[1: intros; cases (b2pT ? ? (orbP ? ?) H); [1: apply ltbW; assumption]
rewrite > (eqb_true_to_eq ? ? H1); simplify;
rewrite > leb_refl; reflexivity
-|2: generalize in match m; clear m; elim n 0;
+|2: elim n in m ⊢ % 0;
[1: simplify; intros; cases n1; reflexivity;
|2: intros 1 (m); elim m 0;
[1: intros; apply (p2bT ? ? (orbP ? ?));
apply (list_ind2 ? ? ? ? ? Hl); [1: intros; reflexivity]
simplify; intros (tl1 tl2 hd1 hd2 IH H); cases (b2pT ? ? (andbP ? ?) H);
rewrite > (IH H2); rewrite > (b2pT ? ? (eqP d ? ?) H1); reflexivity
-| generalize in match H; clear H; generalize in match l2; clear l2;
- elim l1 1 (l1 x1);
+| elim l1 in H l2 ⊢ % 1 (l1 x1);
[ cases l1; simplify; [intros; destruct H | unfold Not; intros; destruct H1;]
| intros 3 (tl1 IH l2); cases l2;
[ unfold Not; intros; destruct H1;