|2: lapply (c ?? x H2) as H3; cases H3 (H4 H4); [right; assumption|cases (Lxy H4)]]
qed.
-theorem lt_to_excede: ∀E:excess.∀a,b:E. (a < b) → (b ≰ a).
+theorem lt_to_excess: ∀E:excess.∀a,b:E. (a < b) → (b ≰ a).
intros (E a b Lab); cases Lab (LEab Aab);
cases Aab (H H); [cases (LEab H)] fold normalize (b ≰ a); assumption; (* BUG *)
qed.
lemma lexxyy_lexy: ∀G:togroup. ∀x,y:G. x+x ≤ y+y → x ≤ y.
intros (G x y H); intro H1; lapply (tog_total ??? H1) as H2;
-lapply (ltxy_ltyyxx ??? H2) as H3; lapply (lt_to_excede ??? H3) as H4;
+lapply (ltxy_ltyyxx ??? H2) as H3; lapply (lt_to_excess ??? H3) as H4;
cases (H H4);
qed.
qed.
lemma leplus_lt_le: ∀G:togroup.∀x,y:G. 0 ≤ x + y → x < 0 → 0 ≤ y.
-intros; intro; apply H; lapply (lt_to_excede ??? l);
+intros; intro; apply H; lapply (lt_to_excess ??? l);
lapply (tog_total ??? e);
lapply (tog_total ??? Hletin);
lapply (ltplus ????? Hletin2 Hletin1);
apply (exc_rewl ??? (0+0)); [apply eq_sym; apply zero_neutral]
-apply lt_to_excede; assumption;
+apply lt_to_excess; assumption;
qed.
lemma ltplus_orlt: ∀G:togroup.∀a,b,c,d:G. a+c < b + d → a < b ∨ c < d.
-intros (G a b c d H1 H2); lapply (lt_to_excede ??? H1);
+intros (G a b c d H1 H2); lapply (lt_to_excess ??? H1);
cases (excplus_orexc ????? Hletin); [left|right] apply tog_total; assumption;
qed.