From: Wilmer Ricciotti Date: Thu, 26 Jul 2007 13:06:09 +0000 (+0000) Subject: Some notation added X-Git-Tag: make_still_working~6122 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=03c219fd478b4160ef1bc0b9e66520afeb6394ac;p=helm.git Some notation added --- diff --git a/helm/software/matita/library/Fsub/defn.ma b/helm/software/matita/library/Fsub/defn.ma index 1c88186dd..3264ed5aa 100644 --- a/helm/software/matita/library/Fsub/defn.ma +++ b/helm/software/matita/library/Fsub/defn.ma @@ -46,47 +46,13 @@ record bound : Set \def { }. (* representation of Fsub typing environments *) -definition Env \def (list bound). +(*definition Env \def (list bound). definition Empty \def (nil bound). definition Cons \def \lambda G,X,T.((mk_bound false X T) :: G). definition TCons \def \lambda G,X,T.((mk_bound true X T) :: G). -definition env_append : Env \to Env \to Env \def \lambda G,H.(H @ G). +definition env_append : Env \to Env \to Env \def \lambda G,H.(H @ G). *) -(* notation "hvbox(\Forall S. break T)" - non associative with precedence 90 -for @{ 'forall $S $T}. - -notation "hvbox(#x)" - with precedence 60 - for @{'var $x}. - -notation "hvbox(##x)" - with precedence 61 - for @{'tvar $x}. - -notation "hvbox(!x)" - with precedence 60 - for @{'name $x}. - -notation "hvbox(!!x)" - with precedence 61 - for @{'tname $x}. - -notation "hvbox(s break \mapsto t)" - right associative with precedence 55 - for @{ 'arrow $s $t }. - -interpretation "universal type" 'forall S T = (cic:/matita/Fsub/defn/Typ.ind#xpointer(1/1/5) S T). - -interpretation "bound var" 'var x = (cic:/matita/Fsub/defn/Typ.ind#xpointer(1/1/1) x). - -interpretation "bound tvar" 'tvar x = (cic:/matita/Fsub/defn/Typ.ind#xpointer(1/1/3) x). - -interpretation "bound tname" 'tname x = (cic:/matita/Fsub/defn/Typ.ind#xpointer(1/1/2) x). - -interpretation "arrow type" 'arrow S T = (cic:/matita/Fsub/defn/Typ.ind#xpointer(1/1/4) S T). *) - (*** Various kinds of substitution, not all will be used probably ***) (* substitutes i-th dangling index in type T with type U *) @@ -101,10 +67,10 @@ let rec subst_type_nat T U i \def | (Forall T1 T2) \Rightarrow (Forall (subst_type_nat T1 U i) (subst_type_nat T2 U (S i))) ]. (* substitutes 0-th dangling index in type T with type U *) -let rec subst_type_O T U \def subst_type_nat T U O. +(*let rec subst_type_O T U \def subst_type_nat T U O.*) (* substitutes 0-th dangling index in term t with term u *) -let rec subst_term_O t u \def +(*let rec subst_term_O t u \def let rec aux t0 i \def match t0 with [ (Var n) \Rightarrow match (eqb n i) with @@ -141,7 +107,7 @@ let rec subst_type_tfree_type T X U on T \def | (Arrow T1 T2) \Rightarrow (Arrow (subst_type_tfree_type T1 X U) (subst_type_tfree_type T2 X U)) | (Forall T1 T2) \Rightarrow (Forall (subst_type_tfree_type T1 X U) - (subst_type_tfree_type T2 X U)) ]. + (subst_type_tfree_type T2 X U)) ].*) (*** height of T's syntactic tree ***) @@ -165,20 +131,20 @@ definition head_nat \def (*** definitions about lists ***) -(* var binding is in env judgement *) -definition var_bind_in_env : bound \to Env \to Prop \def - \lambda b,G.(in_list bound b G). +(*(* var binding is in env judgement *) +definition var_bind_in_env : bound \to (list bound) \to Prop \def + \lambda b,G.(in_list bound b G).*) definition fv_env : (list bound) \to (list nat) \def \lambda G.(map ? ? (\lambda b.match b with [(mk_bound B X T) \Rightarrow X]) G). -(* variable is in env judgement *) -definition var_in_env : nat \to Env \to Prop \def +(*(* variable is in env judgement *) +definition var_in_env : nat \to (list bound) \to Prop \def \lambda x,G.(in_list nat x (fv_env G)). -definition var_type_in_env : nat \to Env \to Prop \def - \lambda x,G.\exists T.(var_bind_in_env (mk_bound true x T) G). +definition var_type_in_env : nat \to (list bound) \to Prop \def + \lambda x,G.\exists T.(var_bind_in_env (mk_bound true x T) G).*) let rec fv_type T \def match T with @@ -190,7 +156,7 @@ let rec fv_type T \def (*** Type Well-Formedness judgement ***) -inductive WFType : Env \to Typ \to Prop \def +inductive WFType : (list bound) \to Typ \to Prop \def | WFT_TFree : \forall X,G.(in_list ? X (fv_env G)) \to (WFType G (TFree X)) | WFT_Top : \forall G.(WFType G Top) @@ -201,94 +167,115 @@ inductive WFType : Env \to Typ \to Prop \def (\lnot (in_list ? X (fv_env G))) \to (\lnot (in_list ? X (fv_type U))) \to (WFType ((mk_bound true X T) :: G) - (subst_type_O U (TFree X)))) \to + (subst_type_nat U (TFree X) O))) \to (WFType G (Forall T U)). (*** Environment Well-Formedness judgement ***) -inductive WFEnv : Env \to Prop \def - | WFE_Empty : (WFEnv Empty) +inductive WFEnv : (list bound) \to Prop \def + | WFE_Empty : (WFEnv (nil ?)) | WFE_cons : \forall B,X,T,G.(WFEnv G) \to \lnot (in_list ? X (fv_env G)) \to (WFType G T) \to (WFEnv ((mk_bound B X T) :: G)). (*** Subtyping judgement ***) -inductive JSubtype : Env \to Typ \to Typ \to Prop \def - | SA_Top : \forall G:Env.\forall T:Typ.(WFEnv G) \to +inductive JSubtype : (list bound) \to Typ \to Typ \to Prop \def + | SA_Top : \forall G.\forall T:Typ.(WFEnv G) \to (WFType G T) \to (JSubtype G T Top) - | SA_Refl_TVar : \forall G:Env.\forall X:nat.(WFEnv G) \to (var_in_env X G) + | SA_Refl_TVar : \forall G.\forall X:nat.(WFEnv G) + \to (in_list ? X (fv_env G)) \to (JSubtype G (TFree X) (TFree X)) - | SA_Trans_TVar : \forall G:Env.\forall X:nat.\forall T:Typ. + | SA_Trans_TVar : \forall G.\forall X:nat.\forall T:Typ. \forall U:Typ. - (var_bind_in_env (mk_bound true X U) G) \to + (in_list ? (mk_bound true X U) G) \to (JSubtype G U T) \to (JSubtype G (TFree X) T) - | SA_Arrow : \forall G:Env.\forall S1,S2,T1,T2:Typ. + | SA_Arrow : \forall G.\forall S1,S2,T1,T2:Typ. (JSubtype G T1 S1) \to (JSubtype G S2 T2) \to (JSubtype G (Arrow S1 S2) (Arrow T1 T2)) - | SA_All : \forall G:Env.\forall S1,S2,T1,T2:Typ. + | SA_All : \forall G.\forall S1,S2,T1,T2:Typ. (JSubtype G T1 S1) \to - (\forall X:nat.\lnot (var_in_env X G) \to + (\forall X:nat.\lnot (in_list ? X (fv_env G)) \to (JSubtype ((mk_bound true X T1) :: G) - (subst_type_O S2 (TFree X)) (subst_type_O T2 (TFree X)))) \to + (subst_type_nat S2 (TFree X) O) (subst_type_nat T2 (TFree X) O))) \to (JSubtype G (Forall S1 S2) (Forall T1 T2)). -(* -notation < "hvbox(e break ⊢ ta \nbsp 'V' \nbsp tb (= \above \alpha))" - non associative with precedence 30 for @{ 'subjudg $e $ta $tb }. -notation > "hvbox(e break ⊢ ta 'Fall' break tb)" - non associative with precedence 30 for @{ 'subjudg $e $ta $tb }. -notation "hvbox(e break ⊢ ta \lessdot break tb)" +notation "hvbox(e ⊢ break ta ⊴ break tb)" non associative with precedence 30 for @{ 'subjudg $e $ta $tb }. interpretation "Fsub subtype judgement" 'subjudg e ta tb = (cic:/matita/Fsub/defn/JSubtype.ind#xpointer(1/1) e ta tb). -lemma xx : \forall e,ta,tb. e \vdash ta Fall tb. -*) - -(*** Typing judgement ***) -inductive JType : Env \to Term \to Typ \to Prop \def - | T_Var : \forall G:Env.\forall x:nat.\forall T:Typ. - (WFEnv G) \to (var_bind_in_env (mk_bound false x T) G) \to - (JType G (Free x) T) - | T_Abs : \forall G.\forall T1,T2:Typ.\forall t2:Term. - \forall x:nat. - (JType ((mk_bound false x T1)::G) (subst_term_O t2 (Free x)) T2) \to - (JType G (Abs T1 t2) (Arrow T1 T2)) - | T_App : \forall G.\forall t1,t2:Term.\forall T2:Typ. - \forall T1:Typ.(JType G t1 (Arrow T1 T2)) \to (JType G t2 T1) \to - (JType G (App t1 t2) T2) - | T_TAbs : \forall G:Env.\forall T1,T2:Typ.\forall t2:Term. - \forall X:nat. - (JType ((mk_bound true X T1)::G) - (subst_term_tO t2 (TFree X)) (subst_type_O T2 (TFree X))) - \to (JType G (TAbs T1 t2) (Forall T1 T2)) - | T_TApp : \forall G:Env.\forall t1:Term.\forall T2,T12:Typ. - \forall X:nat.\forall T11:Typ. - (JType G t1 (Forall T11 (subst_type_tfree_type T12 X (TVar O)))) \to - (JSubtype G T2 T11) - \to (JType G (TApp t1 T2) (subst_type_tfree_type T12 X T2)) - | T_Sub : \forall G:Env.\forall t:Term.\forall T:Typ. - \forall S:Typ.(JType G t S) \to (JSubtype G S T) \to (JType G t T). +notation > "hvbox(\Forall S.T)" + non associative with precedence 60 for @{ 'forall $S $T}. +notation < "hvbox('All' \sub S. break T)" + non associative with precedence 60 for @{ 'forall $S $T}. +interpretation "universal type" 'forall S T = + (cic:/matita/Fsub/defn/Typ.ind#xpointer(1/1/5) S T). + +notation "#x" with precedence 79 for @{'tvar $x}. +interpretation "bound tvar" 'tvar x = + (cic:/matita/Fsub/defn/Typ.ind#xpointer(1/1/1) x). + +notation "!x" with precedence 79 for @{'tname $x}. +interpretation "bound tname" 'tname x = + (cic:/matita/Fsub/defn/Typ.ind#xpointer(1/1/2) x). + +notation "⊤" with precedence 90 for @{'toptype}. +interpretation "toptype" 'toptype = + (cic:/matita/Fsub/defn/Typ.ind#xpointer(1/1/3)). + +notation "hvbox(s break ⇛ t)" + right associative with precedence 55 for @{ 'arrow $s $t }. +interpretation "arrow type" 'arrow S T = + (cic:/matita/Fsub/defn/Typ.ind#xpointer(1/1/4) S T). + +notation "hvbox(S [# n ↦ T])" + non associative with precedence 80 for @{ 'substvar $S $T $n }. +interpretation "subst bound var" 'substvar S T n = + (cic:/matita/Fsub/defn/subst_type_nat.con S T n). + +notation "hvbox(|T|)" + non associative with precedence 30 for @{ 'tlen $T }. +interpretation "type length" 'tlen T = + (cic:/matita/Fsub/defn/t_len.con T). + +notation > "hvbox(x ∈ l)" + non associative with precedence 30 for @{ 'inlist $x $l }. +notation < "hvbox(x \nbsp ∈ \nbsp l)" + non associative with precedence 30 for @{ 'inlist $x $l }. +interpretation "item in list" 'inlist x l = + (cic:/matita/Fsub/util/in_list.ind#xpointer(1/1) _ x l). + +notation "hvbox(!X ⊴ T)" + non associative with precedence 60 for @{ 'subtypebound $X $T }. +interpretation "subtyping bound" 'subtypebound X T = + (cic:/matita/Fsub/defn/bound.ind#xpointer(1/1/1) true X T). + +(*notation < "hvbox(e break ⊢ ta \nbsp 'V' \nbsp tb (= \above \alpha))" + non associative with precedence 30 for @{ 'subjudg $e $ta $tb }. +notation > "hvbox(e break ⊢ ta 'Fall' break tb)" + non associative with precedence 30 for @{ 'subjudg $e $ta $tb }. +notation "hvbox(e break ⊢ ta \lessdot break tb)" + non associative with precedence 30 for @{ 'subjudg $e $ta $tb }.*) (****** PROOFS ********) -lemma subst_O_nat : \forall T,U.((subst_type_O T U) = (subst_type_nat T U O)). +(*lemma subst_O_nat : \forall T,U.((subst_type_O T U) = T[#O↦U]). intros;elim T;simplify;reflexivity; -qed. +qed.*) (*** theorems about lists ***) (* FIXME: these definitions shouldn't be part of the poplmark challenge - use destruct instead, when hopefully it will get fixed... *) -lemma inj_head : \forall h1,h2:bound.\forall t1,t2:Env. - ((h1::t1) = (h2::t2)) \to (h1 = h2). +lemma inj_head : \forall h1,h2:bound.\forall t1,t2:(list bound). + (h1::t1 = h2::t2) \to h1 = h2. intros. lapply (eq_f ? ? head ? ? H).simplify in Hletin.assumption. qed. lemma inj_head_nat : \forall h1,h2:nat.\forall t1,t2:(list nat). - ((h1::t1) = (h2::t2)) \to (h1 = h2). + (h1::t1 = h2::t2) \to (h1 = h2). intros. lapply (eq_f ? ? head_nat ? ? H).simplify in Hletin.assumption. qed. @@ -521,9 +508,9 @@ intros 4.elim H [apply (H4 H6) |apply (H2 H6)] |simplify in H5;lapply (nat_in_list_case ? ? ? H5);elim Hletin - [lapply (fresh_name ((fv_type t1) @ (fv_env e)));elim Hletin1; + [lapply (fresh_name ((fv_type t1) @ (fv_env l)));elim Hletin1; cut ((\lnot (in_list ? a (fv_type t1))) \land - (\lnot (in_list ? a (fv_env e)))) + (\lnot (in_list ? a (fv_env l)))) [elim Hcut;lapply (H4 ? H9 H8) [cut (x \neq a) [simplify in Hletin2; @@ -534,7 +521,7 @@ intros 4.elim H |intros;lapply (inj_tail ? ? ? ? ? H14);rewrite > Hletin3; assumption] |unfold;intro;apply H8;rewrite < H10;assumption] - |rewrite > subst_O_nat;apply in_FV_subst;assumption] + |apply in_FV_subst;assumption] |split [unfold;intro;apply H7;apply natinG_or_inH_to_natinGH;right; assumption @@ -574,8 +561,8 @@ lemma t_len_arrow1 : \forall T1,T2.(t_len T1) < (t_len (Arrow T1 T2)). intros.simplify. (* FIXME!!! BUG?!?! *) cut ((max (t_len T1) (t_len T2)) = match (leb (t_len T1) (t_len T2)) with - [ false \Rightarrow (t_len T2) - | true \Rightarrow (t_len T1) ]) + [ false ⇒ (t_len T2) + | true ⇒ (t_len T1) ]) [rewrite > Hcut;cut ((leb (t_len T1) (t_len T2)) = false \lor (leb (t_len T1) (t_len T2)) = true) [lapply (leb_to_Prop (t_len T1) (t_len T2));elim Hcut1 @@ -649,7 +636,7 @@ qed. (*** lemmata relating subtyping and well-formedness ***) -lemma JS_to_WFE : \forall G,T,U.(G \vdash T \lessdot U) \to (WFEnv G). +lemma JS_to_WFE : \forall G,T,U.(G \vdash T ⊴ U) \to (WFEnv G). intros;elim H;assumption. qed. @@ -690,7 +677,7 @@ intros 7;elim H 0 rewrite < Hcut1 in H6;apply (WFE_cons ? ? ? ? H4 H6 H2)] |intros;simplify;generalize in match H2;elim t;simplify in H4; inversion H4 - [intros;absurd (mk_bound b n t1::l@(mk_bound B x T::G)=Empty) + [intros;absurd (mk_bound b n t1::l@(mk_bound B x T::G)=[]) [assumption |apply nil_cons] |intros;lapply (inj_tail ? ? ? ? ? H9);lapply (inj_head ? ? ? ? H9); @@ -716,7 +703,7 @@ intros 6;elim H [intros;rewrite < H9 in H10;lapply (inj_head ? ? ? ? H10); destruct Hletin1;symmetry;assumption |intros;lapply (inj_tail ? ? ? ? ? H12);rewrite < Hletin1 in H9; - rewrite < H11 in H9;lapply (boundinenv_natinfv x e) + rewrite < H11 in H9;lapply (boundinenv_natinfv x l) [destruct Hletin;rewrite < Hcut1 in Hletin2;lapply (H3 Hletin2); elim Hletin3 |apply ex_intro @@ -725,10 +712,10 @@ intros 6;elim H rewrite < Hletin in H7;(*FIXME*)generalize in match H5;intro;inversion H5 [intros;rewrite < H12 in H13;lapply (inj_head ? ? ? ? H13); destruct Hletin1;rewrite < Hcut1 in H7; - lapply (boundinenv_natinfv n e) + lapply (boundinenv_natinfv n l) [lapply (H3 Hletin2);elim Hletin3 |apply ex_intro [apply B|apply ex_intro [apply U|assumption]]] |intros;apply (H2 ? H7);rewrite > H14;lapply (inj_tail ? ? ? ? ? H15); rewrite > Hletin1;assumption]]] -qed. \ No newline at end of file +qed. diff --git a/helm/software/matita/library/Fsub/part1a.ma b/helm/software/matita/library/Fsub/part1a.ma index e1026f3d7..0437f1e29 100644 --- a/helm/software/matita/library/Fsub/part1a.ma +++ b/helm/software/matita/library/Fsub/part1a.ma @@ -52,7 +52,7 @@ apply Typ_len_ind;intro;elim U [lapply (H2 t ? ? Hcut H4) [apply t_len_forall1 |apply (SA_All ? ? ? ? ? Hletin);intros;apply H2 - [rewrite > subst_O_nat;rewrite < eq_t_len_TFree_subst; + [rewrite < eq_t_len_TFree_subst; apply t_len_forall2 |generalize in match H3;intro;inversion H3 [intros;destruct H9 @@ -61,8 +61,8 @@ apply Typ_len_ind;intro;elim U |intros;destruct H12;subst;apply H9 [assumption |unfold;intro;apply H5; - elim (fresh_name ((fv_env e)@(fv_type t3))); - cut ((\lnot (in_list ? a (fv_env e))) \land + elim (fresh_name ((fv_env l)@(fv_type t3))); + cut ((\lnot (in_list ? a (fv_env l))) \land (\lnot (in_list ? a (fv_type t3)))) [elim Hcut1;lapply (H9 ? H13 H14); lapply (fv_WFT ? X ? Hletin1) @@ -71,7 +71,7 @@ apply Typ_len_ind;intro;elim U elim (H14 H11) |intros;lapply (inj_tail ? ? ? ? ? H18); rewrite < Hletin3 in H15;assumption] - |rewrite >subst_O_nat;apply varinT_varinT_subst; + |apply varinT_varinT_subst; assumption] |split;unfold;intro;apply H12;apply natinG_or_inH_to_natinGH [right;assumption @@ -149,17 +149,17 @@ cut (\forall G,T,P. |rewrite > H8 in H5;apply (H7 ? H5)] |elim (decidable_eq_nat X n) [apply (SA_Trans_TVar ? ? ? P) - [rewrite < H10;elim l + [rewrite < H10;elim l1 [simplify;constructor 1 |simplify;constructor 2;assumption] |apply H7 [lapply (H6 ? H7 H8 H9);lapply (JS_to_WFE ? ? ? Hletin); apply (JS_weakening ? ? ? H3 ? Hletin1);unfold;intros; - elim l;simplify;constructor 2;assumption + elim l1;simplify;constructor 2;assumption |lapply (WFE_bound_bound true n t1 U ? ? H4) [apply (JS_to_WFE ? ? ? H5) |rewrite < Hletin;apply (H6 ? H7 H8 H9) - |rewrite > H9;rewrite > H10;elim l;simplify + |rewrite > H9;rewrite > H10;elim l1;simplify [constructor 1 |constructor 2;assumption]]]] |apply (SA_Trans_TVar ? ? ? t1) @@ -172,11 +172,11 @@ cut (\forall G,T,P. |apply (H7 ? H8 H9 H10)] |apply SA_All [apply (H5 ? H8 H9 H10) - |intros;apply (H7 ? ? (mk_bound true X1 t2::l) H8) - [rewrite > H10;cut ((fv_env (l@(mk_bound true X P::G1))) = - (fv_env (l@(mk_bound true X U::G1)))) - [unfold;intro;apply H11;unfold;rewrite > Hcut2;assumption - |elim l + |intros;apply (H7 ? ? (mk_bound true X1 t2::l1) H8) + [rewrite > H10;cut ((fv_env (l1@(mk_bound true X P::G1))) = + (fv_env (l1@(mk_bound true X U::G1)))) + [unfold;intro;apply H11;rewrite > Hcut2;assumption + |elim l1 [simplify;reflexivity |elim t4;simplify;rewrite > H12;reflexivity]] |simplify;apply (incl_nat_cons ? ? ? H9) @@ -225,15 +225,15 @@ cut (\forall G,T,P. [elim Hletin;apply (H12 ? ? ? H8 H2) |apply t_len_forall1] |intros;(*destruct H12;*)subst; - lapply (H6 (subst_type_O t5 (TFree X))) + lapply (H6 (subst_type_nat t5 (TFree X) O)) [elim Hletin;apply H13 [lapply (H6 t4) - [elim Hletin1;apply (H16 e1 [] X t6); + [elim Hletin1;apply (H16 l1 [] X t6); [simplify;apply H4;assumption |assumption] |apply t_len_forall1] |apply (H10 ? H12)] - |rewrite > subst_O_nat;rewrite < eq_t_len_TFree_subst; + |rewrite < eq_t_len_TFree_subst; apply t_len_forall2]]]]] qed.