From: Ferruccio Guidi Date: Tue, 9 Feb 2016 19:05:48 +0000 (+0000) Subject: general slicing reactivated ... X-Git-Tag: make_still_working~647 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=11792b819aba3f464e63cb8f7834cac1652e372a;p=helm.git general slicing reactivated ... --- diff --git a/matita/matita/contribs/lambdadelta/basic_2/etc_new/lifts/lifts.etc b/matita/matita/contribs/lambdadelta/basic_2/etc_new/lifts/lifts.etc deleted file mode 100644 index ebb4a2456..000000000 --- a/matita/matita/contribs/lambdadelta/basic_2/etc_new/lifts/lifts.etc +++ /dev/null @@ -1,29 +0,0 @@ -(* Basic_1: was: lift_r *) -lemma lift_refl: ∀T,l. ⬆[l, 0] T ≡ T. -#T elim T -T -[ * #i // #l elim (lt_or_ge i l) /2 width=1 by lift_lref_lt, -lift_lref_ge/ -| * /2 width=1 by lift_bind, lift_flat/ -] -qed. - -lemma lift_total: ∀T1,l,m. ∃T2. ⬆[l,m] T1 ≡ T2. -#T1 elim T1 -T1 -[ * #i /2 width=2 by lift_sort, lift_gref, ex_intro/ - #l #m elim (lt_or_ge i l) /3 width=2 by lift_lref_lt, lift_lref_ge, -ex_intro/ -| * [ #a ] #I #V1 #T1 #IHV1 #IHT1 #l #m - elim (IHV1 l m) -IHV1 #V2 #HV12 - [ elim (IHT1 (l+1) m) -IHT1 /3 width=2 by lift_bind, ex_intro/ - | elim (IHT1 l m) -IHT1 /3 width=2 by lift_flat, ex_intro/ - ] -] -qed. - -lemma liftv_total: ∀l,m. ∀T1s:list term. ∃T2s. ⬆[l, m] T1s ≡ T2s. -#l #m #T1s elim T1s -T1s -[ /2 width=2 by liftv_nil, ex_intro/ -| #T1 #T1s * #T2s #HT12s - elim (lift_total T1 l m) /3 width=2 by liftv_cons, ex_intro/ -] -qed-. diff --git a/matita/matita/contribs/lambdadelta/basic_2/names.txt b/matita/matita/contribs/lambdadelta/basic_2/names.txt index ed799bf44..1a26839d5 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/names.txt +++ b/matita/matita/contribs/lambdadelta/basic_2/names.txt @@ -15,24 +15,22 @@ S : RTM stack T,U,V,W: term X,Y,Z : reserved: transient objet denoted by a capital letter -a,b : binder polarity -c : relocation +a,b : +c : local dropping kind parameter (true = restricted, false = general) d : term degree e : reserved: future use (\lambda\delta 3) -f : -g : sort degree parameter -h : sort hierarchy parameter -i,j : local reference position index (de Bruijn's) -k : sort index -l : relocation depth -m : relocation height +f,g : local reference transforming map +h : sort degree parameter +i,j : local reference depth (de Bruijn's) +k,l : global reference level +m : n : type iterations -o : -p,q : global reference position +o : sort hierarchy parameter +p,q : binder polarity r : reduction kind parameter (true = ordinary, false = extended) -s : local dropping kind parameter (true = general, false = restricted) -t,u : local reference position level (de Bruijn's) (RTM) -v,w : +s : sort index +t,u : +v,w : local reference position level (de Bruijn's) (RTM) x,y,z : reserved: transient objet denoted by a small letter NAMING CONVENTIONS FOR CONSTRUCTORS @@ -65,6 +63,7 @@ t: context-free for terms - second letter +e: reserved for generic entrywise extension i: irreducible form n: normal form p: reflexive parallel transformation @@ -96,4 +95,3 @@ q: reflexive closure (question) r: proper multiple step (restricted) (restricted) s: reflexive transitive closure (star) u: proper single step (restricted) (unit) -x: reserved for generic pointwise extension diff --git a/matita/matita/contribs/lambdadelta/basic_2/relocation/drops.ma b/matita/matita/contribs/lambdadelta/basic_2/relocation/drops.ma index 1016ec0d5..a38d5c7a5 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/relocation/drops.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/relocation/drops.ma @@ -22,165 +22,176 @@ include "basic_2/relocation/lifts.ma". (* Basic_2A1: includes: drop_atom drop_pair drop_drop drop_skip drop_refl_atom_O2 drop_drop_lt drop_skip_lt *) -inductive drops (s:bool): trace → relation lenv ≝ -| drops_atom: ∀t. (s = Ⓕ → 𝐈⦃t⦄) → drops s (t) (⋆) (⋆) -| drops_drop: ∀I,L1,L2,V,t. drops s t L1 L2 → drops s (Ⓕ@t) (L1.ⓑ{I}V) L2 -| drops_skip: ∀I,L1,L2,V1,V2,t. - drops s t L1 L2 → ⬆*[t] V2 ≡ V1 → - drops s (Ⓣ@t) (L1.ⓑ{I}V1) (L2.ⓑ{I}V2) +inductive drops (c:bool): rtmap → relation lenv ≝ +| drops_atom: ∀f. (c = Ⓣ → 𝐈⦃f⦄) → drops c (f) (⋆) (⋆) +| drops_drop: ∀I,L1,L2,V,f. drops c f L1 L2 → drops c (⫯f) (L1.ⓑ{I}V) L2 +| drops_skip: ∀I,L1,L2,V1,V2,f. + drops c f L1 L2 → ⬆*[f] V2 ≡ V1 → + drops c (↑f) (L1.ⓑ{I}V1) (L2.ⓑ{I}V2) . interpretation "general slicing (local environment)" - 'RDropStar s t L1 L2 = (drops s t L1 L2). + 'RDropStar c f L1 L2 = (drops c f L1 L2). definition d_liftable1: relation2 lenv term → predicate bool ≝ - λR,s. ∀L,K,t. ⬇*[s, t] L ≡ K → - ∀T,U. ⬆*[t] T ≡ U → R K T → R L U. + λR,c. ∀L,K,f. ⬇*[c, f] L ≡ K → + ∀T,U. ⬆*[f] T ≡ U → R K T → R L U. definition d_liftable2: predicate (lenv → relation term) ≝ - λR. ∀K,T1,T2. R K T1 T2 → ∀L,s,t. ⬇*[s, t] L ≡ K → - ∀U1. ⬆*[t] T1 ≡ U1 → - ∃∃U2. ⬆*[t] T2 ≡ U2 & R L U1 U2. + λR. ∀K,T1,T2. R K T1 T2 → ∀L,c,f. ⬇*[c, f] L ≡ K → + ∀U1. ⬆*[f] T1 ≡ U1 → + ∃∃U2. ⬆*[f] T2 ≡ U2 & R L U1 U2. definition d_deliftable2_sn: predicate (lenv → relation term) ≝ - λR. ∀L,U1,U2. R L U1 U2 → ∀K,s,t. ⬇*[s, t] L ≡ K → - ∀T1. ⬆*[t] T1 ≡ U1 → - ∃∃T2. ⬆*[t] T2 ≡ U2 & R K T1 T2. - -definition dropable_sn: predicate (relation lenv) ≝ - λR. ∀L1,K1,s,t. ⬇*[s, t] L1 ≡ K1 → ∀L2. R L1 L2 → - ∃∃K2. R K1 K2 & ⬇*[s, t] L2 ≡ K2. -(* -definition dropable_dx: predicate (relation lenv) ≝ - λR. ∀L1,L2. R L1 L2 → ∀K2,s,m. ⬇[s, 0, m] L2 ≡ K2 → - ∃∃K1. ⬇[s, 0, m] L1 ≡ K1 & R K1 K2. -*) + λR. ∀L,U1,U2. R L U1 U2 → ∀K,c,f. ⬇*[c, f] L ≡ K → + ∀T1. ⬆*[f] T1 ≡ U1 → + ∃∃T2. ⬆*[f] T2 ≡ U2 & R K T1 T2. + +definition dropable_sn: predicate (rtmap → relation lenv) ≝ + λR. ∀L1,K1,c,f. ⬇*[c, f] L1 ≡ K1 → ∀L2,u2. R u2 L1 L2 → + ∀u1. f ⊚ u1 ≡ u2 → + ∃∃K2. R u1 K1 K2 & ⬇*[c, f] L2 ≡ K2. + (* Basic inversion lemmas ***************************************************) -fact drops_inv_atom1_aux: ∀X,Y,s,t. ⬇*[s, t] X ≡ Y → X = ⋆ → - Y = ⋆ ∧ (s = Ⓕ → 𝐈⦃t⦄). -#X #Y #s #t * -X -Y -t +fact drops_inv_atom1_aux: ∀X,Y,c,f. ⬇*[c, f] X ≡ Y → X = ⋆ → + Y = ⋆ ∧ (c = Ⓣ → 𝐈⦃f⦄). +#X #Y #c #f * -X -Y -f [ /3 width=1 by conj/ -| #I #L1 #L2 #V #t #_ #H destruct -| #I #L1 #L2 #V1 #V2 #t #_ #_ #H destruct +| #I #L1 #L2 #V #f #_ #H destruct +| #I #L1 #L2 #V1 #V2 #f #_ #_ #H destruct ] qed-. (* Basic_1: includes: drop_gen_sort *) (* Basic_2A1: includes: drop_inv_atom1 *) -lemma drops_inv_atom1: ∀Y,s,t. ⬇*[s, t] ⋆ ≡ Y → Y = ⋆ ∧ (s = Ⓕ → 𝐈⦃t⦄). +lemma drops_inv_atom1: ∀Y,c,f. ⬇*[c, f] ⋆ ≡ Y → Y = ⋆ ∧ (c = Ⓣ → 𝐈⦃f⦄). /2 width=3 by drops_inv_atom1_aux/ qed-. -fact drops_inv_drop1_aux: ∀X,Y,s,t. ⬇*[s, t] X ≡ Y → ∀I,K,V,tl. X = K.ⓑ{I}V → t = Ⓕ@tl → - ⬇*[s, tl] K ≡ Y. -#X #Y #s #t * -X -Y -t -[ #t #Ht #J #K #W #tl #H destruct -| #I #L1 #L2 #V #t #HL #J #K #W #tl #H1 #H2 destruct // -| #I #L1 #L2 #V1 #V2 #t #_ #_ #J #K #W #tl #_ #H2 destruct +fact drops_inv_drop1_aux: ∀X,Y,c,f. ⬇*[c, f] X ≡ Y → ∀I,K,V,g. X = K.ⓑ{I}V → f = ⫯g → + ⬇*[c, g] K ≡ Y. +#X #Y #c #f * -X -Y -f +[ #f #Ht #J #K #W #g #H destruct +| #I #L1 #L2 #V #f #HL #J #K #W #g #H1 #H2 <(injective_next … H2) -g destruct // +| #I #L1 #L2 #V1 #V2 #f #_ #_ #J #K #W #g #_ #H2 elim (discr_push_next … H2) ] qed-. (* Basic_1: includes: drop_gen_drop *) (* Basic_2A1: includes: drop_inv_drop1_lt drop_inv_drop1 *) -lemma drops_inv_drop1: ∀I,K,Y,V,s,t. ⬇*[s, Ⓕ@t] K.ⓑ{I}V ≡ Y → ⬇*[s, t] K ≡ Y. +lemma drops_inv_drop1: ∀I,K,Y,V,c,f. ⬇*[c, ⫯f] K.ⓑ{I}V ≡ Y → ⬇*[c, f] K ≡ Y. /2 width=7 by drops_inv_drop1_aux/ qed-. -fact drops_inv_skip1_aux: ∀X,Y,s,t. ⬇*[s, t] X ≡ Y → ∀I,K1,V1,tl. X = K1.ⓑ{I}V1 → t = Ⓣ@tl → - ∃∃K2,V2. ⬇*[s, tl] K1 ≡ K2 & ⬆*[tl] V2 ≡ V1 & Y = K2.ⓑ{I}V2. -#X #Y #s #t * -X -Y -t -[ #t #Ht #J #K1 #W1 #tl #H destruct -| #I #L1 #L2 #V #t #_ #J #K1 #W1 #tl #_ #H2 destruct -| #I #L1 #L2 #V1 #V2 #t #HL #HV #J #K1 #W1 #tl #H1 #H2 destruct +fact drops_inv_skip1_aux: ∀X,Y,c,f. ⬇*[c, f] X ≡ Y → ∀I,K1,V1,g. X = K1.ⓑ{I}V1 → f = ↑g → + ∃∃K2,V2. ⬇*[c, g] K1 ≡ K2 & ⬆*[g] V2 ≡ V1 & Y = K2.ⓑ{I}V2. +#X #Y #c #f * -X -Y -f +[ #f #Ht #J #K1 #W1 #g #H destruct +| #I #L1 #L2 #V #f #_ #J #K1 #W1 #g #_ #H2 elim (discr_next_push … H2) +| #I #L1 #L2 #V1 #V2 #f #HL #HV #J #K1 #W1 #g #H1 #H2 <(injective_push … H2) -g destruct /2 width=5 by ex3_2_intro/ ] qed-. (* Basic_1: includes: drop_gen_skip_l *) (* Basic_2A1: includes: drop_inv_skip1 *) -lemma drops_inv_skip1: ∀I,K1,V1,Y,s,t. ⬇*[s, Ⓣ@t] K1.ⓑ{I}V1 ≡ Y → - ∃∃K2,V2. ⬇*[s, t] K1 ≡ K2 & ⬆*[t] V2 ≡ V1 & Y = K2.ⓑ{I}V2. +lemma drops_inv_skip1: ∀I,K1,V1,Y,c,f. ⬇*[c, ↑f] K1.ⓑ{I}V1 ≡ Y → + ∃∃K2,V2. ⬇*[c, f] K1 ≡ K2 & ⬆*[f] V2 ≡ V1 & Y = K2.ⓑ{I}V2. /2 width=5 by drops_inv_skip1_aux/ qed-. -fact drops_inv_skip2_aux: ∀X,Y,s,t. ⬇*[s, t] X ≡ Y → ∀I,K2,V2,tl. Y = K2.ⓑ{I}V2 → t = Ⓣ@tl → - ∃∃K1,V1. ⬇*[s, tl] K1 ≡ K2 & ⬆*[tl] V2 ≡ V1 & X = K1.ⓑ{I}V1. -#X #Y #s #t * -X -Y -t -[ #t #Ht #J #K2 #W2 #tl #H destruct -| #I #L1 #L2 #V #t #_ #J #K2 #W2 #tl #_ #H2 destruct -| #I #L1 #L2 #V1 #V2 #t #HL #HV #J #K2 #W2 #tl #H1 #H2 destruct +fact drops_inv_skip2_aux: ∀X,Y,c,f. ⬇*[c, f] X ≡ Y → ∀I,K2,V2,g. Y = K2.ⓑ{I}V2 → f = ↑g → + ∃∃K1,V1. ⬇*[c, g] K1 ≡ K2 & ⬆*[g] V2 ≡ V1 & X = K1.ⓑ{I}V1. +#X #Y #c #f * -X -Y -f +[ #f #Ht #J #K2 #W2 #g #H destruct +| #I #L1 #L2 #V #f #_ #J #K2 #W2 #g #_ #H2 elim (discr_next_push … H2) +| #I #L1 #L2 #V1 #V2 #f #HL #HV #J #K2 #W2 #g #H1 #H2 <(injective_push … H2) -g destruct /2 width=5 by ex3_2_intro/ ] qed-. (* Basic_1: includes: drop_gen_skip_r *) (* Basic_2A1: includes: drop_inv_skip2 *) -lemma drops_inv_skip2: ∀I,X,K2,V2,s,t. ⬇*[s, Ⓣ@t] X ≡ K2.ⓑ{I}V2 → - ∃∃K1,V1. ⬇*[s, t] K1 ≡ K2 & ⬆*[t] V2 ≡ V1 & X = K1.ⓑ{I}V1. +lemma drops_inv_skip2: ∀I,X,K2,V2,c,f. ⬇*[c, ↑f] X ≡ K2.ⓑ{I}V2 → + ∃∃K1,V1. ⬇*[c, f] K1 ≡ K2 & ⬆*[f] V2 ≡ V1 & X = K1.ⓑ{I}V1. /2 width=5 by drops_inv_skip2_aux/ qed-. (* Basic properties *********************************************************) +lemma drops_eq_repl_back: ∀L1,L2,c. eq_stream_repl_back … (λf. ⬇*[c, f] L1 ≡ L2). +#L1 #L2 #c #f1 #H elim H -L1 -L2 -f1 +[ /4 width=3 by drops_atom, isid_eq_repl_back/ +| #I #L1 #L2 #V #f1 #_ #IH #f2 #H elim (next_inv_sn … H) -H + /3 width=1 by drops_drop/ +| #I #L1 #L2 #V1 #v2 #f1 #_ #HV #IH #f2 #H elim (push_inv_sn … H) -H + /3 width=3 by drops_skip, lifts_eq_repl_back/ +] +qed-. + +lemma drops_eq_repl_fwd: ∀L1,L2,c. eq_stream_repl_fwd … (λf. ⬇*[c, f] L1 ≡ L2). +#L1 #L2 #c @eq_stream_repl_sym /2 width=3 by drops_eq_repl_back/ (**) (* full auto fails *) +qed-. + +(* Basic_2A1: includes: drop_refl *) +lemma drops_refl: ∀c,L,f. 𝐈⦃f⦄ → ⬇*[c, f] L ≡ L. +#c #L elim L -L /2 width=1 by drops_atom/ +#L #I #V #IHL #f #Hf elim (isid_inv_gen … Hf) -Hf +/3 width=1 by drops_skip, lifts_refl/ +qed. + (* Basic_2A1: includes: drop_FT *) -lemma drops_FT: ∀L1,L2,t. ⬇*[Ⓕ, t] L1 ≡ L2 → ⬇*[Ⓣ, t] L1 ≡ L2. -#L1 #L2 #t #H elim H -L1 -L2 -t +lemma drops_TF: ∀L1,L2,f. ⬇*[Ⓣ, f] L1 ≡ L2 → ⬇*[Ⓕ, f] L1 ≡ L2. +#L1 #L2 #f #H elim H -L1 -L2 -f /3 width=1 by drops_atom, drops_drop, drops_skip/ qed. (* Basic_2A1: includes: drop_gen *) -lemma drops_gen: ∀L1,L2,s,t. ⬇*[Ⓕ, t] L1 ≡ L2 → ⬇*[s, t] L1 ≡ L2. -#L1 #L2 * /2 width=1 by drops_FT/ +lemma drops_gen: ∀L1,L2,c,f. ⬇*[Ⓣ, f] L1 ≡ L2 → ⬇*[c, f] L1 ≡ L2. +#L1 #L2 * /2 width=1 by drops_TF/ qed-. (* Basic_2A1: includes: drop_T *) -lemma drops_T: ∀L1,L2,s,t. ⬇*[s, t] L1 ≡ L2 → ⬇*[Ⓣ, t] L1 ≡ L2. -#L1 #L2 * /2 width=1 by drops_FT/ +lemma drops_F: ∀L1,L2,c,f. ⬇*[c, f] L1 ≡ L2 → ⬇*[Ⓕ, f] L1 ≡ L2. +#L1 #L2 * /2 width=1 by drops_TF/ qed-. (* Basic forward lemmas *****************************************************) -fact drops_fwd_drop2_aux: ∀X,Y,s,t2. ⬇*[s, t2] X ≡ Y → ∀I,K,V. Y = K.ⓑ{I}V → - ∃∃t1,t. 𝐈⦃t1⦄ & t2 ⊚ Ⓕ@t1 ≡ t & ⬇*[s, t] X ≡ K. -#X #Y #s #t2 #H elim H -X -Y -t2 -[ #t2 #Ht2 #J #K #W #H destruct -| #I #L1 #L2 #V #t2 #_ #IHL #J #K #W #H elim (IHL … H) -IHL - /3 width=5 by after_false, ex3_2_intro, drops_drop/ -| #I #L1 #L2 #V1 #V2 #t2 #HL #_ #_ #J #K #W #H destruct - elim (isid_after_dx t2) /3 width=5 by after_true, ex3_2_intro, drops_drop/ +fact drops_fwd_drop2_aux: ∀X,Y,c,f2. ⬇*[c, f2] X ≡ Y → ∀I,K,V. Y = K.ⓑ{I}V → + ∃∃f1,f. 𝐈⦃f1⦄ & f2 ⊚ ⫯f1 ≡ f & ⬇*[c, f] X ≡ K. +#X #Y #c #f2 #H elim H -X -Y -f2 +[ #f2 #Ht2 #J #K #W #H destruct +| #I #L1 #L2 #V #f2 #_ #IHL #J #K #W #H elim (IHL … H) -IHL + /3 width=7 by after_next, ex3_2_intro, drops_drop/ +| #I #L1 #L2 #V1 #V2 #f2 #HL #_ #_ #J #K #W #H destruct + lapply (isid_after_dx 𝐈𝐝 f2 ?) /3 width=9 by after_push, ex3_2_intro, drops_drop/ ] qed-. (* Basic_1: includes: drop_S *) (* Basic_2A1: includes: drop_fwd_drop2 *) -lemma drops_fwd_drop2: ∀I,X,K,V,s,t2. ⬇*[s, t2] X ≡ K.ⓑ{I}V → - ∃∃t1,t. 𝐈⦃t1⦄ & t2 ⊚ Ⓕ@t1 ≡ t & ⬇*[s, t] X ≡ K. +lemma drops_fwd_drop2: ∀I,X,K,V,c,f2. ⬇*[c, f2] X ≡ K.ⓑ{I}V → + ∃∃f1,f. 𝐈⦃f1⦄ & f2 ⊚ ⫯f1 ≡ f & ⬇*[c, f] X ≡ K. /2 width=5 by drops_fwd_drop2_aux/ qed-. -fact drops_after_fwd_drop2_aux: ∀X,Y,s,t2. ⬇*[s, t2] X ≡ Y → ∀I,K,V. Y = K.ⓑ{I}V → - ∀t1,t. 𝐈⦃t1⦄ → t2 ⊚ Ⓕ@t1 ≡ t → ⬇*[s, t] X ≡ K. -#X #Y #s #t2 #H elim H -X -Y -t2 -[ #t2 #Ht2 #J #K #W #H destruct -| #I #L1 #L2 #V #t2 #_ #IHL #J #K #W #H #t1 #t #Ht1 #Ht elim (after_inv_false1 … Ht) -Ht - /3 width=3 by drops_drop/ -| #I #L1 #L2 #V1 #V2 #t2 #HL #_ #_ #J #K #W #H #t1 #t #Ht1 #Ht elim (after_inv_true1 … Ht) -Ht - #u1 #u #b #H1 #H2 #Hu destruct >(after_isid_inv_dx … Hu) -Hu /2 width=1 by drops_drop/ -] +lemma drops_after_fwd_drop2: ∀I,X,K,V,c,f2. ⬇*[c, f2] X ≡ K.ⓑ{I}V → + ∀f1,f. 𝐈⦃f1⦄ → f2 ⊚ ⫯f1 ≡ f → ⬇*[c, f] X ≡ K. +#I #X #K #V #c #f2 #H #f1 #f #Hf1 #Hf elim (drops_fwd_drop2 … H) -H +#g1 #g #Hg1 #Hg #HK lapply (after_mono … Hg Hf ??) -Hg -Hf +/3 width=3 by drops_eq_repl_back, isid_inv_eq_repl, next_eq_repl/ qed-. -lemma drops_after_fwd_drop2: ∀I,X,K,V,s,t2. ⬇*[s, t2] X ≡ K.ⓑ{I}V → - ∀t1,t. 𝐈⦃t1⦄ → t2 ⊚ Ⓕ@t1 ≡ t → ⬇*[s, t] X ≡ K. -/2 width=9 by drops_after_fwd_drop2_aux/ qed-. - (* Basic_1: includes: drop_gen_refl *) (* Basic_2A1: includes: drop_inv_O2 *) -lemma drops_fwd_isid: ∀L1,L2,s,t. ⬇*[s, t] L1 ≡ L2 → 𝐈⦃t⦄ → L1 = L2. -#L1 #L2 #s #t #H elim H -L1 -L2 -t // -[ #I #L1 #L2 #V #t #_ #_ #H elim (isid_inv_false … H) -| /5 width=3 by isid_inv_true, lifts_fwd_isid, eq_f3, sym_eq/ +lemma drops_fwd_isid: ∀L1,L2,c,f. ⬇*[c, f] L1 ≡ L2 → 𝐈⦃f⦄ → L1 = L2. +#L1 #L2 #c #f #H elim H -L1 -L2 -f // +[ #I #L1 #L2 #V #f #_ #_ #H elim (isid_inv_next … H) +| /5 width=3 by isid_inv_push, lifts_fwd_isid, eq_f3, sym_eq/ ] qed-. -(* Basic_2A1: removed theorems 13: +(* Basic_2A1: removed theorems 14: drops_inv_nil drops_inv_cons d1_liftable_liftables + drop_refl_atom_O2 drop_inv_O1_pair1 drop_inv_pair1 drop_inv_O1_pair2 drop_inv_Y1 drop_Y1 drop_O_Y drop_fwd_Y2 drop_fwd_length_minus2 drop_fwd_length_minus4 diff --git a/matita/matita/contribs/lambdadelta/basic_2/relocation/drops_drops.ma b/matita/matita/contribs/lambdadelta/basic_2/relocation/drops_drops.ma index 34c446f64..56b39051f 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/relocation/drops_drops.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/relocation/drops_drops.ma @@ -20,18 +20,18 @@ include "basic_2/relocation/drops.ma". (* Main properties **********************************************************) (* Basic_2A1: includes: drop_conf_ge drop_conf_be drop_conf_le *) -theorem drops_conf: ∀L1,L,s1,t1. ⬇*[s1, t1] L1 ≡ L → - ∀L2,s2,t. ⬇*[s2, t] L1 ≡ L2 → - ∀t2. t1 ⊚ t2 ≡ t → ⬇*[s2, t2] L ≡ L2. -#L1 #L #s1 #t1 #H elim H -L1 -L -t1 -[ #t1 #_ #L2 #s2 #t #H #t2 #Ht12 elim (drops_inv_atom1 … H) -s1 -H - #H #Ht destruct @drops_atom - #H elim (after_inv_isid3 … Ht12) -Ht12 /2 width=1 by/ -| #I #K1 #K #V1 #t1 #_ #IH #L2 #s2 #t #H12 #t2 #Ht elim (after_inv_false1 … Ht) -Ht - #u #H #Hu destruct /3 width=3 by drops_inv_drop1/ -| #I #K1 #K #V1 #V #t1 #_ #HV1 #IH #L2 #s2 #t #H #t2 #Ht elim (after_inv_true1 … Ht) -Ht - #u2 #u * #H1 #H2 #Hu destruct - [ elim (drops_inv_skip1 … H) -H /3 width=6 by drops_skip, lifts_div/ +theorem drops_conf: ∀L1,L,c1,f1. ⬇*[c1, f1] L1 ≡ L → + ∀L2,c2,f. ⬇*[c2, f] L1 ≡ L2 → + ∀f2. f1 ⊚ f2 ≡ f → ⬇*[c2, f2] L ≡ L2. +#L1 #L #c1 #f1 #H elim H -L1 -L -f1 +[ #f1 #_ #L2 #c2 #f #HL2 #f2 #Hf12 elim (drops_inv_atom1 … HL2) -c1 -HL2 + #H #Hf destruct @drops_atom + #H elim (after_inv_isid3 … Hf12) -Hf12 /2 width=1 by/ +| #I #K1 #K #V1 #f1 #_ #IH #L2 #c2 #f #HL2 #f2 #Hf elim (after_inv_Sxx … Hf) -Hf + #g #Hg #H destruct /3 width=3 by drops_inv_drop1/ +| #I #K1 #K #V1 #V #f1 #_ #HV1 #IH #L2 #c2 #f #HL2 #f2 #Hf elim (after_inv_Oxx … Hf) -Hf * + #g2 #g #Hf #H1 #H2 destruct + [ elim (drops_inv_skip1 … HL2) -HL2 /3 width=6 by drops_skip, lifts_div/ | /4 width=3 by drops_inv_drop1, drops_drop/ ] ] @@ -41,18 +41,19 @@ qed-. (* Basic_2A1: includes: drop_trans_ge drop_trans_le drop_trans_ge_comm drops_drop_trans *) -theorem drops_trans: ∀L1,L,s1,t1. ⬇*[s1, t1] L1 ≡ L → - ∀L2,s2,t2. ⬇*[s2, t2] L ≡ L2 → - ∀t. t1 ⊚ t2 ≡ t → ⬇*[s1∨s2, t] L1 ≡ L2. -#L1 #L #s1 #t1 #H elim H -L1 -L -t1 -[ #t1 #Ht1 #L2 #s2 #t2 #H #t #Ht elim (drops_inv_atom1 … H) -H - #H #Ht2 destruct @drops_atom #H elim (orb_false_r … H) -H - #H1 #H2 >(after_isid_inv_sn … Ht) -Ht /2 width=1 by/ -| #I #K1 #K #V1 #t1 #_ #IH #L #s2 #t2 #HKL #t #Ht elim (after_inv_false1 … Ht) -Ht +theorem drops_trans: ∀L1,L,c1,f1. ⬇*[c1, f1] L1 ≡ L → + ∀L2,c2,f2. ⬇*[c2, f2] L ≡ L2 → + ∀f. f1 ⊚ f2 ≡ f → ⬇*[c1∧c2, f] L1 ≡ L2. +#L1 #L #c1 #f1 #H elim H -L1 -L -f1 +[ #f1 #Hf1 #L2 #c2 #f2 #HL2 #f #Hf elim (drops_inv_atom1 … HL2) -HL2 + #H #Hf2 destruct @drops_atom #H elim (andb_inv_true_dx … H) -H + #H1 #H2 lapply (after_isid_inv_sn … Hf ?) -Hf + /3 width=3 by isid_eq_repl_back/ +| #I #K1 #K #V1 #f1 #_ #IH #L2 #c2 #f2 #HL2 #f #Hf elim (after_inv_Sxx … Hf) -Hf /3 width=3 by drops_drop/ -| #I #K1 #K #V1 #V #t1 #_ #HV1 #IH #L #s2 #t2 #H #t #Ht elim (after_inv_true1 … Ht) -Ht - #u2 #u * #H1 #H2 #Hu destruct - [ elim (drops_inv_skip1 … H) -H /3 width=6 by drops_skip, lifts_trans/ +| #I #K1 #K #V1 #V #f1 #_ #HV1 #IH #L2 #c2 #f2 #HL2 #f #Hf elim (after_inv_Oxx … Hf) -Hf * + #g2 #g #Hg #H1 #H2 destruct + [ elim (drops_inv_skip1 … HL2) -HL2 /3 width=6 by drops_skip, lifts_trans/ | /4 width=3 by drops_inv_drop1, drops_drop/ ] ] @@ -61,29 +62,29 @@ qed-. (* Advanced properties ******************************************************) (* Basic_2A1: includes: drop_mono *) -lemma drops_mono: ∀L,L1,s1,t. ⬇*[s1, t] L ≡ L1 → - ∀L2,s2. ⬇*[s2, t] L ≡ L2 → L1 = L2. -#L #L1 #s1 #t elim (isid_after_dx t) +lemma drops_mono: ∀L,L1,c1,f. ⬇*[c1, f] L ≡ L1 → + ∀L2,c2. ⬇*[c2, f] L ≡ L2 → L1 = L2. +#L #L1 #c1 #f lapply (isid_after_dx 𝐈𝐝 f ?) /3 width=8 by drops_conf, drops_fwd_isid/ qed-. (* Basic_2A1: includes: drop_conf_lt *) -lemma drops_conf_skip1: ∀L,L2,s2,t. ⬇*[s2, t] L ≡ L2 → - ∀I,K1,V1,s1,t1. ⬇*[s1, t1] L ≡ K1.ⓑ{I}V1 → - ∀t2. t1 ⊚ Ⓣ@t2 ≡ t → +lemma drops_conf_skip1: ∀L,L2,c2,f. ⬇*[c2, f] L ≡ L2 → + ∀I,K1,V1,c1,f1. ⬇*[c1, f1] L ≡ K1.ⓑ{I}V1 → + ∀f2. f1 ⊚ ↑f2 ≡ f → ∃∃K2,V2. L2 = K2.ⓑ{I}V2 & - ⬇*[s2, t2] K1 ≡ K2 & ⬆*[t2] V2 ≡ V1. -#L #L2 #s2 #t #H2 #I #K1 #V1 #s1 #t1 #H1 #t2 #Ht lapply (drops_conf … H1 … H2 … Ht) -L -Ht + ⬇*[c2, f2] K1 ≡ K2 & ⬆*[f2] V2 ≡ V1. +#L #L2 #c2 #f #H2 #I #K1 #V1 #c1 #f1 #H1 #f2 #Hf lapply (drops_conf … H1 … H2 … Hf) -L -Hf #H elim (drops_inv_skip1 … H) -H /2 width=5 by ex3_2_intro/ qed-. (* Basic_2A1: includes: drop_trans_lt *) -lemma drops_trans_skip2: ∀L1,L,s1,t1. ⬇*[s1, t1] L1 ≡ L → - ∀I,K2,V2,s2,t2. ⬇*[s2, t2] L ≡ K2.ⓑ{I}V2 → - ∀t. t1 ⊚ t2 ≡ Ⓣ@t → +lemma drops_trans_skip2: ∀L1,L,c1,f1. ⬇*[c1, f1] L1 ≡ L → + ∀I,K2,V2,c2,f2. ⬇*[c2, f2] L ≡ K2.ⓑ{I}V2 → + ∀f. f1 ⊚ f2 ≡ ↑f → ∃∃K1,V1. L1 = K1.ⓑ{I}V1 & - ⬇*[s1∨s2, t] K1 ≡ K2 & ⬆*[t] V2 ≡ V1. -#L1 #L #s1 #t1 #H1 #I #K2 #V2 #s2 #t2 #H2 #t #Ht -lapply (drops_trans … H1 … H2 … Ht) -L -Ht + ⬇*[c1∧c2, f] K1 ≡ K2 & ⬆*[f] V2 ≡ V1. +#L1 #L #c1 #f1 #H1 #I #K2 #V2 #c2 #f2 #H2 #f #Hf +lapply (drops_trans … H1 … H2 … Hf) -L -Hf #H elim (drops_inv_skip2 … H) -H /2 width=5 by ex3_2_intro/ qed-. diff --git a/matita/matita/contribs/lambdadelta/basic_2/relocation/drops_lstar.ma b/matita/matita/contribs/lambdadelta/basic_2/relocation/drops_lstar.ma index 5851e809e..338ef22d5 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/relocation/drops_lstar.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/relocation/drops_lstar.ma @@ -22,9 +22,9 @@ include "basic_2/relocation/drops.ma". (* Basic_2A1: was: d_liftable_LTC *) lemma d2_liftable_LTC: ∀R. d_liftable2 R → d_liftable2 (LTC … R). #R #HR #K #T1 #T2 #H elim H -T2 -[ #T2 #HT12 #L #s #t #HLK #U1 #HTU1 +[ #T2 #HT12 #L #c #f #HLK #U1 #HTU1 elim (HR … HT12 … HLK … HTU1) /3 width=3 by inj, ex2_intro/ -| #T #T2 #_ #HT2 #IHT1 #L #s #t #HLK #U1 #HTU1 +| #T #T2 #_ #HT2 #IHT1 #L #c #f #HLK #U1 #HTU1 elim (IHT1 … HLK … HTU1) -T1 #U #HTU #HU1 elim (HR … HT2 … HLK … HTU) -HR -K -T /3 width=5 by step, ex2_intro/ ] @@ -33,38 +33,29 @@ qed-. (* Basic_2A1: was: d_deliftable_sn_LTC *) lemma d2_deliftable_sn_LTC: ∀R. d_deliftable2_sn R → d_deliftable2_sn (LTC … R). #R #HR #L #U1 #U2 #H elim H -U2 -[ #U2 #HU12 #K #s #t #HLK #T1 #HTU1 +[ #U2 #HU12 #K #c #f #HLK #T1 #HTU1 elim (HR … HU12 … HLK … HTU1) -HR -L -U1 /3 width=3 by inj, ex2_intro/ -| #U #U2 #_ #HU2 #IHU1 #K #s #t #HLK #T1 #HTU1 +| #U #U2 #_ #HU2 #IHU1 #K #c #f #HLK #T1 #HTU1 elim (IHU1 … HLK … HTU1) -IHU1 -U1 #T #HTU #HT1 elim (HR … HU2 … HLK … HTU) -HR -L -U /3 width=5 by step, ex2_intro/ ] qed-. -lemma dropable_sn_TC: ∀R. dropable_sn R → dropable_sn (TC … R). -#R #HR #L1 #K1 #s #t #HLK1 #L2 #H elim H -L2 -[ #L2 #HL12 elim (HR … HLK1 … HL12) -HR -L1 +lemma dropable_sn_TC: ∀R. dropable_sn R → dropable_sn (LTC … R). +#R #HR #L1 #K1 #c #f #HLK1 #L2 #u2 #H elim H -L2 +[ #L2 #HL12 #u1 #H elim (HR … HLK1 … HL12 … H) -HR -L1 -u2 /3 width=3 by inj, ex2_intro/ -| #L #L2 #_ #HL2 * #K #HK1 #HLK elim (HR … HLK … HL2) -HR -L +| #L #L2 #_ #HL2 #IH #u1 #H elim (IH … H) -IH + #K #HK1 #HLK elim (HR … HLK … HL2 … H) -HR -L -u2 /3 width=3 by step, ex2_intro/ ] qed-. -(* -lemma dropable_dx_TC: ∀R. dropable_dx R → dropable_dx (TC … R). -#R #HR #L1 #L2 #H elim H -L2 -[ #L2 #HL12 #K2 #s #m #HLK2 elim (HR … HL12 … HLK2) -HR -L2 - /3 width=3 by inj, ex2_intro/ -| #L #L2 #_ #HL2 #IHL1 #K2 #s #m #HLK2 elim (HR … HL2 … HLK2) -HR -L2 - #K #HLK #HK2 elim (IHL1 … HLK) -L - /3 width=5 by step, ex2_intro/ -] -qed-. -*) + (* Basic_2A1: was: d_liftable_llstar *) lemma d2_liftable_llstar: ∀R. d_liftable2 R → ∀d. d_liftable2 (llstar … R d). #R #HR #d #K #T1 #T2 #H @(lstar_ind_r … d T2 H) -d -T2 -[ #L #s #t #_ #U1 #HTU1 -HR -K -s /2 width=3 by ex2_intro/ -| #d #T #T2 #_ #HT2 #IHT1 #L #s #t #HLK #U1 #HTU1 +[ #L #c #f #_ #U1 #HTU1 -HR -K -c /2 width=3 by ex2_intro/ +| #d #T #T2 #_ #HT2 #IHT1 #L #c #f #HLK #U1 #HTU1 elim (IHT1 … HLK … HTU1) -T1 #U #HTU #HU1 elim (HR … HT2 … HLK … HTU) -T /3 width=5 by lstar_dx, ex2_intro/ ] @@ -75,7 +66,7 @@ lemma d2_deliftable_sn_llstar: ∀R. d_deliftable2_sn R → ∀d. d_deliftable2_sn (llstar … R d). #R #HR #d #L #U1 #U2 #H @(lstar_ind_r … d U2 H) -d -U2 [ /2 width=3 by lstar_O, ex2_intro/ -| #d #U #U2 #_ #HU2 #IHU1 #K #s #t #HLK #T1 #HTU1 +| #d #U #U2 #_ #HU2 #IHU1 #K #c #f #HLK #T1 #HTU1 elim (IHU1 … HLK … HTU1) -IHU1 -U1 #T #HTU #HT1 elim (HR … HU2 … HLK … HTU) -HR -L -U /3 width=5 by lstar_dx, ex2_intro/ ] diff --git a/matita/matita/contribs/lambdadelta/basic_2/relocation/drops_vector.ma b/matita/matita/contribs/lambdadelta/basic_2/relocation/drops_vector.ma index 63bc71da6..9cf6e7c1f 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/relocation/drops_vector.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/relocation/drops_vector.ma @@ -18,14 +18,14 @@ include "basic_2/relocation/drops.ma". (* GENERAL SLICING FOR LOCAL ENVIRONMENTS ***********************************) definition d_liftable1_all: relation2 lenv term → predicate bool ≝ - λR,s. ∀L,K,t. ⬇*[s, t] L ≡ K → - ∀Ts,Us. ⬆*[t] Ts ≡ Us → + λR,c. ∀L,K,f. ⬇*[c, f] L ≡ K → + ∀Ts,Us. ⬆*[f] Ts ≡ Us → all … (R K) Ts → all … (R L) Us. (* Properties on general relocation for term vectors ************************) (* Basic_2A1: was: d1_liftables_liftables_all *) -lemma d1_liftable_liftable_all: ∀R,s. d_liftable1 R s → d_liftable1_all R s. -#R #s #HR #L #K #t #HLK #Ts #Us #H elim H -Ts -Us normalize // +lemma d1_liftable_liftable_all: ∀R,c. d_liftable1 R c → d_liftable1_all R c. +#R #c #HR #L #K #f #HLK #Ts #Us #H elim H -Ts -Us normalize // #Ts #Us #T #U #HTU #_ #IHTUs * /3 width=7 by conj/ qed. diff --git a/matita/matita/contribs/lambdadelta/basic_2/relocation/drops_weight.ma b/matita/matita/contribs/lambdadelta/basic_2/relocation/drops_weight.ma index 0db32e2a2..011625495 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/relocation/drops_weight.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/relocation/drops_weight.ma @@ -21,30 +21,30 @@ include "basic_2/relocation/drops.ma". (* Forward lemmas on weight for local environments **************************) (* Basic_2A1: includes: drop_fwd_lw *) -lemma drops_fwd_lw: ∀L1,L2,s,t. ⬇*[s, t] L1 ≡ L2 → ♯{L2} ≤ ♯{L1}. -#L1 #L2 #s #t #H elim H -L1 -L2 -t // +lemma drops_fwd_lw: ∀L1,L2,c,f. ⬇*[c, f] L1 ≡ L2 → ♯{L2} ≤ ♯{L1}. +#L1 #L2 #c #f #H elim H -L1 -L2 -f // [ /2 width=3 by transitive_le/ -| #I #L1 #L2 #V1 #V2 #t #_ #HV21 #IHL12 normalize +| #I #L1 #L2 #V1 #V2 #f #_ #HV21 #IHL12 normalize >(lifts_fwd_tw … HV21) -HV21 /2 width=1 by monotonic_le_plus_l/ ] qed-. (* Basic_2A1: includes: drop_fwd_lw_lt *) (* Note: 𝐈⦃t⦄ → ⊥ is ∥l∥ < |L| *) -lemma drops_fwd_lw_lt: ∀L1,L2,t. ⬇*[Ⓕ, t] L1 ≡ L2 → - (𝐈⦃t⦄ → ⊥) → ♯{L2} < ♯{L1}. -#L1 #L2 #t #H elim H -L1 -L2 -t -[ #t #Ht #Hnt elim Hnt -Hnt /2 width=1 by/ +lemma drops_fwd_lw_lt: ∀L1,L2,f. ⬇*[Ⓣ, f] L1 ≡ L2 → + (𝐈⦃f⦄ → ⊥) → ♯{L2} < ♯{L1}. +#L1 #L2 #f #H elim H -L1 -L2 -f +[ #f #Hf #Hnf elim Hnf -Hnf /2 width=1 by/ | /3 width=3 by drops_fwd_lw, le_to_lt_to_lt/ -| #I #L1 #L2 #V1 #V2 #t #_ #HV21 #IHL12 #H normalize in ⊢ (?%%); -I - >(lifts_fwd_tw … HV21) -V2 /4 width=1 by monotonic_lt_plus_l/ +| #I #L1 #L2 #V1 #V2 #f #_ #HV21 #IHL12 #H normalize in ⊢ (?%%); -I + >(lifts_fwd_tw … HV21) -V2 /5 width=1 by isid_push, monotonic_lt_plus_l/ ] qed-. (* Forward lemmas on restricted weight for closures *************************) (* Basic_2A1: includes: drop_fwd_rfw *) -lemma drops_pair2_fwd_rfw: ∀I,L,K,V,s,t. ⬇*[s, t] L ≡ K.ⓑ{I}V → ∀T. ♯{K, V} < ♯{L, T}. -#I #L #K #V #s #t #HLK lapply (drops_fwd_lw … HLK) -HLK +lemma drops_pair2_fwd_rfw: ∀I,L,K,V,c,f. ⬇*[c, f] L ≡ K.ⓑ{I}V → ∀T. ♯{K, V} < ♯{L, T}. +#I #L #K #V #c #f #HLK lapply (drops_fwd_lw … HLK) -HLK normalize in ⊢ (%→?→?%%); /3 width=3 by le_to_lt_to_lt/ qed-. diff --git a/matita/matita/predefined_virtuals.ml b/matita/matita/predefined_virtuals.ml index 5a80b945f..d4f38b0ba 100644 --- a/matita/matita/predefined_virtuals.ml +++ b/matita/matita/predefined_virtuals.ml @@ -1581,7 +1581,7 @@ let predefined_classes = [ ["w"; "ω"; "𝕨"; "𝐰"; "𝛚"; "ⓦ"; ] ; ["W"; "Ω"; "𝕎"; "𝐖"; "𝛀"; "Ⓦ"; ] ; ["x"; "ξ"; "χ"; "ϰ"; "𝕩"; "𝐱"; "𝛏"; "𝛘"; "𝛞"; "ⓧ"; ] ; - ["X"; "Ξ"; "𝕏";"𝐗"; "𝚵"; "Ⓧ"; ] ; + ["X"; "Ξ"; "𝕏";"𝐗"; "𝚵"; "Ⓧ"; "⦻"; ] ; ["y"; "υ"; "𝕪"; "𝐲"; "ⓨ"; ] ; ["Y"; "ϒ"; "𝕐"; "𝐘"; "𝚼"; "Ⓨ"; ] ; ["z"; "ζ"; "𝕫"; "𝐳"; "𝛇"; "ⓩ"; ] ;