From: Andrea Asperti Date: Tue, 11 Oct 2005 08:28:47 +0000 (+0000) Subject: realizability for the induction principle. X-Git-Tag: V_0_7_2_3~222 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=0e1469c982280f2606c4b35253a2d5ba91cb16e4;p=helm.git realizability for the induction principle. --- diff --git a/helm/papers/system_T/t.tex b/helm/papers/system_T/t.tex index 30cbd5732..d3ca4e6a1 100644 --- a/helm/papers/system_T/t.tex +++ b/helm/papers/system_T/t.tex @@ -1,11 +1,12 @@ \documentclass[a4paper]{article} \pagestyle{headings} %\usepackage{graphicx} -\usepackage{amssymb,amsmath} +\usepackage{amssymb,amsmath,mathrsfs} %\usepackage{hyperref} %\usepackage{picins} \newcommand{\sem}[1]{[\![ #1 ]\!]} +\newcommand{\R}{\,\mathscr{R}\,} \title{...} \author{...} @@ -105,22 +106,39 @@ For any type T of system T $\bot_T: 1 \to T$ is inuctively defined as follows: In the case of structured proofs: \begin{itemize} -\item \sem{M N} = \sem{M} \sem{N} -\item \sem{\lambda x:A.M} = \lambda x:\sem{A}.\sem{M} -\item \sem{\lambda x:N.M} = \lambda x:N.\sem{M} -\item \sem{M t} = \sem{M} \sem{t} +\item $\sem{M N} = \sem{M} \sem{N}$ +\item $\sem{\lambda x:A.M} = \lambda x:\sem{A}.\sem{M}$ +\item $\sem{\lambda x:N.M} = \lambda x:N.\sem{M}$ +\item $\sem{M t} = \sem{M} \sem{t}$ \end{itemize} \section{Realizability} -The realizability relation is a relation $f \, R \, P$ where $f: \sem{P}$. +The realizability relation is a relation $f \R P$ where $f: \sem{P}$. In particular: \begin{itemize} -\item $\neg (* \, R \bot)$ -\item $* \, R \, (t_1=t_2)$ iff $t_1=t_2$ is true ... -\item $ R P\land Q$ iff $f R P$ and $g R Q$ -\item $f R P\to Q$ iff for any $m$ such that $m R P$, $(f m) \, R \, Q$ -\item $f R \forall x.P$ iff for any $n$ $(f \underline{n}) \, R \, P$ -\item $ R \exists x.P$ iff $g R P[n/x]$ +\item $\neg (* \R \bot)$ +\item $* \R (t_1=t_2)$ iff $t_1=t_2$ is true ... +\item $ \R (P\land Q)$ iff $f \R P$ and $g \R Q$ +\item $f \R (P\to Q)$ iff for any $m$ such that $m \R P$, $(f \,m) \R Q$ +\item $f \R (\forall x.P)$ iff for any natural number $n$ $(f n) \R P[\underline{n}/x]$ +\item $ \R (\exists x.P)$ iff $g \R P[\underline{n}/x]$ +\end{itemize} + +\noindent +We proceed to prove that alla axioms $ax:Ax$ are realized by $\sem{ax}$. + +\begin{itemize} +\item $nat\_ind$. We must prove that the recursion schema $R$ realizes the +induction principle. To this aim we must prove that for any $a$ and $f$ such that +$a \R P(0)$ and $f \R \forall x.(P(x) \to P(S(x)))$, and any natural number +$n$, $(R \,a \,f \,n) \R P(\underline{n})$.\\ +We proceed by induction on n.\\ +If $n=O$, $(R \,a \,f \,O) = a$ and by hypothesis $a \R P(0)$.\\ +Suppose by induction that $(R \,a \,f \,n) \R P(\underline{n})$, and let us prove that +the relation still holds for $n+1$. +By definition $(R \,a \,f \,(n+1)) = f \,n \,(R \,a \,f \,n)$, +and since $f \R \forall x.(P(x) \to P(S(x)))$, +$(f n (R a f n)) \R P(S(\underline{n}))=P(\underline{n+1})$. \end{itemize} \begin{thebibliography}{}