*)
exception UnificationFailed;;
-(*CSC: Vecchia unificazione: exception Impossible;;*)
exception Free;;
exception OccurCheck;;
deliftaux 1
;;
-(* Questa funzione non serve piu'... per il momento la lascio *)
-(*
-let closed_up_to_n n m =
- let rec closed_aux k =
- let module C = Cic in
- function
- C.Rel m -> if m > k then () else raise Free
- | C.Var _
- | C.Meta _ (* we assume Meta are closed up to k; note that during
- meta-unfolding we shall need to properly lift the
- "body" of Metavariables *)
- | C.Sort _
- | C.Implicit -> ()
- | C.Cast (te,ty) -> closed_aux k te; closed_aux k ty
- | C.Prod (n,s,t) -> closed_aux k s; closed_aux (k+1) t
- | C.Lambda (n,s,t) -> closed_aux k s; closed_aux (k+1) t
- | C.LetIn (n,s,t) -> closed_aux k s; closed_aux (k+1) t
- | C.Appl l -> List.iter (closed_aux k) l
- | C.Const _
- | C.Abst _
- | C.MutInd _
- | C.MutConstruct _ -> ()
- | C.MutCase (sp,cookingsno,i,outty,t,pl) ->
- closed_aux k outty; closed_aux k t;
- List.iter (closed_aux k) pl
- | C.Fix (i, fl) ->
- let len = List.length fl in
- List.iter
- (fun (name, i, ty, bo) -> closed_aux k ty; closed_aux (k+len) bo)
- fl
- | C.CoFix (i, fl) ->
- let len = List.length fl in
- List.iter
- (fun (name, ty, bo) -> closed_aux k ty; closed_aux (k+len) bo)
- fl
- in
- if n = 0 then true
- else
- try closed_aux n m; true
- with Free -> false
-;; *)
-
(* NUOVA UNIFICAZIONE *)
(* A substitution is a (int * Cic.term) list that associates a
metavariable i with its body.
| (_,_) -> raise UnificationFailed
in fo_unif_aux [] 0 t1 t2;;
-(* VECCHIA UNIFICAZIONE -- molto piu' bella, alas *)
-(*
-let fo_unif_mgu k t1 t2 mgu =
- let module C = Cic in
- let module R = CicReduction in
- let module S = CicSubstitution in
- let rec deref n = match mgu.(n) with
- C.Meta m as t -> if n = m then t else (deref m)
- | t -> t
- in
- let rec fo_unif k t1 t2 = match (t1, t2) with
- (* aggiungere l'unificazione sui tipi in caso di istanziazione *)
- (C.Meta n, C.Meta m) -> if n == m then () else
- let t1' = deref n in
- let t2' = deref m in
- (* deref of metavariables ARE already delifted *)
- (match (t1',t2') with
- (C.Meta n, C.Meta m) -> if n = m then () else
- if n < m then mgu.(m) <- t1' else
- if n > m then mgu.(n) <- t2'
- | (C.Meta n, _) -> mgu.(n) <- t2'
- | (_, C.Meta m) -> mgu.(m) <- t1'
- | (_,_) -> fo_unif k t1' t2')
- | (C.Meta n, _) -> let t1' = deref n in
- let t2' = try delift k t2
- with Free -> raise UnificationFailed in
- (match t1' with
- C.Meta n -> mgu.(n) <- t2'
- | _ -> fo_unif k t1' t2')
- | (_, C.Meta m) -> let t2' = deref m in
- let t1' = try delift k t1
- with Free -> raise UnificationFailed in
- (match t2' with
- C.Meta m -> mgu.(m) <- t1'
- | _ -> fo_unif k t1' t2')
- | (C.Rel _, _)
- | (_, C.Rel _)
- | (C.Var _, _)
- | (_, C.Var _)
- | (C.Sort _ ,_)
- | (_, C.Sort _)
- | (C.Implicit, _)
- | (_, C.Implicit) -> if R.are_convertible t1 t2 then ()
- else raise UnificationFailed
- | (C.Cast (te,ty), _) -> fo_unif k te t2
- | (_, C.Cast (te,ty)) -> fo_unif k t1 te
- | (C.Prod (_,s1,t1), C.Prod (_,s2,t2)) -> fo_unif k s1 s2;
- fo_unif (k+1) t1 t2
- | (C.Lambda (_,s1,t1), C.Lambda (_,s2,t2)) -> fo_unif k s1 s2;
- fo_unif (k+1) t1 t2
- | (C.LetIn (_,s1,t1), _) -> fo_unif k (S.subst s1 t1) t2
- | (_, C.LetIn (_,s2,t2)) -> fo_unif k t1 (S.subst s2 t2)
- | (C.Appl (h1::l1), C.Appl (h2::l2)) ->
- let lr1 = List.rev l1 in
- let lr2 = List.rev l2 in
- let rec fo_unif_aux = function
- ([],l2) -> ([],l2)
- | (l1,[]) -> (l1,[])
- | ((h1::l1),(h2::l2)) -> fo_unif k h1 h2;
- fo_unif_aux (l1,l2)
- in
- (match fo_unif_aux (lr1, lr2) with
- ([],[]) -> fo_unif k h1 h2
- | ([],l2) -> fo_unif k h1 (C.Appl (h2::List.rev l2))
- | (l1,[]) -> fo_unif k (C.Appl (h1::List.rev l1)) h2
- | (_,_) -> raise Impossible)
- | (C.Const _, _)
- | (_, C.Const _)
- | (C.Abst _, _)
- | (_, C.Abst _)
- | (C.MutInd _, _)
- | (_, C.MutInd _)
- | (C.MutConstruct _, _)
- | (_, C.MutConstruct _) -> print_endline "siamo qui"; flush stdout;
- if R.are_convertible t1 t2 then ()
- else raise UnificationFailed
- | (C.MutCase (_,_,_,outt1,t1,pl1), C.MutCase (_,_,_,outt2,t2,pl2))->
- fo_unif k outt1 outt2;
- fo_unif k t1 t2;
- List.iter2 (fo_unif k) pl1 pl2
- | (C.Fix _, _)
- | (_, C.Fix _)
- | (C.CoFix _, _)
- | (_, C.CoFix _) -> if R.are_convertible t1 t2 then ()
- else raise UnificationFailed
- | (_,_) -> raise UnificationFailed
- in fo_unif k t1 t2;mgu ;;
-*)
-
(* unwind mgu mark m applies mgu to the term m; mark is an array of integers
mark.(n) = 0 if the term has not been unwinded, is 2 if it is under uwinding,
and is 1 if it has been succesfully unwinded. Meeting the value 2 during
um_aux 0 t,!unwinded
;;
-(*
-let unwind_meta mgu mark =
- let rec um_aux k =
- let module C = Cic in
- let module S = CicSubstitution in
- function
- C.Rel _ as t -> t
- | C.Var _ as t -> t
- | C.Meta i as t -> if mark.(i)=2 then raise OccurCheck else
- if mark.(i)=1 then S.lift k mgu.(i)
- else (match mgu.(i) with
- C.Meta k as t1 -> if k = i then t
- else (mark.(i) <- 2;
- mgu.(i) <- (um_aux 0 t1);
- mark.(i) <- 1;
- S.lift k mgu.(i))
- | _ -> (mark.(i) <- 2;
- mgu.(i) <- (um_aux 0 mgu.(i));
- mark.(i) <- 1;
- S.lift k mgu.(i)))
- | C.Sort _ as t -> t
- | C.Implicit as t -> t
- | C.Cast (te,ty) -> C.Cast (um_aux k te, um_aux k ty)
- | C.Prod (n,s,t) -> C.Prod (n, um_aux k s, um_aux (k+1) t)
- | C.Lambda (n,s,t) -> C.Lambda (n, um_aux k s, um_aux (k+1) t)
- | C.LetIn (n,s,t) -> C.LetIn (n, um_aux k s, um_aux (k+1) t)
- | C.Appl (he::tl) ->
- let tl' = List.map (um_aux k) tl in
- begin
- match um_aux k he with
- C.Appl l -> C.Appl (l@tl')
- | _ as he' -> C.Appl (he'::tl')
- end
- | C.Appl _ -> assert false
- | C.Const _ as t -> t
- | C.Abst _ as t -> t
- | C.MutInd _ as t -> t
- | C.MutConstruct _ as t -> t
- | C.MutCase (sp,cookingsno,i,outty,t,pl) ->
- C.MutCase (sp, cookingsno, i, um_aux k outty, um_aux k t,
- List.map (um_aux k) pl)
- | C.Fix (i, fl) ->
- let len = List.length fl in
- let liftedfl =
- List.map
- (fun (name, i, ty, bo) -> (name, i, um_aux k ty, um_aux (k+len) bo))
- fl
- in
- C.Fix (i, liftedfl)
- | C.CoFix (i, fl) ->
- let len = List.length fl in
- let liftedfl =
- List.map
- (fun (name, ty, bo) -> (name, um_aux k ty, um_aux (k+len) bo))
- fl
- in
- C.CoFix (i, liftedfl)
- in
- um_aux 0
-;;
-*)
-
(* apply_subst_reducing subst (Some (mtr,reductions_no)) t *)
(* performs as (apply_subst subst t) until it finds an application of *)
(* (META [meta_to_reduce]) that, once unwinding is performed, creates *)
um_aux 0 t
;;
-(* unwind mgu mark mm m applies mgu to the term m; mark is an array of integers
-mark.(n) = 0 if the term has not been unwinded, is 2 if it is under uwinding,
-and is 1 if it has been succesfully unwinded. Meeting the value 2 during
-the computation is an error: occur-check. When the META mm is to be unfolded
-and it is applied to something, one-step beta reduction is performed just
-after the unfolding. *)
-
-(*
-let unwind_meta_reducing mgu mark meta_to_reduce =
- let rec um_aux k =
- let module C = Cic in
- let module S = CicSubstitution in
- function
- C.Rel _ as t -> t
- | C.Var _ as t -> t
- | C.Meta i as t -> if mark.(i)=2 then raise OccurCheck else
- if mark.(i)=1 then S.lift k mgu.(i)
- else (match mgu.(i) with
- C.Meta k as t1 -> if k = i then t
- else (mark.(i) <- 2;
- mgu.(i) <- (um_aux 0 t1);
- mark.(i) <- 1;
- S.lift k mgu.(i))
- | _ -> (mark.(i) <- 2;
- mgu.(i) <- (um_aux 0 mgu.(i));
- mark.(i) <- 1;
- S.lift k mgu.(i)))
- | C.Sort _ as t -> t
- | C.Implicit as t -> t
- | C.Cast (te,ty) -> C.Cast (um_aux k te, um_aux k ty)
- | C.Prod (n,s,t) -> C.Prod (n, um_aux k s, um_aux (k+1) t)
- | C.Lambda (n,s,t) -> C.Lambda (n, um_aux k s, um_aux (k+1) t)
- | C.LetIn (n,s,t) -> C.LetIn (n, um_aux k s, um_aux (k+1) t)
- | C.Appl (he::tl) ->
- let tl' = List.map (um_aux k) tl in
- let t' =
- match um_aux k he with
- C.Appl l -> C.Appl (l@tl')
- | _ as he' -> C.Appl (he'::tl')
- in
- begin
- match t', meta_to_reduce with
- (C.Appl (C.Lambda (n,s,t)::he'::tl')),Some mtr
- when he = C.Meta mtr ->
-(*CSC: Sbagliato!!! Effettua beta riduzione solo del primo argomento
- *CSC: mentre dovrebbe farla dei primi n, dove n sono quelli eta-astratti
-*)
- C.Appl((CicSubstitution.subst he' t)::tl')
- | _ -> t'
- end
- | C.Appl _ -> assert false
- | C.Const _ as t -> t
- | C.Abst _ as t -> t
- | C.MutInd _ as t -> t
- | C.MutConstruct _ as t -> t
- | C.MutCase (sp,cookingsno,i,outty,t,pl) ->
- C.MutCase (sp, cookingsno, i, um_aux k outty, um_aux k t,
- List.map (um_aux k) pl)
- | C.Fix (i, fl) ->
- let len = List.length fl in
- let liftedfl =
- List.map
- (fun (name, i, ty, bo) -> (name, i, um_aux k ty, um_aux (k+len) bo))
- fl
- in
- C.Fix (i, liftedfl)
- | C.CoFix (i, fl) ->
- let len = List.length fl in
- let liftedfl =
- List.map
- (fun (name, ty, bo) -> (name, um_aux k ty, um_aux (k+len) bo))
- fl
- in
- C.CoFix (i, liftedfl)
- in
- um_aux 0
-;; *)
-
(* UNWIND THE MGU INSIDE THE MGU *)
(* let unwind mgu =
let mark = Array.make (Array.length mgu) 0 in