<command>f</command> must be defined by means of tactics.</para>
<para>Notice that the command is equivalent to <command>theorem f: T ≝ t</command>.</para>
</sect2>
+ <sect2 id="discriminator">
+ <title><emphasis role="bold">discriminator</emphasis> &id;</title>
+ <titleabbrev>discriminator</titleabbrev>
+ <para><userinput>discriminator i</userinput></para>
+ <para>Defines a new discrimination (injectivity+conflict) principle à la
+ McBride for the inductive type <command>i</command>.</para>
+ <para>The principle will use John
+ Major's equality if such equality is defined, otherwise it will use
+ Leibniz equality; in the former case, it will be called
+ <command>i_jmdiscr</command>, in the latter, <command>i_discr</command>.
+ The command will fail if neither equality is available.</para>
+ <para>Discrimination principles are used by the destruct tactic and are
+ usually automatically generated by Matita during the definition of the
+ corresponding inductive type. This command is thus especially useful
+ when the correct equality was not loaded at the time of that
+ definition.</para>
+ </sect2>
+ <sect2 id="inverter">
+ <title><emphasis role="bold">inverter</emphasis> &id; <emphasis role="bold">for</emphasis> &id; (&path;) [&term;]</title>
+ <titleabbrev>inverter</titleabbrev>
+ <para><userinput>inverter n for i (path) : s</userinput></para>
+ <para>Defines a new induction/inversion principle for the inductive type
+ <command>i</command>, called <command>n</command>.</para>
+ <para><command>(path)</command> must be in the form <command>(# # # ... #)</command>,
+ where each <command>#</command> can be either <command>?</command> or
+ <command>%</command>, and the number of symbols is equal to the number of
+ right parameters (indices) of <command>i</command>. Parentheses are
+ mandatory. If the j-th symbol is
+ <command>%</command>, Matita will generate a principle providing
+ equations for reasoning on the j-th index of <command>i</command>. If the
+ symbol is a <command>?</command>, no corresponding equation will be
+ provided.</para>
+ <para><command>s</command>, which must be a sort, is the target sort of the
+ induction/inversion principle and defaults to <command>Prop</command>.</para>
+ </sect2>
<sect2 id="letrec">
<title><emphasis role="bold">letrec</emphasis> &TODO;</title>
<titleabbrev>&TODO;</titleabbrev>