From: Claudio Sacerdoti Coen Date: Thu, 16 Oct 2008 17:16:58 +0000 (+0000) Subject: ... X-Git-Tag: make_still_working~4678 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=237ade59af59ffa7c4a754407b1f55e057be4208;p=helm.git ... --- diff --git a/helm/software/matita/contribs/didactic/induction.ma b/helm/software/matita/contribs/didactic/induction.ma index 4bfe88a8b..fd1cc9057 100644 --- a/helm/software/matita/contribs/didactic/induction.ma +++ b/helm/software/matita/contribs/didactic/induction.ma @@ -10,7 +10,7 @@ inductive Formula : Type ≝ | FImpl: (*BEGIN*)Formula → Formula → Formula(*END*) . -let rec sem (v: nat -> nat) (F: formula) on F ≝ +let rec sem (v: nat -> nat) (F: Formula) on F ≝ match F with [ FBot ⇒ 0 | FTop ⇒ (*BEGIN*)1(*END*) @@ -37,7 +37,7 @@ for @{ 'if_then_else $e $t $f }. interpretation "Formula if_then_else" 'if_then_else e t f = (if_then_else e t f). -let rec subst (x:nat) (G: Formula) (F: formula) on F ≝ +let rec subst (x:nat) (G: Formula) (F: Formula) on F ≝ match F with [ FBot ⇒ FBot | FTop ⇒ (*BEGIN*)FTop(*END*) @@ -68,7 +68,7 @@ assume F2 : Formula. assume F : Formula. assume x : ℕ. assume v : (ℕ → ℕ). -assume H : (F1 ≡_v F2). +suppose (F1 ≡_v F2) (H). we proceed by induction on F to prove (subst x F1 F ≡_v subst x F2 F). case Bot. the thesis becomes (FBot ≡_v (subst x F2 FBot)).