From: Claudio Sacerdoti Coen Date: Mon, 16 Jul 2007 17:35:38 +0000 (+0000) Subject: More daemons got rid of (and more extra axioms to be proved). X-Git-Tag: 0.4.95@7852~320 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=0aa35c698019cfb653c78f380a0af869ebdc190a;p=helm.git More daemons got rid of (and more extra axioms to be proved). --- diff --git a/matita/library/assembly/byte.ma b/matita/library/assembly/byte.ma index f18effeab..d0f1ada88 100644 --- a/matita/library/assembly/byte.ma +++ b/matita/library/assembly/byte.ma @@ -182,6 +182,8 @@ theorem plusbytenc_ok: autobatch paramodulation. qed. + + lemma eq_eqbyte_x0_x0_byte_of_nat_S_false: ∀b. b < 255 → eqbyte (mk_byte x0 x0) (byte_of_nat (S b)) = false. intros; @@ -216,11 +218,20 @@ lemma eq_eqbyte_x0_x0_byte_of_nat_S_false: unfold lt in H; rewrite < H2; clear H2; clear a; clear H1; clear Hcut; - elim daemon (* trivial arithmetic property over <= and div *) + apply (le_times_to_le 16) [ autobatch | ] ; + rewrite > (div_mod (S b) 16) in H;[2:autobatch|] + rewrite > (div_mod 255 16) in H:(? ? %);[2:autobatch|] + lapply (le_to_le_plus_to_le ? ? ? ? ? H); + [apply lt_S_to_le; + apply lt_mod_m_m;autobatch + |rewrite > sym_times; + rewrite > sym_times in ⊢ (? ? %); (* just to speed up qed *) + normalize in \vdash (? ? %);apply Hletin; + ] ] ] ] - | elim daemon + | elim (or_lt_le b 15);unfold ge;autobatch ]. qed. diff --git a/matita/library/assembly/extra.ma b/matita/library/assembly/extra.ma index 70b43bb1e..44546494d 100644 --- a/matita/library/assembly/extra.ma +++ b/matita/library/assembly/extra.ma @@ -23,6 +23,8 @@ axiom mod_mod: ∀a,n,m. n∣m → a \mod n = a \mod n \mod m. axiom eq_mod_times_n_m_m_O: ∀n,m. O < m → n * m \mod m = O. axiom eq_mod_to_eq_plus_mod: ∀a,b,c,m. a \mod m = b \mod m → (a+c) \mod m = (b+c) \mod m. axiom eq_mod_times_times_mod: ∀a,b,n,m. m = a*n → (a*b) \mod m = a * (b \mod n). +axiom le_to_le_plus_to_le : ∀a,b,c,d.b\leq d\rarr a+b\leq c+d\rarr a\leq c. +axiom or_lt_le : ∀n,m. n < m ∨ m ≤ n. inductive cartesian_product (A,B: Type) : Type ≝ couple: ∀a:A.∀b:B. cartesian_product A B.