% \item \textbf{Our subproblem:} Semi-$\sigma$-separating two (usual) $\boldsymbol\lambda$-terms\r
% (in deep normal form)\r
\item \textbf{Subterm:} $\SubtmOf\tm\tmtwo$ means that $\tm$ is an ($\eta/\Omega$)-subterm of $\tmtwo$.\r
+ \item \textbf{Subterm at position $\boldsymbol\pi$:} TODO\r
\item \textbf{Distinction:} Let $\var\defeq \HeadOf D$. Let $T_{\var} \defeq \{\tm \preceq T \mid \HeadOf{\tm} = \var \}$.\r
$C_{\var}$ is $D$--\emph{distinct} iff it is empty, or there exists path $\pi$ s.t.:\r
\begin{itemize}\r
\item $\{\tm\in C_\var \mid \tm \sim_\pi D\}$ is $D$--distinct.\r
\end{itemize}\r
\r
- % \item \textbf{Unlockable variables.}\r
- % We use the following contexts:\r
- % $E ::= \Box \mid E\, t \mid t\, E \mid \Lam\var{\vec t\Comma E \Comma \vec t} $.\r
- % A variable $\var$ is \emph{unlockable} in a context $E$ if:\r
- % \begin{itemize}\r
- % \item it is not bound in $E$, or\r
- % \item $E[\cdot] = E'[\vartwo\, \vec\tm \, (\Lam{\cdots\var\cdots}{\vec\tmtwo \Comma E'[\cdot]\Comma\vec\tmthree})]$\r
- % and $\vartwo$ is unlockable in $E'$.\r
- % \end{itemize}\r
+ \item $\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$\r
+ $\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$\r
+ $\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$\r
+\r
+ \item \textbf{Unlockable variables.}\r
+ We use the following contexts:\r
+ $E ::= \Box \mid E\, t \mid t\, E \mid \Lam\var{\vec t\Comma E \Comma \vec t} $.\r
+ A variable $\var$ is \emph{unlockable} in a context $E$ if:\r
+ \begin{itemize}\r
+ \item it is not bound in $E$, or\r
+ \item $E[\cdot] = E'[\vartwo\, \vec\tm \, (\Lam{\cdots\var\cdots}{\vec\tmtwo \Comma E'[\cdot]\Comma\vec\tmthree})]$\r
+ and $\vartwo$ is unlockable in $E'$.\r
+ \end{itemize}\r
+\r
+ Transformation removing an unlockable variable bound at position $\pi$:\r
+ \[\tau_{n::\pi}[\alpha] := \lambda x_1..x_n\,x.\, \alpha\,\vec x\,(\tau_\pi[x])\]\r
+\r
+ % \textcolor{red}{For every term there exists an equivalent term with no unlockable variables}\r
\r
\end{itemize}\r
\r