From: Andrea Asperti Date: Wed, 17 Sep 2014 12:34:38 +0000 (+0000) Subject: toolkit.ma X-Git-Tag: make_still_working~835 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=12041ebfcdff887261c0750e0d1aa0a15441bbc4;p=helm.git toolkit.ma --- diff --git a/matita/matita/lib/reverse_complexity/toolkit.ma b/matita/matita/lib/reverse_complexity/toolkit.ma new file mode 100644 index 000000000..11f988c79 --- /dev/null +++ b/matita/matita/lib/reverse_complexity/toolkit.ma @@ -0,0 +1,987 @@ +include "basics/types.ma". +include "arithmetics/minimization.ma". +include "arithmetics/bigops.ma". +include "arithmetics/sigma_pi.ma". +include "arithmetics/bounded_quantifiers.ma". +include "reverse_complexity/big_O.ma". + +(************************* notation for minimization *****************************) +notation "μ_{ ident i < n } p" + with precedence 80 for @{min $n 0 (λ${ident i}.$p)}. + +notation "μ_{ ident i ≤ n } p" + with precedence 80 for @{min (S $n) 0 (λ${ident i}.$p)}. + +notation "μ_{ ident i ∈ [a,b[ } p" + with precedence 80 for @{min ($b-$a) $a (λ${ident i}.$p)}. + +notation "μ_{ ident i ∈ [a,b] } p" + with precedence 80 for @{min (S $b-$a) $a (λ${ident i}.$p)}. + +(************************************ MAX *************************************) +notation "Max_{ ident i < n | p } f" + with precedence 80 +for @{'bigop $n max 0 (λ${ident i}. $p) (λ${ident i}. $f)}. + +notation "Max_{ ident i < n } f" + with precedence 80 +for @{'bigop $n max 0 (λ${ident i}.true) (λ${ident i}. $f)}. + +notation "Max_{ ident j ∈ [a,b[ } f" + with precedence 80 +for @{'bigop ($b-$a) max 0 (λ${ident j}.((λ${ident j}.true) (${ident j}+$a))) + (λ${ident j}.((λ${ident j}.$f)(${ident j}+$a)))}. + +notation "Max_{ ident j ∈ [a,b[ | p } f" + with precedence 80 +for @{'bigop ($b-$a) max 0 (λ${ident j}.((λ${ident j}.$p) (${ident j}+$a))) + (λ${ident j}.((λ${ident j}.$f)(${ident j}+$a)))}. + +lemma Max_assoc: ∀a,b,c. max (max a b) c = max a (max b c). +#a #b #c normalize cases (true_or_false (leb a b)) #leab >leab normalize + [cases (true_or_false (leb b c )) #lebc >lebc normalize + [>(le_to_leb_true a c) // @(transitive_le ? b) @leb_true_to_le // + |>leab // + ] + |cases (true_or_false (leb b c )) #lebc >lebc normalize // + >leab normalize >(not_le_to_leb_false a c) // @lt_to_not_le + @(transitive_lt ? b) @not_le_to_lt @leb_false_to_not_le // + ] +qed. + +lemma Max0 : ∀n. max 0 n = n. +// qed. + +lemma Max0r : ∀n. max n 0 = n. +#n >commutative_max // +qed. + +definition MaxA ≝ + mk_Aop nat 0 max Max0 Max0r (λa,b,c.sym_eq … (Max_assoc a b c)). + +definition MaxAC ≝ mk_ACop nat 0 MaxA commutative_max. + +lemma le_Max: ∀f,p,n,a. a < n → p a = true → + f a ≤ Max_{i < n | p i}(f i). +#f #p #n #a #ltan #pa +>(bigop_diff p ? 0 MaxAC f a n) // @(le_maxl … (le_n ?)) +qed. + +lemma le_MaxI: ∀f,p,n,m,a. m ≤ a → a < n → p a = true → + f a ≤ Max_{i ∈ [m,n[ | p i}(f i). +#f #p #n #m #a #lema #ltan #pa +>(bigop_diff ? ? 0 MaxAC (λi.f (i+m)) (a-m) (n-m)) + [bigop_Strue [2:@Hb] @to_max [@H1 // | @H #a #ltab #pa @H1 // @le_S //] + |>bigop_Sfalse [2:@Hb] @H #a #ltab #pa @H1 // @le_S // + ] +qed. + +(********************************** pairing ***********************************) +axiom pair: nat → nat → nat. +axiom fst : nat → nat. +axiom snd : nat → nat. + +interpretation "abstract pair" 'pair f g = (pair f g). + +axiom fst_pair: ∀a,b. fst 〈a,b〉 = a. +axiom snd_pair: ∀a,b. snd 〈a,b〉 = b. +axiom surj_pair: ∀x. ∃a,b. x = 〈a,b〉. + +axiom le_fst : ∀p. fst p ≤ p. +axiom le_snd : ∀p. snd p ≤ p. +axiom le_pair: ∀a,a1,b,b1. a ≤ a1 → b ≤ b1 → 〈a,b〉 ≤ 〈a1,b1〉. + +(************************************* U **************************************) +axiom U: nat → nat →nat → option nat. + +axiom monotonic_U: ∀i,x,n,m,y.n ≤m → + U i x n = Some ? y → U i x m = Some ? y. + +lemma unique_U: ∀i,x,n,m,yn,ym. + U i x n = Some ? yn → U i x m = Some ? ym → yn = ym. +#i #x #n #m #yn #ym #Hn #Hm cases (decidable_le n m) + [#lenm lapply (monotonic_U … lenm Hn) >Hm #HS destruct (HS) // + |#ltmn lapply (monotonic_U … n … Hm) [@lt_to_le @not_le_to_lt //] + >Hn #HS destruct (HS) // + ] +qed. + +definition code_for ≝ λf,i.∀x. + ∃n.∀m. n ≤ m → U i x m = f x. + +definition terminate ≝ λi,x,r. ∃y. U i x r = Some ? y. + +notation "{i ⊙ x} ↓ r" with precedence 60 for @{terminate $i $x $r}. + +lemma terminate_dec: ∀i,x,n. {i ⊙ x} ↓ n ∨ ¬ {i ⊙ x} ↓ n. +#i #x #n normalize cases (U i x n) + [%2 % * #y #H destruct|#y %1 %{y} //] +qed. + +lemma monotonic_terminate: ∀i,x,n,m. + n ≤ m → {i ⊙ x} ↓ n → {i ⊙ x} ↓ m. +#i #x #n #m #lenm * #z #H %{z} @(monotonic_U … H) // +qed. + +definition termb ≝ λi,x,t. + match U i x t with [None ⇒ false |Some y ⇒ true]. + +lemma termb_true_to_term: ∀i,x,t. termb i x t = true → {i ⊙ x} ↓ t. +#i #x #t normalize cases (U i x t) normalize [#H destruct | #y #_ %{y} //] +qed. + +lemma term_to_termb_true: ∀i,x,t. {i ⊙ x} ↓ t → termb i x t = true. +#i #x #t * #y #H normalize >H // +qed. + +definition out ≝ λi,x,r. + match U i x r with [ None ⇒ 0 | Some z ⇒ z]. + +definition bool_to_nat: bool → nat ≝ + λb. match b with [true ⇒ 1 | false ⇒ 0]. + +coercion bool_to_nat. + +definition pU : nat → nat → nat → nat ≝ λi,x,r.〈termb i x r,out i x r〉. + +lemma pU_vs_U_Some : ∀i,x,r,y. pU i x r = 〈1,y〉 ↔ U i x r = Some ? y. +#i #x #r #y % normalize + [cases (U i x r) normalize + [#H cut (0=1) [lapply (eq_f … fst … H) >fst_pair >fst_pair #H @H] + #H1 destruct + |#a #H cut (a=y) [lapply (eq_f … snd … H) >snd_pair >snd_pair #H1 @H1] + #H1 // + ] + |#H >H //] +qed. + +lemma pU_vs_U_None : ∀i,x,r. pU i x r = 〈0,0〉 ↔ U i x r = None ?. +#i #x #r % normalize + [cases (U i x r) normalize // + #a #H cut (1=0) [lapply (eq_f … fst … H) >fst_pair >fst_pair #H1 @H1] + #H1 destruct + |#H >H //] +qed. + +lemma fst_pU: ∀i,x,r. fst (pU i x r) = termb i x r. +#i #x #r normalize cases (U i x r) normalize >fst_pair // +qed. + +lemma snd_pU: ∀i,x,r. snd (pU i x r) = out i x r. +#i #x #r normalize cases (U i x r) normalize >snd_pair // +qed. + +(********************************* the speedup ********************************) + +definition min_input ≝ λh,i,x. μ_{y ∈ [S i,x] } (termb i y (h (S i) y)). + +lemma min_input_def : ∀h,i,x. + min_input h i x = min (x -i) (S i) (λy.termb i y (h (S i) y)). +// qed. + +lemma min_input_i: ∀h,i,x. x ≤ i → min_input h i x = S i. +#h #i #x #lexi >min_input_def +cut (x - i = 0) [@sym_eq /2 by eq_minus_O/] #Hcut // +qed. + +lemma min_input_to_terminate: ∀h,i,x. + min_input h i x = x → {i ⊙ x} ↓ (h (S i) x). +#h #i #x #Hminx +cases (decidable_le (S i) x) #Hix + [cases (true_or_false (termb i x (h (S i) x))) #Hcase + [@termb_true_to_term // + |min_input_def in Hminx; #Hminx >Hminx in ⊢ (%→?); + min_input_i in Hminx; + [#eqix >eqix in Hix; * /2/ | @le_S_S_to_le @not_le_to_lt //] + ] +qed. + +lemma min_input_to_lt: ∀h,i,x. + min_input h i x = x → i < x. +#h #i #x #Hminx cases (decidable_le (S i) x) // +#ltxi @False_ind >min_input_i in Hminx; + [#eqix >eqix in ltxi; * /2/ | @le_S_S_to_le @not_le_to_lt //] +qed. + +lemma le_to_min_input: ∀h,i,x,x1. x ≤ x1 → + min_input h i x = x → min_input h i x1 = x. +#h #i #x #x1 #lex #Hminx @(min_exists … (le_S_S … lex)) + [@(fmin_true … (sym_eq … Hminx)) // + |@(min_input_to_lt … Hminx) + |#j #H1 g_def cut (x-u = 0) [/2 by minus_le_minus_minus_comm/] +#eq0 >eq0 normalize // qed. + +lemma g_lt : ∀h,i,x. min_input h i x = x → + out i x (h (S i) x) < g h 0 x. +#h #i #x #H @le_S_S @(le_MaxI … i) /2 by min_input_to_lt/ +qed. + +lemma max_neq0 : ∀a,b. max a b ≠ 0 → a ≠ 0 ∨ b ≠ 0. +#a #b whd in match (max a b); cases (true_or_false (leb a b)) #Hcase >Hcase + [#H %2 @H | #H %1 @H] +qed. + +definition almost_equal ≝ λf,g:nat → nat. ¬ ∀nu.∃x. nu < x ∧ f x ≠ g x. +interpretation "almost equal" 'napart f g = (almost_equal f g). + +lemma eventually_cancelled: ∀h,u.¬∀nu.∃x. nu < x ∧ + max_{i ∈ [0,u[ | eqb (min_input h i x) x} (out i x (h (S i) x)) ≠ 0. +#h #u elim u + [normalize % #H cases (H u) #x * #_ * #H1 @H1 // + |#u0 @not_to_not #Hind #nu cases (Hind nu) #x * #ltx + cases (true_or_false (eqb (min_input h (u0+O) x) x)) #Hcase + [>bigop_Strue [2:@Hcase] #Hmax cases (max_neq0 … Hmax) -Hmax + [2: #H %{x} % // bigop_Sfalse + [#H %{x1} % [@transitive_lt //| (le_to_min_input … (eqb_true_to_eq … Hcase)) + [@lt_to_not_eq @ltx1 | @lt_to_le @ltx1] + ] + |>bigop_Sfalse [2:@Hcase] #H %{x} % // (bigop_sumI 0 u x (λi:ℕ.eqb (min_input h i x) x) nat 0 MaxA) + [>H // |@lt_to_le @(le_to_lt_to_lt …ltx) /2 by le_maxr/ |//] +qed. + +(******************************** Condition 2 *********************************) +definition total ≝ λf.λx:nat. Some nat (f x). + +lemma exists_to_exists_min: ∀h,i. (∃x. i < x ∧ {i ⊙ x} ↓ h (S i) x) → ∃y. min_input h i y = y. +#h #i * #x * #ltix #Hx %{(min_input h i x)} @min_spec_to_min @found // + [@(f_min_true (λy:ℕ.termb i y (h (S i) y))) %{x} % [% // | @term_to_termb_true //] + |#y #leiy #lty @(lt_min_to_false ????? lty) // + ] +qed. + +lemma condition_2: ∀h,i. code_for (total (g h 0)) i → ¬∃x. itermy >Hr +#H @(absurd ? H) @le_to_not_lt @le_n +qed. + + +(********************************* complexity *********************************) + +(* We assume operations have a minimal structural complexity MSC. +For instance, for time complexity, MSC is equal to the size of input. +For space complexity, MSC is typically 0, since we only measure the +space required in addition to dimension of the input. *) + +axiom MSC : nat → nat. +axiom MSC_le: ∀n. MSC n ≤ n. +axiom monotonic_MSC: monotonic ? le MSC. +axiom MSC_pair: ∀a,b. MSC 〈a,b〉 ≤ MSC a + MSC b. + +(* C s i means i is running in O(s) *) + +definition C ≝ λs,i.∃c.∃a.∀x.a ≤ x → ∃y. + U i x (c*(s x)) = Some ? y. + +(* C f s means f ∈ O(s) where MSC ∈O(s) *) +definition CF ≝ λs,f.O s MSC ∧ ∃i.code_for (total f) i ∧ C s i. + +lemma ext_CF : ∀f,g,s. (∀n. f n = g n) → CF s f → CF s g. +#f #g #s #Hext * #HO * #i * #Hcode #HC % // %{i} % + [#x cases (Hcode x) #a #H %{a} whd in match (total ??); associative_times @le_times // @Ha1 @(transitive_le … lean) // + ] +qed. + +lemma timesc_CF: ∀s,f,c.CF (λx.c*s x) f → CF s f. +#s #f #c @O_to_CF @O_times_c +qed. + +(********************************* composition ********************************) +axiom CF_comp: ∀f,g,sf,sg,sh. CF sg g → CF sf f → + O sh (λx. sg x + sf (g x)) → CF sh (f ∘ g). + +lemma CF_comp_ext: ∀f,g,h,sh,sf,sg. CF sg g → CF sf f → + (∀x.f(g x) = h x) → O sh (λx. sg x + sf (g x)) → CF sh h. +#f #g #h #sh #sf #sg #Hg #Hf #Heq #H @(ext_CF (f ∘ g)) + [#n normalize @Heq | @(CF_comp … H) //] +qed. + +(* primitve recursion *) + +let rec prim_rec (k,h:nat →nat) n m on n ≝ + match n with + [ O ⇒ k m + | S a ⇒ h 〈a,〈prim_rec k h a m, m〉〉]. + +lemma prim_rec_S: ∀k,h,n,m. + prim_rec k h (S n) m = h 〈n,〈prim_rec k h n m, m〉〉. +// qed. + +definition unary_pr ≝ λk,h,x. prim_rec k h (fst x) (snd x). + +let rec prim_rec_compl (k,h,sk,sh:nat →nat) n m on n ≝ + match n with + [ O ⇒ sk m + | S a ⇒ prim_rec_compl k h sk sh a m + sh (prim_rec k h a m)]. + +axiom CF_prim_rec: ∀k,h,sk,sh,sf. CF sk k → CF sh h → + O sf (unary_pr sk (λx. fst (snd x) + sh 〈fst x,〈unary_pr k h 〈fst x,snd (snd x)〉,snd (snd x)〉〉)) + → CF sf (unary_pr k h). + +(* falso ???? +lemma prim_rec_O: ∀k1,h1,k2,h2. O k1 k2 → O h1 h2 → + O (unary_pr k1 h1) (unary_pr k2 h2). +#k1 #h1 #k2 #h2 #HO1 #HO2 whd *) + + +(**************************** primitive operations*****************************) + +definition id ≝ λx:nat.x. + +axiom CF_id: CF MSC id. +axiom CF_compS: ∀h,f. CF h f → CF h (S ∘ f). +axiom CF_comp_fst: ∀h,f. CF h f → CF h (fst ∘ f). +axiom CF_comp_snd: ∀h,f. CF h f → CF h (snd ∘ f). +axiom CF_comp_pair: ∀h,f,g. CF h f → CF h g → CF h (λx. 〈f x,g x〉). + +lemma CF_fst: CF MSC fst. +@(ext_CF (fst ∘ id)) [#n //] @(CF_comp_fst … CF_id) +qed. + +lemma CF_snd: CF MSC snd. +@(ext_CF (snd ∘ id)) [#n //] @(CF_comp_snd … CF_id) +qed. + +(************************************** eqb ***********************************) + +axiom CF_eqb: ∀h,f,g. + CF h f → CF h g → CF h (λx.eqb (f x) (g x)). + +(*********************************** maximum **********************************) + +axiom CF_max: ∀a,b.∀p:nat →bool.∀f,ha,hb,hp,hf,s. + CF ha a → CF hb b → CF hp p → CF hf f → + O s (λx.ha x + hb x + ∑_{i ∈[a x ,b x[ }(hp 〈i,x〉 + hf 〈i,x〉)) → + CF s (λx.max_{i ∈[a x,b x[ | p 〈i,x〉 }(f 〈i,x〉)). + +(******************************** minimization ********************************) + +axiom CF_mu: ∀a,b.∀f:nat →bool.∀sa,sb,sf,s. + CF sa a → CF sb b → CF sf f → + O s (λx.sa x + sb x + ∑_{i ∈[a x ,S(b x)[ }(sf 〈i,x〉)) → + CF s (λx.μ_{i ∈[a x,b x] }(f 〈i,x〉)). + +(************************************* smn ************************************) +axiom smn: ∀f,s. CF s f → ∀x. CF (λy.s 〈x,y〉) (λy.f 〈x,y〉). + +(****************************** constructibility ******************************) + +definition constructible ≝ λs. CF s s. + +lemma constr_comp : ∀s1,s2. constructible s1 → constructible s2 → + (∀x. x ≤ s2 x) → constructible (s2 ∘ s1). +#s1 #s2 #Hs1 #Hs2 #Hle @(CF_comp … Hs1 Hs2) @O_plus @le_to_O #x [@Hle | //] +qed. + +lemma ext_constr: ∀s1,s2. (∀x.s1 x = s2 x) → + constructible s1 → constructible s2. +#s1 #s2 #Hext #Hs1 @(ext_CF … Hext) @(monotonic_CF … Hs1) #x >Hext // +qed. + +lemma constr_prim_rec: ∀s1,s2. constructible s1 → constructible s2 → + (∀n,r,m. 2 * r ≤ s2 〈n,〈r,m〉〉) → constructible (unary_pr s1 s2). +#s1 #s2 #Hs1 #Hs2 #Hincr @(CF_prim_rec … Hs1 Hs2) whd %{2} %{0} +#x #_ lapply (surj_pair x) * #a * #b #eqx >eqx whd in match (unary_pr ???); +>fst_pair >snd_pair +whd in match (unary_pr ???); >fst_pair >snd_pair elim a + [normalize // + |#n #Hind >prim_rec_S >fst_pair >snd_pair >fst_pair >snd_pair + >prim_rec_S @transitive_le [| @(monotonic_le_plus_l … Hind)] + @transitive_le [| @(monotonic_le_plus_l … (Hincr n ? b))] + whd in match (unary_pr ???); >fst_pair >snd_pair // + ] +qed. + +(********************************* simulation *********************************) + +axiom sU : nat → nat. + +axiom monotonic_sU: ∀i1,i2,x1,x2,s1,s2. i1 ≤ i2 → x1 ≤ x2 → s1 ≤ s2 → + sU 〈i1,〈x1,s1〉〉 ≤ sU 〈i2,〈x2,s2〉〉. + +lemma monotonic_sU_aux : ∀x1,x2. fst x1 ≤ fst x2 → fst (snd x1) ≤ fst (snd x2) → +snd (snd x1) ≤ snd (snd x2) → sU x1 ≤ sU x2. +#x1 #x2 cases (surj_pair x1) #a1 * #y #eqx1 >eqx1 -eqx1 cases (surj_pair y) +#b1 * #c1 #eqy >eqy -eqy +cases (surj_pair x2) #a2 * #y2 #eqx2 >eqx2 -eqx2 cases (surj_pair y2) +#b2 * #c2 #eqy2 >eqy2 -eqy2 >fst_pair >snd_pair >fst_pair >snd_pair +>fst_pair >snd_pair >fst_pair >snd_pair @monotonic_sU +qed. + +axiom sU_le: ∀i,x,s. s ≤ sU 〈i,〈x,s〉〉. +axiom sU_le_i: ∀i,x,s. MSC i ≤ sU 〈i,〈x,s〉〉. +axiom sU_le_x: ∀i,x,s. MSC x ≤ sU 〈i,〈x,s〉〉. + +definition pU_unary ≝ λp. pU (fst p) (fst (snd p)) (snd (snd p)). + +axiom CF_U : CF sU pU_unary. + +definition termb_unary ≝ λx:ℕ.termb (fst x) (fst (snd x)) (snd (snd x)). +definition out_unary ≝ λx:ℕ.out (fst x) (fst (snd x)) (snd (snd x)). + +lemma CF_termb: CF sU termb_unary. +@(ext_CF (fst ∘ pU_unary)) [2: @CF_comp_fst @CF_U] +#n whd in ⊢ (??%?); whd in ⊢ (??(?%)?); >fst_pair % +qed. + +lemma CF_out: CF sU out_unary. +@(ext_CF (snd ∘ pU_unary)) [2: @CF_comp_snd @CF_U] +#n whd in ⊢ (??%?); whd in ⊢ (??(?%)?); >snd_pair % +qed. + + +(******************** complexity of g ********************) + +definition unary_g ≝ λh.λux. g h (fst ux) (snd ux). +definition auxg ≝ + λh,ux. max_{i ∈[fst ux,snd ux[ | eqb (min_input h i (snd ux)) (snd ux)} + (out i (snd ux) (h (S i) (snd ux))). + +lemma compl_g1 : ∀h,s. CF s (auxg h) → CF s (unary_g h). +#h #s #H1 @(CF_compS ? (auxg h) H1) +qed. + +definition aux1g ≝ + λh,ux. max_{i ∈[fst ux,snd ux[ | (λp. eqb (min_input h (fst p) (snd (snd p))) (snd (snd p))) 〈i,ux〉} + ((λp.out (fst p) (snd (snd p)) (h (S (fst p)) (snd (snd p)))) 〈i,ux〉). + +lemma eq_aux : ∀h,x.aux1g h x = auxg h x. +#h #x @same_bigop + [#n #_ >fst_pair >snd_pair // |#n #_ #_ >fst_pair >snd_pair //] +qed. + +lemma compl_g2 : ∀h,s1,s2,s. + CF s1 + (λp:ℕ.eqb (min_input h (fst p) (snd (snd p))) (snd (snd p))) → + CF s2 + (λp:ℕ.out (fst p) (snd (snd p)) (h (S (fst p)) (snd (snd p)))) → + O s (λx.MSC x + ∑_{i ∈[fst x ,snd x[ }(s1 〈i,x〉+s2 〈i,x〉)) → + CF s (auxg h). +#h #s1 #s2 #s #Hs1 #Hs2 #HO @(ext_CF (aux1g h)) + [#n whd in ⊢ (??%%); @eq_aux] +@(CF_max … CF_fst CF_snd Hs1 Hs2 …) @(O_trans … HO) +@O_plus [@O_plus @O_plus_l // | @O_plus_r //] +qed. + +lemma compl_g3 : ∀h,s. + CF s (λp:ℕ.min_input h (fst p) (snd (snd p))) → + CF s (λp:ℕ.eqb (min_input h (fst p) (snd (snd p))) (snd (snd p))). +#h #s #H @(CF_eqb … H) @(CF_comp … CF_snd CF_snd) @(O_trans … (proj1 … H)) +@O_plus // %{1} %{0} #n #_ >commutative_times min_input_def whd in ⊢ (??%?); >minus_S_S @min_f_g #i #_ #_ +whd in ⊢ (??%%); >fst_pair >snd_pair // +qed. + +definition termb_aux ≝ λh. + termb_unary ∘ λp.〈fst (snd p),〈fst p,h (S (fst (snd p))) (fst p)〉〉. + +lemma compl_g4 : ∀h,s1,s. + (CF s1 + (λp.termb (fst (snd p)) (fst p) (h (S (fst (snd p))) (fst p)))) → + (O s (λx.MSC x + ∑_{i ∈[S(fst x) ,S(snd (snd x))[ }(s1 〈i,x〉))) → + CF s (λp:ℕ.min_input h (fst p) (snd (snd p))). +#h #s1 #s #Hs1 #HO @(ext_CF (min_input_aux h)) + [#n whd in ⊢ (??%%); @min_input_eq] +@(CF_mu … MSC MSC … Hs1) + [@CF_compS @CF_fst + |@CF_comp_snd @CF_snd + |@(O_trans … HO) @O_plus [@O_plus @O_plus_l // | @O_plus_r //] +qed. + +(************************* a couple of technical lemmas ***********************) +lemma minus_to_0: ∀a,b. a ≤ b → minus a b = 0. +#a elim a // #n #Hind * + [#H @False_ind /2 by absurd/ | #b normalize #H @Hind @le_S_S_to_le /2/] +qed. + +lemma sigma_bound: ∀h,a,b. monotonic nat le h → + ∑_{i ∈ [a,S b[ }(h i) ≤ (S b-a)*h b. +#h #a #b #H cases (decidable_le a b) + [#leab cut (b = pred (S b - a + a)) + [Hb in match (h b); + generalize in match (S b -a); + #n elim n + [// + |#m #Hind >bigop_Strue [2://] @le_plus + [@H @le_n |@(transitive_le … Hind) @le_times [//] @H //] + ] + |#ltba lapply (not_le_to_lt … ltba) -ltba #ltba + cut (S b -a = 0) [@minus_to_0 //] #Hcut >Hcut // + ] +qed. + +lemma sigma_bound_decr: ∀h,a,b. (∀a1,a2. a1 ≤ a2 → a2 < b → h a2 ≤ h a1) → + ∑_{i ∈ [a,b[ }(h i) ≤ (b-a)*h a. +#h #a #b #H cases (decidable_le a b) + [#leab cut ((b -a) +a ≤ b) [/2 by le_minus_to_plus_r/] generalize in match (b -a); + #n elim n + [// + |#m #Hind >bigop_Strue [2://] #Hm + cut (m+a ≤ b) [@(transitive_le … Hm) //] #Hm1 + @le_plus [@H // |@(transitive_le … (Hind Hm1)) //] + ] + |#ltba lapply (not_le_to_lt … ltba) -ltba #ltba + cut (b -a = 0) [@minus_to_0 @lt_to_le @ltba] #Hcut >Hcut // + ] +qed. + +lemma coroll: ∀s1:nat→nat. (∀n. monotonic ℕ le (λa:ℕ.s1 〈a,n〉)) → +O (λx.(snd (snd x)-fst x)*(s1 〈snd (snd x),x〉)) + (λx.∑_{i ∈[S(fst x) ,S(snd (snd x))[ }(s1 〈i,x〉)). +#s1 #Hs1 %{1} %{0} #n #_ >commutative_times minus_S_S //] +qed. + +lemma coroll2: ∀s1:nat→nat. (∀n,a,b. a ≤ b → b < snd n → s1 〈b,n〉 ≤ s1 〈a,n〉) → +O (λx.(snd x - fst x)*s1 〈fst x,x〉) (λx.∑_{i ∈[fst x,snd x[ }(s1 〈i,x〉)). +#s1 #Hs1 %{1} %{0} #n #_ >commutative_times fst_pair >snd_pair >fst_pair >snd_pair // ] +@(CF_comp … (λx.MSC x + h (S (fst (snd x))) (fst x)) … CF_termb) + [@CF_comp_pair + [@CF_comp_fst @(monotonic_CF … CF_snd) #x // + |@CF_comp_pair + [@(monotonic_CF … CF_fst) #x // + |@(ext_CF ((λx.h (fst x) (snd x))∘(λx.〈S (fst (snd x)),fst x〉))) + [#n normalize >fst_pair >snd_pair %] + @(CF_comp … MSC …hconstr) + [@CF_comp_pair [@CF_compS @CF_comp_fst // |//] + |@O_plus @le_to_O [//|#n >fst_pair >snd_pair //] + ] + ] + ] + |@O_plus + [@O_plus + [@(O_trans … (λx.MSC (fst x) + MSC (max (fst (snd x)) (snd (snd x))))) + [%{2} %{0} #x #_ cases (surj_pair x) #a * #b #eqx >eqx + >fst_pair >snd_pair @(transitive_le … (MSC_pair …)) + >distributive_times_plus @le_plus [//] + cases (surj_pair b) #c * #d #eqb >eqb + >fst_pair >snd_pair @(transitive_le … (MSC_pair …)) + whd in ⊢ (??%); @le_plus + [@monotonic_MSC @(le_maxl … (le_n …)) + |>commutative_times fst_pair >snd_pair // qed. + +lemma le_big : ∀x. x ≤ big x. +#x cases (surj_pair x) #a * #b #eqx >eqx @le_pair >fst_pair >snd_pair +[@(le_maxl … (le_n …)) | @(le_maxr … (le_n …))] +qed. + +definition faux2 ≝ λh. + (λx.MSC x + (snd (snd x)-fst x)* + (λx.sU 〈max (fst(snd x)) (snd(snd x)),〈fst x,h (S (fst (snd x))) (fst x)〉〉) 〈snd (snd x),x〉). + +lemma compl_g7: ∀h. + constructible (λx. h (fst x) (snd x)) → + (∀n. monotonic ? le (h n)) → + CF (λx.MSC x + (snd (snd x)-fst x)*sU 〈max (fst x) (snd x),〈snd (snd x),h (S (fst x)) (snd (snd x))〉〉) + (λp:ℕ.min_input h (fst p) (snd (snd p))). +#h #hcostr #hmono @(monotonic_CF … (faux2 h)) + [#n normalize >fst_pair >snd_pair //] +@compl_g5 [2:@(compl_g6 h hcostr)] #n #x #y #lexy >fst_pair >snd_pair +>fst_pair >snd_pair @monotonic_sU // @hmono @lexy +qed. + +lemma compl_g71: ∀h. + constructible (λx. h (fst x) (snd x)) → + (∀n. monotonic ? le (h n)) → + CF (λx.MSC (big x) + (snd (snd x)-fst x)*sU 〈max (fst x) (snd x),〈snd (snd x),h (S (fst x)) (snd (snd x))〉〉) + (λp:ℕ.min_input h (fst p) (snd (snd p))). +#h #hcostr #hmono @(monotonic_CF … (compl_g7 h hcostr hmono)) #x +@le_plus [@monotonic_MSC //] +cases (decidable_le (fst x) (snd(snd x))) + [#Hle @le_times // @monotonic_sU + |#Hlt >(minus_to_0 … (lt_to_le … )) [// | @not_le_to_lt @Hlt] + ] +qed. + +definition out_aux ≝ λh. + out_unary ∘ λp.〈fst p,〈snd(snd p),h (S (fst p)) (snd (snd p))〉〉. + +lemma compl_g8: ∀h. + constructible (λx. h (fst x) (snd x)) → + (CF (λx. sU 〈max (fst x) (snd x),〈snd(snd x),h (S (fst x)) (snd(snd x))〉〉) + (λp.out (fst p) (snd (snd p)) (h (S (fst p)) (snd (snd p))))). +#h #hconstr @(ext_CF (out_aux h)) + [#n normalize >fst_pair >snd_pair >fst_pair >snd_pair // ] +@(CF_comp … (λx.h (S (fst x)) (snd(snd x)) + MSC x) … CF_out) + [@CF_comp_pair + [@(monotonic_CF … CF_fst) #x // + |@CF_comp_pair + [@CF_comp_snd @(monotonic_CF … CF_snd) #x // + |@(ext_CF ((λx.h (fst x) (snd x))∘(λx.〈S (fst x),snd(snd x)〉))) + [#n normalize >fst_pair >snd_pair %] + @(CF_comp … MSC …hconstr) + [@CF_comp_pair [@CF_compS // | @CF_comp_snd // ] + |@O_plus @le_to_O [//|#n >fst_pair >snd_pair //] + ] + ] + ] + |@O_plus + [@O_plus + [@le_to_O #n @sU_le + |@(O_trans … (λx.MSC (max (fst x) (snd x)))) + [%{2} %{0} #x #_ cases (surj_pair x) #a * #b #eqx >eqx + >fst_pair >snd_pair @(transitive_le … (MSC_pair …)) + whd in ⊢ (??%); @le_plus + [@monotonic_MSC @(le_maxl … (le_n …)) + |>commutative_times (times_n_1 (MSC x)) >commutative_times @le_times + [// | @monotonic_MSC // ]] +@(O_trans … (coroll2 ??)) + [#n #a #b #leab #ltb >fst_pair >fst_pair >snd_pair >snd_pair + cut (b ≤ n) [@(transitive_le … (le_snd …)) @lt_to_le //] #lebn + cut (max a n = n) + [normalize >le_to_leb_true [//|@(transitive_le … leab lebn)]] #maxa + cut (max b n = n) [normalize >le_to_leb_true //] #maxb + @le_plus + [@le_plus [>big_def >big_def >maxa >maxb //] + @le_times + [/2 by monotonic_le_minus_r/ + |@monotonic_sU // @hantimono [@le_S_S // |@ltb] + ] + |@monotonic_sU // @hantimono [@le_S_S // |@ltb] + ] + |@le_to_O #n >fst_pair >snd_pair + cut (max (fst n) n = n) [normalize >le_to_leb_true //] #Hmax >Hmax + >associative_plus >distributive_times_plus + @le_plus [@le_times [@le_S // |>big_def >Hmax //] |//] + ] +qed. + +definition sg ≝ λh,x. + (S (snd x-fst x))*MSC 〈x,x〉 + (snd x-fst x)*(S(snd x-fst x))*sU 〈x,〈snd x,h (S (fst x)) (snd x)〉〉. + +lemma sg_def : ∀h,a,b. + sg h 〈a,b〉 = (S (b-a))*MSC 〈〈a,b〉,〈a,b〉〉 + + (b-a)*(S(b-a))*sU 〈〈a,b〉,〈b,h (S a) b〉〉. +#h #a #b whd in ⊢ (??%?); >fst_pair >snd_pair // +qed. + +lemma compl_g11 : ∀h. + constructible (λx. h (fst x) (snd x)) → + (∀n. monotonic ? le (h n)) → + (∀n,a,b. a ≤ b → b ≤ n → h b n ≤ h a n) → + CF (sg h) (unary_g h). +#h #hconstr #Hm #Ham @compl_g1 @(compl_g9 h hconstr Hm Ham) +qed. + +(**************************** closing the argument ****************************) + +let rec h_of_aux (r:nat →nat) (c,d,b:nat) on d : nat ≝ + match d with + [ O ⇒ c + | S d1 ⇒ (S d)*(MSC 〈〈b-d,b〉,〈b-d,b〉〉) + + d*(S d)*sU 〈〈b-d,b〉,〈b,r (h_of_aux r c d1 b)〉〉]. + +lemma h_of_aux_O: ∀r,c,b. + h_of_aux r c O b = c. +// qed. + +lemma h_of_aux_S : ∀r,c,d,b. + h_of_aux r c (S d) b = + (S (S d))*(MSC 〈〈b-(S d),b〉,〈b-(S d),b〉〉) + + (S d)*(S (S d))*sU 〈〈b-(S d),b〉,〈b,r(h_of_aux r c d b)〉〉. +// qed. + +lemma h_of_aux_prim_rec : ∀r,c,n,b. h_of_aux r c n b = + prim_rec (λx.c) + (λx.let d ≝ S(fst x) in + let b ≝ snd (snd x) in + (S d)*(MSC 〈〈b-d,b〉,〈b-d,b〉〉) + + d*(S d)*sU 〈〈b-d,b〉,〈b,r (fst (snd x))〉〉) n b. +#r #c #n #b elim n + [>h_of_aux_O normalize // + |#n1 #Hind >h_of_aux_S >prim_rec_S >snd_pair >snd_pair >fst_pair + >fst_pair fst_pair >snd_pair >(minus_to_0 … Hle) // +qed. + +lemma h_of_def: ∀r,a,b.h_of r 〈a,b〉 = + let m ≝ max a b in + h_of_aux r (MSC 〈〈m,m〉,〈m,m〉〉) (b - a) b. +#r #a #b normalize >fst_pair >snd_pair // +qed. + +lemma mono_h_of_aux: ∀r.(∀x. x ≤ r x) → monotonic ? le r → + ∀d,d1,c,c1,b,b1.c ≤ c1 → d ≤ d1 → b ≤ b1 → + h_of_aux r c d b ≤ h_of_aux r c1 d1 b1. +#r #Hr #monor #d #d1 lapply d -d elim d1 + [#d #c #c1 #b #b1 #Hc #Hd @(le_n_O_elim ? Hd) #leb + >h_of_aux_O >h_of_aux_O // + |#m #Hind #d #c #c1 #b #b1 #lec #led #leb cases (le_to_or_lt_eq … led) + [#ltd @(transitive_le … (Hind … lec ? leb)) [@le_S_S_to_le @ltd] + >h_of_aux_S @(transitive_le ???? (le_plus_n …)) + >(times_n_1 (h_of_aux r c1 m b1)) in ⊢ (?%?); + >commutative_times @le_times [//|@(transitive_le … (Hr ?)) @sU_le] + |#Hd >Hd >h_of_aux_S >h_of_aux_S + cut (b-S m ≤ b1 - S m) [/2 by monotonic_le_minus_l/] #Hb1 + @le_plus [@le_times //] + [@monotonic_MSC @le_pair @le_pair // + |@le_times [//] @monotonic_sU + [@le_pair // |// |@monor @Hind //] + ] + ] + ] +qed. + +lemma mono_h_of2: ∀r.(∀x. x ≤ r x) → monotonic ? le r → + ∀i,b,b1. b ≤ b1 → h_of r 〈i,b〉 ≤ h_of r 〈i,b1〉. +#r #Hr #Hmono #i #a #b #leab >h_of_def >h_of_def +cut (max i a ≤ max i b) + [@to_max + [@(le_maxl … (le_n …))|@(transitive_le … leab) @(le_maxr … (le_n …))]] +#Hmax @(mono_h_of_aux r Hr Hmono) + [@monotonic_MSC @le_pair @le_pair @Hmax |/2 by monotonic_le_minus_l/ |@leab] +qed. + +axiom h_of_constr : ∀r:nat →nat. + (∀x. x ≤ r x) → monotonic ? le r → constructible r → + constructible (h_of r). + +lemma speed_compl: ∀r:nat →nat. + (∀x. x ≤ r x) → monotonic ? le r → constructible r → + CF (h_of r) (unary_g (λi,x. r(h_of r 〈i,x〉))). +#r #Hr #Hmono #Hconstr @(monotonic_CF … (compl_g11 …)) + [#x cases (surj_pair x) #a * #b #eqx >eqx + >sg_def cases (decidable_le b a) + [#leba >(minus_to_0 … leba) normalize in ⊢ (?%?); + h_of_def + cut (max a b = a) + [normalize cases (le_to_or_lt_eq … leba) + [#ltba >(lt_to_leb_false … ltba) % + |#eqba (le_to_leb_true … (le_n ?)) % ]] + #Hmax >Hmax normalize >(minus_to_0 … leba) normalize + @monotonic_MSC @le_pair @le_pair // + |#ltab >h_of_def >h_of_def + cut (max a b = b) + [normalize >(le_to_leb_true … ) [%] @lt_to_le @not_le_to_lt @ltab] + #Hmax >Hmax + cut (max (S a) b = b) + [whd in ⊢ (??%?); >(le_to_leb_true … ) [%] @not_le_to_lt @ltab] + #Hmax1 >Hmax1 + cut (∃d.b - a = S d) + [%{(pred(b-a))} >S_pred [//] @lt_plus_to_minus_r @not_le_to_lt @ltab] + * #d #eqd >eqd + cut (b-S a = d) [//] #eqd1 >eqd1 >h_of_aux_S >eqd1 + cut (b - S d = a) + [@plus_to_minus >commutative_plus @minus_to_plus + [@lt_to_le @not_le_to_lt // | //]] #eqd2 >eqd2 + normalize // + ] + |#n #a #b #leab #lebn >h_of_def >h_of_def + cut (max a n = n) + [normalize >le_to_leb_true [%|@(transitive_le … leab lebn)]] #Hmaxa + cut (max b n = n) + [normalize >(le_to_leb_true … lebn) %] #Hmaxb + >Hmaxa >Hmaxb @Hmono @(mono_h_of_aux r … Hr Hmono) // /2 by monotonic_le_minus_r/ + |#n #a #b #leab @Hmono @(mono_h_of2 … Hr Hmono … leab) + |@(constr_comp … Hconstr Hr) @(ext_constr (h_of r)) + [#x cases (surj_pair x) #a * #b #eqx >eqx >fst_pair >snd_pair //] + @(h_of_constr r Hr Hmono Hconstr) + ] +qed. + +lemma speed_compl_i: ∀r:nat →nat. + (∀x. x ≤ r x) → monotonic ? le r → constructible r → + ∀i. CF (λx.h_of r 〈i,x〉) (λx.g (λi,x. r(h_of r 〈i,x〉)) i x). +#r #Hr #Hmono #Hconstr #i +@(ext_CF (λx.unary_g (λi,x. r(h_of r 〈i,x〉)) 〈i,x〉)) + [#n whd in ⊢ (??%%); @eq_f @sym_eq >fst_pair >snd_pair %] +@smn @(ext_CF … (speed_compl r Hr Hmono Hconstr)) #n // +qed. + +(**************************** the speedup theorem *****************************) +theorem pseudo_speedup: + ∀r:nat →nat. (∀x. x ≤ r x) → monotonic ? le r → constructible r → + ∃f.∀sf. CF sf f → ∃g,sg. f ≈ g ∧ CF sg g ∧ O sf (r ∘ sg). +(* ∃m,a.∀n. a≤n → r(sg a) < m * sf n. *) +#r #Hr #Hmono #Hconstr +(* f is (g (λi,x. r(h_of r 〈i,x〉)) 0) *) +%{(g (λi,x. r(h_of r 〈i,x〉)) 0)} #sf * #H * #i * +#Hcodei #HCi +(* g is (g (λi,x. r(h_of r 〈i,x〉)) (S i)) *) +%{(g (λi,x. r(h_of r 〈i,x〉)) (S i))} +(* sg is (λx.h_of r 〈i,x〉) *) +%{(λx. h_of r 〈S i,x〉)} +lapply (speed_compl_i … Hr Hmono Hconstr (S i)) #Hg +%[%[@condition_1 |@Hg] + |cases Hg #H1 * #j * #Hcodej #HCj + lapply (condition_2 … Hcodei) #Hcond2 (* @not_to_not *) + cases HCi #m * #a #Ha %{m} %{(max (S i) a)} #n #ltin @lt_to_le @not_le_to_lt + @(not_to_not … Hcond2) -Hcond2 #Hlesf %{n} % + [@(transitive_le … ltin) @(le_maxl … (le_n …))] + cases (Ha n ?) [2: @(transitive_le … ltin) @(le_maxr … (le_n …))] + #y #Uy %{y} @(monotonic_U … Uy) @(transitive_le … Hlesf) // + ] +qed. + +theorem pseudo_speedup': + ∀r:nat →nat. (∀x. x ≤ r x) → monotonic ? le r → constructible r → + ∃f.∀sf. CF sf f → ∃g,sg. f ≈ g ∧ CF sg g ∧ + (* ¬ O (r ∘ sg) sf. *) + ∃m,a.∀n. a≤n → r(sg a) < m * sf n. +#r #Hr #Hmono #Hconstr +(* f is (g (λi,x. r(h_of r 〈i,x〉)) 0) *) +%{(g (λi,x. r(h_of r 〈i,x〉)) 0)} #sf * #H * #i * +#Hcodei #HCi +(* g is (g (λi,x. r(h_of r 〈i,x〉)) (S i)) *) +%{(g (λi,x. r(h_of r 〈i,x〉)) (S i))} +(* sg is (λx.h_of r 〈i,x〉) *) +%{(λx. h_of r 〈S i,x〉)} +lapply (speed_compl_i … Hr Hmono Hconstr (S i)) #Hg +%[%[@condition_1 |@Hg] + |cases Hg #H1 * #j * #Hcodej #HCj + lapply (condition_2 … Hcodei) #Hcond2 (* @not_to_not *) + cases HCi #m * #a #Ha + %{m} %{(max (S i) a)} #n #ltin @not_le_to_lt @(not_to_not … Hcond2) -Hcond2 #Hlesf + %{n} % [@(transitive_le … ltin) @(le_maxl … (le_n …))] + cases (Ha n ?) [2: @(transitive_le … ltin) @(le_maxr … (le_n …))] + #y #Uy %{y} @(monotonic_U … Uy) @(transitive_le … Hlesf) + @Hmono @(mono_h_of2 … Hr Hmono … ltin) + ] +qed. + \ No newline at end of file