S
+i) j) (eq T x (TLRef (minus j (S i)))) (lt i j) (\lambda (H6: (le (S i)
+j)).(\lambda (_: (eq T x (TLRef (minus j (S i))))).H6)) H5)) H4)))))
+H2))))))))).
+
(Bind Abst) u t)) (lift (S O) d y2)))) (\lambda (y1: T).(\lambda (y2: T).(ty3
g a y1 y2)))) (\lambda (x2: T).(\lambda (x3: T).(\lambda (H12: (subst1 d u0 w
(lift (S O) d x2))).(\lambda (H13: (subst1 d u0 u (lift (S O) d
-x3))).(\lambda (H14: (ty3 g a x2 x3)).(ex3_2_ind T T (\lambda (u2:
-T).(\lambda (t3: T).(eq T (lift (S O) d x1) (THead (Bind Abst) u2 t3))))
-(\lambda (u2: T).(\lambda (_: T).(subst1 d u0 u u2))) (\lambda (_:
-T).(\lambda (t3: T).(subst1 (s (Bind Abst) d) u0 t t3))) (ex3_2 T T (\lambda
-(y1: T).(\lambda (_: T).(subst1 d u0 (THead (Flat Appl) w v) (lift (S O) d
-y1)))) (\lambda (_: T).(\lambda (y2: T).(subst1 d u0 (THead (Flat Appl) w
-(THead (Bind Abst) u t)) (lift (S O) d y2)))) (\lambda (y1: T).(\lambda (y2:
-T).(ty3 g a y1 y2)))) (\lambda (x4: T).(\lambda (x5: T).(\lambda (H15: (eq T
-(lift (S O) d x1) (THead (Bind Abst) x4 x5))).(\lambda (H16: (subst1 d u0 u
-x4)).(\lambda (H17: (subst1 (s (Bind Abst) d) u0 t x5)).(let H18 \def (sym_eq
-T (lift (S O) d x1) (THead (Bind Abst) x4 x5) H15) in (ex3_2_ind T T (\lambda
-(y: T).(\lambda (z: T).(eq T x1 (THead (Bind Abst) y z)))) (\lambda (y:
+x3))).(\lambda (H14: (ty3 g a x2 x3)).(let H_x \def (subst1_gen_head (Bind
+Abst) u0 u t (lift (S O) d x1) d H9) in (let H15 \def H_x in (ex3_2_ind T T
+(\lambda (u2: T).(\lambda (t3: T).(eq T (lift (S O) d x1) (THead (Bind Abst)
+u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(subst1 d u0 u u2))) (\lambda (_:
+T).(\lambda (t3: T).(subst1 (S d) u0 t t3))) (ex3_2 T T (\lambda (y1:
+T).(\lambda (_: T).(subst1 d u0 (THead (Flat Appl) w v) (lift (S O) d y1))))
+(\lambda (_: T).(\lambda (y2: T).(subst1 d u0 (THead (Flat Appl) w (THead
+(Bind Abst) u t)) (lift (S O) d y2)))) (\lambda (y1: T).(\lambda (y2: T).(ty3
+g a y1 y2)))) (\lambda (x4: T).(\lambda (x5: T).(\lambda (H16: (eq T (lift (S
+O) d x1) (THead (Bind Abst) x4 x5))).(\lambda (H17: (subst1 d u0 u
+x4)).(\lambda (H18: (subst1 (S d) u0 t x5)).(let H19 \def (sym_eq T (lift (S
+O) d x1) (THead (Bind Abst) x4 x5) H16) in (ex3_2_ind T T (\lambda (y:
+T).(\lambda (z: T).(eq T x1 (THead (Bind Abst) y z)))) (\lambda (y:
T).(\lambda (_: T).(eq T x4 (lift (S O) d y)))) (\lambda (_: T).(\lambda (z:
T).(eq T x5 (lift (S O) (S d) z)))) (ex3_2 T T (\lambda (y1: T).(\lambda (_:
T).(subst1 d u0 (THead (Flat Appl) w v) (lift (S O) d y1)))) (\lambda (_:
T).(\lambda (y2: T).(subst1 d u0 (THead (Flat Appl) w (THead (Bind Abst) u
t)) (lift (S O) d y2)))) (\lambda (y1: T).(\lambda (y2: T).(ty3 g a y1 y2))))
-(\lambda (x6: T).(\lambda (x7: T).(\lambda (H19: (eq T x1 (THead (Bind Abst)
-x6 x7))).(\lambda (H20: (eq T x4 (lift (S O) d x6))).(\lambda (H21: (eq T x5
-(lift (S O) (S d) x7))).(let H22 \def (eq_ind T x5 (\lambda (t0: T).(subst1
-(s (Bind Abst) d) u0 t t0)) H17 (lift (S O) (S d) x7) H21) in (let H23 \def
-(eq_ind T x4 (\lambda (t0: T).(subst1 d u0 u t0)) H16 (lift (S O) d x6) H20)
-in (let H24 \def (eq_ind T x1 (\lambda (t0: T).(ty3 g a x0 t0)) H10 (THead
-(Bind Abst) x6 x7) H19) in (let H25 \def (eq_ind T x6 (\lambda (t0: T).(ty3 g
-a x0 (THead (Bind Abst) t0 x7))) H24 x3 (subst1_confluence_lift u x6 u0 d H23
-x3 H13)) in (ex3_2_intro T T (\lambda (y1: T).(\lambda (_: T).(subst1 d u0
-(THead (Flat Appl) w v) (lift (S O) d y1)))) (\lambda (_: T).(\lambda (y2:
-T).(subst1 d u0 (THead (Flat Appl) w (THead (Bind Abst) u t)) (lift (S O) d
-y2)))) (\lambda (y1: T).(\lambda (y2: T).(ty3 g a y1 y2))) (THead (Flat Appl)
-x2 x0) (THead (Flat Appl) x2 (THead (Bind Abst) x3 x7)) (eq_ind_r T (THead
-(Flat Appl) (lift (S O) d x2) (lift (S O) d x0)) (\lambda (t0: T).(subst1 d
-u0 (THead (Flat Appl) w v) t0)) (subst1_head u0 w (lift (S O) d x2) d H12
-(Flat Appl) v (lift (S O) d x0) H8) (lift (S O) d (THead (Flat Appl) x2 x0))
-(lift_flat Appl x2 x0 (S O) d)) (eq_ind_r T (THead (Flat Appl) (lift (S O) d
-x2) (lift (S O) d (THead (Bind Abst) x3 x7))) (\lambda (t0: T).(subst1 d u0
-(THead (Flat Appl) w (THead (Bind Abst) u t)) t0)) (subst1_head u0 w (lift (S
-O) d x2) d H12 (Flat Appl) (THead (Bind Abst) u t) (lift (S O) d (THead (Bind
+(\lambda (x6: T).(\lambda (x7: T).(\lambda (H20: (eq T x1 (THead (Bind Abst)
+x6 x7))).(\lambda (H21: (eq T x4 (lift (S O) d x6))).(\lambda (H22: (eq T x5
+(lift (S O) (S d) x7))).(let H23 \def (eq_ind T x5 (\lambda (t0: T).(subst1
+(S d) u0 t t0)) H18 (lift (S O) (S d) x7) H22) in (let H24 \def (eq_ind T x4
+(\lambda (t0: T).(subst1 d u0 u t0)) H17 (lift (S O) d x6) H21) in (let H25
+\def (eq_ind T x1 (\lambda (t0: T).(ty3 g a x0 t0)) H10 (THead (Bind Abst) x6
+x7) H20) in (let H26 \def (eq_ind T x6 (\lambda (t0: T).(ty3 g a x0 (THead
+(Bind Abst) t0 x7))) H25 x3 (subst1_confluence_lift u x6 u0 d H24 x3 H13)) in
+(ex3_2_intro T T (\lambda (y1: T).(\lambda (_: T).(subst1 d u0 (THead (Flat
+Appl) w v) (lift (S O) d y1)))) (\lambda (_: T).(\lambda (y2: T).(subst1 d u0
+(THead (Flat Appl) w (THead (Bind Abst) u t)) (lift (S O) d y2)))) (\lambda
+(y1: T).(\lambda (y2: T).(ty3 g a y1 y2))) (THead (Flat Appl) x2 x0) (THead
+(Flat Appl) x2 (THead (Bind Abst) x3 x7)) (eq_ind_r T (THead (Flat Appl)
+(lift (S O) d x2) (lift (S O) d x0)) (\lambda (t0: T).(subst1 d u0 (THead
+(Flat Appl) w v) t0)) (subst1_head u0 w (lift (S O) d x2) d H12 (Flat Appl) v
+(lift (S O) d x0) H8) (lift (S O) d (THead (Flat Appl) x2 x0)) (lift_flat
+Appl x2 x0 (S O) d)) (eq_ind_r T (THead (Flat Appl) (lift (S O) d x2) (lift
+(S O) d (THead (Bind Abst) x3 x7))) (\lambda (t0: T).(subst1 d u0 (THead
+(Flat Appl) w (THead (Bind Abst) u t)) t0)) (subst1_head u0 w (lift (S O) d
+x2) d H12 (Flat Appl) (THead (Bind Abst) u t) (lift (S O) d (THead (Bind
Abst) x3 x7)) (eq_ind_r T (THead (Bind Abst) (lift (S O) d x3) (lift (S O) (S
d) x7)) (\lambda (t0: T).(subst1 (s (Flat Appl) d) u0 (THead (Bind Abst) u t)
t0)) (subst1_head u0 u (lift (S O) d x3) (s (Flat Appl) d) H13 (Bind Abst) t
-(lift (S O) (S d) x7) H22) (lift (S O) d (THead (Bind Abst) x3 x7))
+(lift (S O) (S d) x7) H23) (lift (S O) d (THead (Bind Abst) x3 x7))
(lift_bind Abst x3 x7 (S O) d))) (lift (S O) d (THead (Flat Appl) x2 (THead
(Bind Abst) x3 x7))) (lift_flat Appl x2 (THead (Bind Abst) x3 x7) (S O) d))
-(ty3_appl g a x2 x3 H14 x0 x7 H25))))))))))) (lift_gen_bind Abst x4 x5 x1 (S
-O) d H18)))))))) (subst1_gen_head (Bind Abst) u0 u t (lift (S O) d x1) d
-H9))))))) H11))))))) H7))))))))))))))))))) (\lambda (c0: C).(\lambda (t3:
-T).(\lambda (t4: T).(\lambda (_: (ty3 g c0 t3 t4)).(\lambda (H1: ((\forall
-(e: C).(\forall (u: T).(\forall (d: nat).((getl d c0 (CHead e (Bind Abbr) u))
-\to (\forall (a0: C).((csubst1 d u c0 a0) \to (\forall (a: C).((drop (S O) d
-a0 a) \to (ex3_2 T T (\lambda (y1: T).(\lambda (_: T).(subst1 d u t3 (lift (S
-O) d y1)))) (\lambda (_: T).(\lambda (y2: T).(subst1 d u t4 (lift (S O) d
-y2)))) (\lambda (y1: T).(\lambda (y2: T).(ty3 g a y1
-y2)))))))))))))).(\lambda (t0: T).(\lambda (_: (ty3 g c0 t4 t0)).(\lambda
-(H3: ((\forall (e: C).(\forall (u: T).(\forall (d: nat).((getl d c0 (CHead e
+(ty3_appl g a x2 x3 H14 x0 x7 H26))))))))))) (lift_gen_bind Abst x4 x5 x1 (S
+O) d H19)))))))) H15)))))))) H11))))))) H7))))))))))))))))))) (\lambda (c0:
+C).(\lambda (t3: T).(\lambda (t4: T).(\lambda (_: (ty3 g c0 t3 t4)).(\lambda
+(H1: ((\forall (e: C).(\forall (u: T).(\forall (d: nat).((getl d c0 (CHead e
(Bind Abbr) u)) \to (\forall (a0: C).((csubst1 d u c0 a0) \to (\forall (a:
C).((drop (S O) d a0 a) \to (ex3_2 T T (\lambda (y1: T).(\lambda (_:
-T).(subst1 d u t4 (lift (S O) d y1)))) (\lambda (_: T).(\lambda (y2:
+T).(subst1 d u t3 (lift (S O) d y1)))) (\lambda (_: T).(\lambda (y2:
+T).(subst1 d u t4 (lift (S O) d y2)))) (\lambda (y1: T).(\lambda (y2: T).(ty3
+g a y1 y2)))))))))))))).(\lambda (t0: T).(\lambda (_: (ty3 g c0 t4
+t0)).(\lambda (H3: ((\forall (e: C).(\forall (u: T).(\forall (d: nat).((getl
+d c0 (CHead e (Bind Abbr) u)) \to (\forall (a0: C).((csubst1 d u c0 a0) \to
+(\forall (a: C).((drop (S O) d a0 a) \to (ex3_2 T T (\lambda (y1: T).(\lambda
+(_: T).(subst1 d u t4 (lift (S O) d y1)))) (\lambda (_: T).(\lambda (y2:
T).(subst1 d u t0 (lift (S O) d y2)))) (\lambda (y1: T).(\lambda (y2: T).(ty3
g a y1 y2)))))))))))))).(\lambda (e: C).(\lambda (u: T).(\lambda (d:
nat).(\lambda (H4: (getl d c0 (CHead e (Bind Abbr) u))).(\lambda (a0: