From: Claudio Sacerdoti Coen Date: Wed, 31 May 2006 17:12:12 +0000 (+0000) Subject: Sigma algebras and measurable maps defined. X-Git-Tag: make_still_working~7269 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=19b11f38db15de2f7e093eb8f25d3cec4988d680;p=helm.git Sigma algebras and measurable maps defined. --- diff --git a/helm/software/matita/dama/sigma_algebra.ma b/helm/software/matita/dama/sigma_algebra.ma new file mode 100644 index 000000000..94ceb923d --- /dev/null +++ b/helm/software/matita/dama/sigma_algebra.ma @@ -0,0 +1,40 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + +set "baseuri" "cic:/matita/sigma_algebra/". + +include "topology.ma". + +record is_sigma_algebra (X:Type) (A: set X) (M: set (set X)) : Prop ≝ + { siga_subset: ∀B.B ∈ M → B ⊆ A; + siga_full: A ∈ M; + siga_compl: ∀B.B ∈ M → B \sup c ∈ M; + siga_enumerable_union: + ∀B:seq (set X).(∀i.(B \sub i) ∈ M) → (∪ \sub i B \sub i) ∈ M + }. + +record sigma_algebra : Type ≝ + { siga_carrier:> Type; + siga_domain:> set siga_carrier; + M: set (set siga_carrier); + siga_is_sigma_algebra:> is_sigma_algebra ? siga_domain M + }. + +(*definition is_measurable_map ≝ + λX:sigma_algebra.λY:topological_space.λf:X → Y. + ∀V. V ∈ O Y → f \sup -1 V ∈ M X.*) +definition is_measurable_map ≝ + λX:sigma_algebra.λY:topological_space.λf:X → Y. + ∀V. V ∈ O Y → inverse_image ? ? f V ∈ M X. + diff --git a/helm/software/matita/dama/topology.ma b/helm/software/matita/dama/topology.ma index 3a7ec0da7..e0a926d76 100644 --- a/helm/software/matita/dama/topology.ma +++ b/helm/software/matita/dama/topology.ma @@ -28,16 +28,16 @@ record is_topology X (A: set X) (O: set (set X)) : Prop ≝ record topological_space : Type ≝ { top_carrier:> Type; top_domain:> set top_carrier; - top_O: set (set top_carrier); - top_is_topological_space:> is_topology ? top_domain top_O + O: set (set top_carrier); + top_is_topological_space:> is_topology ? top_domain O }. (*definition is_continuous_map ≝ λX,Y: topological_space.λf: X → Y. - ∀V. V ∈ top_O Y → (f \sup -1) V ∈ top_O X.*) + ∀V. V ∈ O Y → (f \sup -1) V ∈ O X.*) definition is_continuous_map ≝ λX,Y: topological_space.λf: X → Y. - ∀V. V ∈ top_O Y → inverse_image ? ? f V ∈ top_O X. + ∀V. V ∈ O Y → inverse_image ? ? f V ∈ O X. record continuous_map (X,Y: topological_space) : Type ≝ { cm_f:> X → Y;