From: Claudio Sacerdoti Coen Date: Mon, 20 Feb 2006 13:47:32 +0000 (+0000) Subject: Some more implicit coercions here and there. X-Git-Tag: 0.4.95@7852~1649 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=05f98d76325dba7c404dbae50ec759b2e7d1a6c8;p=helm.git Some more implicit coercions here and there. --- diff --git a/matita/library/algebra/groups.ma b/matita/library/algebra/groups.ma index 7a675e377..1301d34f9 100644 --- a/matita/library/algebra/groups.ma +++ b/matita/library/algebra/groups.ma @@ -144,6 +144,19 @@ rewrite > (e_is_left_unit ? (is_monoid ? G)); assumption. qed. +theorem eq_inv_op_x_y_op_inv_y_inv_x: + ∀G:Group. ∀x,y:G. (x·y) \sup -1 = y \sup -1 · x \sup -1. +intros; +apply (eq_op_x_y_op_z_y_to_eq ? (x·y)); +rewrite > (inv_is_left_inverse ? G); +rewrite < (associative ? G); +rewrite > (associative ? G (y \sup -1)); +rewrite > (inv_is_left_inverse ? G); +rewrite > (e_is_right_unit ? G); +rewrite > (inv_is_left_inverse ? G); +reflexivity. +qed. + (* Morphisms *) record morphism (G,G':Group) : Type ≝ @@ -179,7 +192,7 @@ apply (morphism_to_eq_f_1_1 ? ? f). qed. record monomorphism (G,G':Group) : Type ≝ - { morphism: morphism G G'; + { morphism:> morphism G G'; injective: injective ? ? (image ? ? morphism) }. @@ -187,7 +200,7 @@ record monomorphism (G,G':Group) : Type ≝ record subgroup (G:Group) : Type ≝ { group: Group; - embed: monomorphism group G + embed:> monomorphism group G }. notation "hvbox(x \sub H)" with precedence 79 @@ -195,18 +208,16 @@ for @{ 'subgroupimage $H $x }. interpretation "Subgroup image" 'subgroupimage H x = (cic:/matita/algebra/groups/image.con _ _ - (cic:/matita/algebra/groups/morphism.con _ _ - (cic:/matita/algebra/groups/embed.con _ H)) - x). + (cic:/matita/algebra/groups/morphism_of_subgroup.con _ H) x). -definition belongs_to_subgroup ≝ +definition member_of_subgroup ≝ λG.λH:subgroup G.λx:G.∃y.x=y \sub H. -notation "hvbox(x ∈ H)" with precedence 79 -for @{ 'belongs_to $x $H }. +notation "hvbox(x break ∈ H)" with precedence 79 +for @{ 'member_of $x $H }. -interpretation "Belongs to subgroup" 'belongs_to x H = - (cic:/matita/algebra/groups/belongs_to_subgroup.con _ H x). +interpretation "Member of subgroup" 'member_of x H = + (cic:/matita/algebra/groups/member_of_subgroup.con _ H x). (* Left cosets *) @@ -219,12 +230,12 @@ record left_coset (G:Group) : Type ≝ interpretation "Left_coset" 'times x C = (cic:/matita/algebra/groups/left_coset.ind#xpointer(1/1/1) _ x C). -definition belongs_to_left_coset ≝ +definition member_of_left_coset ≝ λG:Group.λC:left_coset G.λx:G. ∃y.x=(element ? C)·y \sub (subgrp ? C). -interpretation "Belongs to left_coset" 'belongs_to x C = - (cic:/matita/algebra/groups/belongs_to_left_coset.con _ C x). +interpretation "Member of left_coset" 'member_of x C = + (cic:/matita/algebra/groups/member_of_left_coset.con _ C x). definition left_coset_eq ≝ λG.λC,C':left_coset G. @@ -244,31 +255,31 @@ for @{ 'disjoint $a $b }. interpretation "Left cosets disjoint" 'disjoint C C' = (cic:/matita/algebra/groups/left_coset_disjoint.con _ C C'). -(* (* The following should be a one-shot alias! *) -alias symbol "belongs_to" (instance 0) = "Belongs to subgroup". -theorem foo: - ∀G.∀x,y:(Type_of_Group G).∀H:subgroup G. - (x \sup -1 ·y) ∈ H → (mk_left_coset ? x H) = (mk_left_coset ? y H). +alias symbol "member_of" (instance 0) = "Member of subgroup". +theorem member_of_subgroup_op_inv_x_y_to_left_coset_eq: + ∀G.∀x,y.∀H:subgroup G. (x \sup -1 ·y) ∈ H → x*H = y*H. intros; unfold left_coset_eq; -simplify in ⊢ (? → ? ? ? (? ? ? (? ? ? (? ? ? (? ? %)) ?))); simplify in ⊢ (? → ? ? ? (? ? % ?)); +simplify in ⊢ (? → ? ? ? (? ? ? (? ? ? (? ? %) ?))); simplify in ⊢ (? % → ?); intros; -unfold belongs_to_left_coset; -simplify in ⊢ (? ? (λy:?.? ? ? (? ? ? (? ? ? (? ? ? (? ? %)) ?)))); +unfold member_of_left_coset; +simplify in ⊢ (? ? (λy:?.? ? ? (? ? ? (? ? ? (? ? %) ?)))); simplify in ⊢ (? ? (λy:? %.?)); simplify in ⊢ (? ? (λy:?.? ? ? (? ? % ?))); -unfold belongs_to_subgroup in H1; +unfold member_of_subgroup in H1; elim H1; clear H1; exists; -[apply ((a \sub H)\sup-1 · x1) -| +[ apply (a\sup-1 · x1) +| rewrite > (f_morph ? ? (morphism ? ? H)); + rewrite > (eq_image_inv_inv_image ? ? + rewrite < H2; + rewrite > (eq_inv_op_x_y_op_inv_y_inv_x ? ? ? ? H2); ]. qed. -*) (*theorem foo: \forall G:Group. \forall x1,x2:G. \forall H:subgroup G.