+++ /dev/null
-(**************************************************************************)
-(* ___ *)
-(* ||M|| *)
-(* ||A|| A project by Andrea Asperti *)
-(* ||T|| *)
-(* ||I|| Developers: *)
-(* ||T|| The HELM team. *)
-(* ||A|| http://helm.cs.unibo.it *)
-(* \ / *)
-(* \ / This file is distributed under the terms of the *)
-(* v GNU General Public License Version 2 *)
-(* *)
-(**************************************************************************)
-
-include "russell_support.ma".
-include "models/q_copy.ma".
-
-definition rebase_spec ≝
- λl1,l2:q_f.λp:q_f × q_f.
- And3
- (same_bases (bars (\fst p)) (bars (\snd p)))
- (same_values l1 (\fst p))
- (same_values l2 (\snd p)).
-
-inductive rebase_cases : list bar → list bar → (list bar) × (list bar) → Prop ≝
-| rb_fst_full : ∀b,h1,xs.
- rebase_cases (〈b,h1〉::xs) [] 〈〈b,h1〉::xs,〈b,〈OQ,OQ〉〉::copy xs〉
-| rb_snd_full : ∀b,h1,ys.
- rebase_cases [] (〈b,h1〉::ys) 〈〈b,〈OQ,OQ〉〉::copy ys,〈b,h1〉::ys〉
-| rb_all_full : ∀b,h1,h2,h3,h4,xs,ys,r1,r2.
- \snd(\last ▭ (〈b,h1〉::xs)) = \snd(\last ▭ (〈b,h3〉::r1)) →
- \snd(\last ▭ (〈b,h2〉::ys)) = \snd(\last ▭ (〈b,h4〉::r2)) →
- rebase_cases (〈b,h1〉::xs) (〈b,h2〉::ys) 〈〈b,h3〉::r1,〈b,h4〉::r2〉
-| rb_all_full_l : ∀b1,b2,h1,h2,xs,ys,r1,r2.
- \snd(\last ▭ (〈b1,h1〉::xs)) = \snd(\last ▭ (〈b1,h1〉::r1)) →
- \snd(\last ▭ (〈b2,h2〉::ys)) = \snd(\last ▭ (〈b1,h2〉::r2)) →
- b1 < b2 →
- rebase_cases (〈b1,h1〉::xs) (〈b2,h2〉::ys) 〈〈b1,h1〉::r1,〈b1,〈OQ,OQ〉〉::r2〉
-| rb_all_full_r : ∀b1,b2,h1,h2,xs,ys,r1,r2.
- \snd(\last ▭ (〈b1,h1〉::xs)) = \snd(\last ▭ (〈b2,h1〉::r1)) →
- \snd(\last ▭ (〈b2,h2〉::ys)) = \snd(\last ▭ (〈b2,h2〉::r2)) →
- b2 < b1 →
- rebase_cases (〈b1,h1〉::xs) (〈b2,h2〉::ys) 〈〈b2,〈OQ,OQ〉〉::r1,〈b2,h2〉::r2〉
-| rb_all_empty : rebase_cases [] [] 〈[],[]〉.
-
-alias symbol "pi2" = "pair pi2".
-alias symbol "pi1" = "pair pi1".
-alias symbol "leq" = "natural 'less or equal to'".
-inductive rebase_spec_aux_p (l1, l2:list bar) (p:(list bar) × (list bar)) : Prop ≝
-| prove_rebase_spec_aux:
- rebase_cases l1 l2 p →
- (sorted q2_lt (\fst p)) →
- (sorted q2_lt (\snd p)) →
- (same_bases (\fst p) (\snd p)) →
- (same_values_simpl l1 (\fst p)) →
- (same_values_simpl l2 (\snd p)) →
- rebase_spec_aux_p l1 l2 p.
-
-lemma aux_preserves_sorting:
- ∀b,b3,l2,l3,w. rebase_cases l2 l3 w →
- sorted q2_lt (b::l2) → sorted q2_lt (b3::l3) → \fst b3 = \fst b →
- sorted q2_lt (\fst w) → sorted q2_lt (\snd w) →
- same_bases (\fst w) (\snd w) →
- sorted q2_lt (b :: \fst w).
-intros 6; cases H; simplify; intros; clear H;
-[ apply (sorted_cons q2_lt); [2:assumption] apply (inversion_sorted2 ??? H1);
-| apply (sorted_cons q2_lt); [2:assumption]
- whd; rewrite < H3; apply (inversion_sorted2 ??? H2);
-| apply (sorted_cons q2_lt); [2:assumption] apply (inversion_sorted2 ??? H3);
-| apply (sorted_cons q2_lt); [2:assumption] apply (inversion_sorted2 ??? H4);
-| apply (sorted_cons q2_lt); [2:assumption]
- whd; rewrite < H6; apply (inversion_sorted2 ??? H5);
-| apply (sorted_one q2_lt);]
-qed.
-
-lemma aux_preserves_sorting2:
- ∀b,b3,l2,l3,w. rebase_cases l2 l3 w →
- sorted q2_lt (b::l2) → sorted q2_lt (b3::l3) → \fst b3 = \fst b →
- sorted q2_lt (\fst w) → sorted q2_lt (\snd w) → same_bases (\fst w) (\snd w) →
- sorted q2_lt (b :: \snd w).
-intros 6; cases H; simplify; intros; clear H;
-[ apply (sorted_cons q2_lt); [2:assumption] apply (inversion_sorted2 ??? H1);
-| apply (sorted_cons q2_lt); [2:assumption]
- whd; rewrite < H3; apply (inversion_sorted2 ??? H2);
-| apply (sorted_cons q2_lt); [2: assumption] apply (inversion_sorted2 ??? H3);
-| apply (sorted_cons q2_lt); [2: assumption] apply (inversion_sorted2 ??? H4);
-| apply (sorted_cons q2_lt); [2: assumption]
- whd; rewrite < H6; apply (inversion_sorted2 ??? H5);
-| apply (sorted_one q2_lt);]
-qed.
-
-definition rebase_spec_aux ≝
- λl1,l2:list bar.λp:(list bar) × (list bar).
- sorted q2_lt l1 → (\snd (\last ▭ l1) = 〈OQ,OQ〉) →
- sorted q2_lt l2 → (\snd (\last ▭ l2) = 〈OQ,OQ〉) →
- rebase_spec_aux_p l1 l2 p.
(* *)
(**************************************************************************)
-include "models/q_function.ma".
+include "russell_support.ma".
+include "models/q_copy.ma".
+
+definition rebase_spec ≝
+ λl1,l2:q_f.λp:q_f × q_f.
+ And3
+ (same_bases (bars (\fst p)) (bars (\snd p)))
+ (same_values l1 (\fst p))
+ (same_values l2 (\snd p)).
+
+inductive rebase_cases : list bar → list bar → (list bar) × (list bar) → Prop ≝
+| rb_fst_full : ∀b,h1,xs.
+ rebase_cases (〈b,h1〉::xs) [] 〈〈b,h1〉::xs,〈b,〈OQ,OQ〉〉::copy xs〉
+| rb_snd_full : ∀b,h1,ys.
+ rebase_cases [] (〈b,h1〉::ys) 〈〈b,〈OQ,OQ〉〉::copy ys,〈b,h1〉::ys〉
+| rb_all_full : ∀b,h1,h2,h3,h4,xs,ys,r1,r2.
+ \snd(\last ▭ (〈b,h1〉::xs)) = \snd(\last ▭ (〈b,h3〉::r1)) →
+ \snd(\last ▭ (〈b,h2〉::ys)) = \snd(\last ▭ (〈b,h4〉::r2)) →
+ rebase_cases (〈b,h1〉::xs) (〈b,h2〉::ys) 〈〈b,h3〉::r1,〈b,h4〉::r2〉
+| rb_all_full_l : ∀b1,b2,h1,h2,xs,ys,r1,r2.
+ \snd(\last ▭ (〈b1,h1〉::xs)) = \snd(\last ▭ (〈b1,h1〉::r1)) →
+ \snd(\last ▭ (〈b2,h2〉::ys)) = \snd(\last ▭ (〈b1,h2〉::r2)) →
+ b1 < b2 →
+ rebase_cases (〈b1,h1〉::xs) (〈b2,h2〉::ys) 〈〈b1,h1〉::r1,〈b1,〈OQ,OQ〉〉::r2〉
+| rb_all_full_r : ∀b1,b2,h1,h2,xs,ys,r1,r2.
+ \snd(\last ▭ (〈b1,h1〉::xs)) = \snd(\last ▭ (〈b2,h1〉::r1)) →
+ \snd(\last ▭ (〈b2,h2〉::ys)) = \snd(\last ▭ (〈b2,h2〉::r2)) →
+ b2 < b1 →
+ rebase_cases (〈b1,h1〉::xs) (〈b2,h2〉::ys) 〈〈b2,〈OQ,OQ〉〉::r1,〈b2,h2〉::r2〉
+| rb_all_empty : rebase_cases [] [] 〈[],[]〉.
+
+alias symbol "pi2" = "pair pi2".
+alias symbol "pi1" = "pair pi1".
+alias symbol "leq" = "natural 'less or equal to'".
+inductive rebase_spec_aux_p (l1, l2:list bar) (p:(list bar) × (list bar)) : Prop ≝
+| prove_rebase_spec_aux:
+ rebase_cases l1 l2 p →
+ (sorted q2_lt (\fst p)) →
+ (sorted q2_lt (\snd p)) →
+ (same_bases (\fst p) (\snd p)) →
+ (same_values_simpl l1 (\fst p)) →
+ (same_values_simpl l2 (\snd p)) →
+ rebase_spec_aux_p l1 l2 p.
+
+lemma aux_preserves_sorting:
+ ∀b,b3,l2,l3,w. rebase_cases l2 l3 w →
+ sorted q2_lt (b::l2) → sorted q2_lt (b3::l3) → \fst b3 = \fst b →
+ sorted q2_lt (\fst w) → sorted q2_lt (\snd w) →
+ same_bases (\fst w) (\snd w) →
+ sorted q2_lt (b :: \fst w).
+intros 6; cases H; simplify; intros; clear H;
+[ apply (sorted_cons q2_lt); [2:assumption] apply (inversion_sorted2 ??? H1);
+| apply (sorted_cons q2_lt); [2:assumption]
+ whd; rewrite < H3; apply (inversion_sorted2 ??? H2);
+| apply (sorted_cons q2_lt); [2:assumption] apply (inversion_sorted2 ??? H3);
+| apply (sorted_cons q2_lt); [2:assumption] apply (inversion_sorted2 ??? H4);
+| apply (sorted_cons q2_lt); [2:assumption]
+ whd; rewrite < H6; apply (inversion_sorted2 ??? H5);
+| apply (sorted_one q2_lt);]
+qed.
+
+lemma aux_preserves_sorting2:
+ ∀b,b3,l2,l3,w. rebase_cases l2 l3 w →
+ sorted q2_lt (b::l2) → sorted q2_lt (b3::l3) → \fst b3 = \fst b →
+ sorted q2_lt (\fst w) → sorted q2_lt (\snd w) → same_bases (\fst w) (\snd w) →
+ sorted q2_lt (b :: \snd w).
+intros 6; cases H; simplify; intros; clear H;
+[ apply (sorted_cons q2_lt); [2:assumption] apply (inversion_sorted2 ??? H1);
+| apply (sorted_cons q2_lt); [2:assumption]
+ whd; rewrite < H3; apply (inversion_sorted2 ??? H2);
+| apply (sorted_cons q2_lt); [2: assumption] apply (inversion_sorted2 ??? H3);
+| apply (sorted_cons q2_lt); [2: assumption] apply (inversion_sorted2 ??? H4);
+| apply (sorted_cons q2_lt); [2: assumption]
+ whd; rewrite < H6; apply (inversion_sorted2 ??? H5);
+| apply (sorted_one q2_lt);]
+qed.
+
+definition rebase_spec_aux ≝
+ λl1,l2:list bar.λp:(list bar) × (list bar).
+ sorted q2_lt l1 → (\snd (\last ▭ l1) = 〈OQ,OQ〉) →
+ sorted q2_lt l2 → (\snd (\last ▭ l2) = 〈OQ,OQ〉) →
+ rebase_spec_aux_p l1 l2 p.
alias symbol "lt" = "Q less than".
alias symbol "Q" = "Rationals".