From: Claudio Sacerdoti Coen Date: Wed, 5 May 2010 14:29:57 +0000 (+0000) Subject: First tests. X-Git-Tag: make_still_working~2914 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=2589e631ad9c04a89cb7730d6bca913aed016f98;p=helm.git First tests. --- diff --git a/helm/software/matita/nlibrary/re/re.ma b/helm/software/matita/nlibrary/re/re.ma index 10f446bc5..0e4225d96 100644 --- a/helm/software/matita/nlibrary/re/re.ma +++ b/helm/software/matita/nlibrary/re/re.ma @@ -12,13 +12,12 @@ (* *) (**************************************************************************) -include "logic/connectives.ma". +(*include "logic/connectives.ma".*) (*include "logic/equality.ma".*) include "datatypes/list.ma". -include "datatypes/bool.ma". include "datatypes/pairs.ma". -include "Plogic/equality.ma". +(*include "Plogic/equality.ma".*) ndefinition word ≝ λS:Type[0].list S. @@ -30,6 +29,8 @@ ninductive re (S: Type[0]) : Type[0] ≝ | o: re S → re S → re S | k: re S → re S. +(* +alias symbol "not" (instance 1) = "Clogical not". nlemma foo1: ∀S. ¬ (z S = e S). #S; @; #H; ndestruct. nqed. nlemma foo2: ∀S,x. ¬ (z S = s S x). #S; #x; @; #H; ndestruct. nqed. nlemma foo3: ∀S,x1,x2. ¬ (z S = c S x1 x2). #S; #x1; #x2; @; #H; ndestruct. nqed. @@ -39,8 +40,9 @@ nlemma foo6: ∀S,x. ¬ (e S = s S x). #S; #x; @; #H; ndestruct. nqed. nlemma foo7: ∀S,x1,x2. ¬ (e S = c S x1 x2). #S; #x1; #x2; @; #H; ndestruct. nqed. nlemma foo8: ∀S,x1,x2. ¬ (e S = o S x1 x2). #S; #x1; #x2; @; #H; ndestruct. nqed. nlemma foo9: ∀S,x. ¬ (e S = k S x). #S; #x; @; #H; ndestruct. nqed. +*) -ninductive in_l (S: Type[0]): word S → re S → CProp[0] ≝ +ninductive in_l (S: Type[0]): word S → re S → Prop ≝ in_e: in_l S [] (e ?) | in_s: ∀x. in_l S [x] (s ? x) | in_c: ∀w1,w2,e1,e2. in_l ? w1 e1 → in_l ? w2 e2 → in_l S (w1@w2) (c ? e1 e2) @@ -49,27 +51,57 @@ ninductive in_l (S: Type[0]): word S → re S → CProp[0] ≝ | in_ke: ∀e. in_l S [] (k ? e) | in_ki: ∀w1,w2,e. in_l ? w1 e → in_l ? w2 (k ? e) → in_l S (w1@w2) (k ? e). +naxiom in_l_inv_z: + ∀S,w. ¬ (in_l S w (z ?)). +(* #S; #w; #H; ninversion H + [ #_; #b; ndestruct + | #a; #b; #c; ndestruct + | #a; #b; #c; #d; #e; #f; #g; #h; #i; #l; ndestruct + | #a; #b; #c; #d; #e; #f; #g; ndestruct + | #a; #b; #c; #d; #e; #f; #g; ndestruct + | #a; #b; #c; ndestruct + | #a; #b; #c; #d; #e; #f; #g; #h; #i; ndestruct ] +nqed. *) + +nlemma in_l_inv_e: + ∀S,w. in_l S w (e ?) → w = []. + #S; #w; #H; ninversion H + [ #a; #b; ndestruct; // + | #a; #b; #c; ndestruct + | #a; #b; #c; #d; #e; #f; #g; #h; #i; #l; ndestruct + | #a; #b; #c; #d; #e; #f; #g; ndestruct + | #a; #b; #c; #d; #e; #f; #g; ndestruct + | #a; #b; #c; ndestruct + | #a; #b; #c; #d; #e; #f; #g; #h; #i; ndestruct ] +nqed. + +naxiom in_l_inv_s: + ∀S,w,x. in_l S w (s ? x) → w = [x]. + +naxiom in_l_inv_c: + ∀S,w,E1,E2. in_l S w (c S E1 E2) → ∃w1.∃w2. w = w1@w2 ∧ in_l S w1 E1 ∧ in_l S w2 E2. + ninductive pre (S: Type[0]) : Type[0] ≝ - pp: pre S → pre S - | pz: pre S + pz: pre S | pe: pre S | ps: S → pre S + | pp: S → pre S | pc: pre S → pre S → pre S | po: pre S → pre S → pre S | pk: pre S → pre S. nlet rec forget (S: Type[0]) (l : pre S) on l: re S ≝ match l with - [ pp E ⇒ forget S E - | pz ⇒ z S + [ pz ⇒ z S | pe ⇒ e S | ps x ⇒ s S x + | pp x ⇒ s S x | pc E1 E2 ⇒ c S (forget ? E1) (forget ? E2) | po E1 E2 ⇒ o S (forget ? E1) (forget ? E2) | pk E ⇒ k S (forget ? E) ]. -ninductive in_pl (S: Type[0]): word S → pre S → CProp[0] ≝ - in_pp: ∀w,E. in_l S w (forget ? E) → in_pl S w (pp S E) +ninductive in_pl (S: Type[0]): word S → pre S → Prop ≝ + in_pp: ∀x. in_pl S [x] (pp S x) | in_pc1: ∀w1,w2,e1,e2. in_pl ? w1 e1 → in_l ? w2 (forget ? e2) → in_pl S (w1@w2) (pc ? e1 e2) | in_pc2: ∀w,e1,e2. in_pl ? w e2 → in_pl S w (pc ? e1 e2) @@ -78,24 +110,201 @@ ninductive in_pl (S: Type[0]): word S → pre S → CProp[0] ≝ | in_pki: ∀w1,w2,e. in_pl ? w1 e → in_l ? w2 (k ? (forget ? e)) → in_pl S (w1@w2) (pk ? e). -nlet rec eclose (S: Type[0]) (b: bool) (E: pre S) on E ≝ +nlet rec eclose (S: Type[0]) (E: pre S) on E ≝ match E with - [ pp E' ⇒ eclose ? true E' - | pz ⇒ 〈 false, pz ? 〉 - | pe ⇒ 〈 b, pe ? 〉 - | ps x ⇒ 〈 false, ps ? x 〉 + [ pz ⇒ 〈 false, pz ? 〉 + | pe ⇒ 〈 true, pe ? 〉 + | ps x ⇒ 〈 false, pp ? x 〉 + | pp x ⇒ 〈 false, pp ? x 〉 | pc E1 E2 ⇒ - let E1' ≝ eclose ? b E1 in + let E1' ≝ eclose ? E1 in let E1'' ≝ snd … E1' in - let E2' ≝ eclose ? (fst … E1') E2 in - 〈 fst … E2', pc ? E1'' (snd … E2') 〉 + match fst … E1' with + [ true => + let E2' ≝ eclose ? E2 in + 〈 fst … E2', pc ? E1'' (snd … E2') 〉 + | false ⇒ 〈 false, pc ? E1'' E2 〉 ] | po E1 E2 ⇒ - let E1' ≝ eclose ? b E1 in - let E2' ≝ eclose ? b E2 in + let E1' ≝ eclose ? E1 in + let E2' ≝ eclose ? E2 in + 〈 fst … E1' ∨ fst … E2', po ? (snd … E1') (snd … E2') 〉 + | pk E ⇒ 〈 true, pk ? (snd … (eclose S E)) 〉 ]. + +ntheorem forget_eclose: + ∀S,E. forget S (snd … (eclose … E)) = forget ? E. + #S; #E; nelim E; nnormalize; //; + #p; ncases (fst … (eclose S p)); nnormalize; //. +nqed. + +ntheorem eclose_true: + ∀S,E. (* bug refiner se si scambia true con il termine *) + true = fst bool (pre S) (eclose S E) → in_l S [] (forget S E). + #S; #E; nelim E; nnormalize; // + [ #H; ncases (?: False); /2/ + | #x; #H; ncases (?: False); /2/ + | #x; #H; ncases (?: False); /2/ + | #w1; #w2; ncases (fst … (eclose S w1)); nnormalize; /3/; + #_; #_; #H; ncases (?:False); /2/ + | #w1; #w2; ncases (fst … (eclose S w1)); nnormalize; /3/] +nqed. + +(* to be moved *) +nlemma eq_append_nil_to_eq_nil1: + ∀A.∀l1,l2:list A. l1 @ l2 = [] → l1 = []. + #A; #l1; nelim l1; nnormalize; /2/; + #x; #tl; #_; #l3; #K; ndestruct. +nqed. + +(* to be moved *) +nlemma eq_append_nil_to_eq_nil2: + ∀A.∀l1,l2:list A. l1 @ l2 = [] → l2 = []. + #A; #l1; nelim l1; nnormalize; /2/; + #x; #tl; #_; #l3; #K; ndestruct. +nqed. + +ntheorem in_l_empty_c: + ∀S,E1,E2. in_l S [] (c … E1 E2) → in_l S [] E2. + #S; #E1; #E2; #H; ninversion H + [ #_; #H2; ndestruct + | #x; #K; ndestruct + | #w1; #w2; #E1'; #E2'; #H1; #H2; #H3; #H4; #H5; #H6; + nrewrite < H5; nlapply (eq_append_nil_to_eq_nil2 … w1 w2 ?); //; + ndestruct; // + | #w; #E1'; #E2'; #H1; #H2; #H3; #H4; ndestruct + | #w; #E1'; #E2'; #H1; #H2; #H3; #H4; ndestruct + | #E; #_; #K; ndestruct + | #w1; #w2; #w3; #H1; #H2; #H3; #H4; #H5; #H6; ndestruct ] +nqed. + +ntheorem eclose_true': + ∀S,E. (* bug refiner se si scambia true con il termine *) + in_l S [] (forget S E) → true = fst bool (pre S) (eclose S E). + #S; #E; nelim E; nnormalize; // + [ #H; ncases (?:False); /2/ + |##2,3: #x; #H; ncases (?:False); nlapply (in_l_inv_s ??? H); #K; ndestruct + | #E1; #E2; ncases (fst … (eclose S E1)); nnormalize + [ #H1; #H2; #H3; ninversion H3; /3/; + ##| #H1; #H2; #H3; ninversion H3 + [ #_; #K; ndestruct + | #x; #K; ndestruct + | #w1; #w2; #E1'; #E2'; #H4; #H5; #K1; #K2; #K3; #K4; ndestruct; + napply H1; nrewrite < (eq_append_nil_to_eq_nil1 … w1 w2 ?); // + | #w1; #E1'; #E2'; #H4; #H5; #H6; #H7; ndestruct + | #w1; #E1'; #E2'; #H4; #H5; #H6; #H7; ndestruct + | #E'; #_; #K; ndestruct + | #a; #b; #c; #d; #e; #f; #g; #h; #i; ndestruct ]##] +##| #E1; ncases (fst … (eclose S E1)); nnormalize; //; + #E2; #H1; #H2; #H3; ninversion H3 + [ #_; #K; ndestruct + | #w; #_; #K; ndestruct + | #a; #b; #c; #d; #e; #f; #g; #h; #i; #l; ndestruct + | #w; #E1'; #E2'; #H1'; #H2'; #H3'; #H4; ndestruct; + ncases (?: False); napply (absurd ?? (not_eq_true_false …)); + /2/ + | #w; #E1'; #E2'; #H1'; #H2'; #H3'; #H4; ndestruct; /2/ + | #a; #b; #c; ndestruct + | #a; #b; #c; #d; #e; #f; #g; #h; #i; ndestruct]##] +nqed. + +(* +ntheorem eclose_superset: + ∀S,E. + ∀w. in_l S w (forget … E) ∨ in_pl ? w E → + let E' ≝ eclose … E in + in_pl ? w (snd … E') ∨ fst … E' = true ∧ w = []. + #S; #E; #w; * + [ ngeneralize in match w; nelim E; nnormalize + [ #w'; #H; ncases (? : False); /2/ + ##| #w'; #H; @2; @; //; napply in_l_inv_e; //; (* auto non va *) + ##|##3,4: #x; #w'; #H; @1; nrewrite > (in_l_inv_s … H); //; + ##| #E1; #E2; #H1; #H2; #w'; #H3; + ncases (in_l_inv_c … H3); #w1; *; #w2; *; *; #H4; #H5; #H6; + ncases (fst … (eclose S E1)) in H1 H2 ⊢ %; nnormalize + [ #H1; #H2; ncases (H1 … H5); ncases (H2 … H6) + [ #K1; #K2; nrewrite > H4; /3/; + ##| *; #_; #K1; #K2; nrewrite > H4; /3/; + ##| #K1; *; #_; #K2; nrewrite > H4; @1; nrewrite > K2; + /3/ ] + + @2; @; //; ninversion H; //; +##| #H; nwhd; @1; (* manca intro per letin*) + (* LEMMA A PARTE? *) (* manca clear E' *) + nelim H; nnormalize; /2/ + [ #w1; #w2; #p; ncases (fst … (eclose S p)); + nnormalize; /2/ + | #w; #p; ncases (fst … (eclose S p)); + nnormalize; /2/ ] +nqed. +*) + +nrecord decidable : Type[1] ≝ + { carr :> Type[0]; + eqb: carr → carr → bool; + eqb_true: ∀x,y. eqb x y = true → x=y; + eqb_false: ∀x,y. eqb x y = false → x≠y + }. + +nlet rec move (S: decidable) (x:S) (E: pre S) on E ≝ + match E with + [ pz ⇒ 〈 false, pz ? 〉 + | pe ⇒ 〈 false, pe ? 〉 + | ps y ⇒ 〈false, ps ? y 〉 + | pp y ⇒ 〈 eqb … x y, ps ? y 〉 + | pc E1 E2 ⇒ + let E1' ≝ move ? x E1 in + let E2' ≝ move ? x E2 in + let E1'' ≝ snd … E1' in + let E2'' ≝ snd ?? E2' in + match fst … E1' with + [ true => + let E2''' ≝ eclose S E2'' in + 〈 fst … E2' ∨ fst … E2''', pc ? E1'' (snd … E2''') 〉 + | false ⇒ 〈 fst … E2', pc ? E1'' E2'' 〉 ] + | po E1 E2 ⇒ + let E1' ≝ move ? x E1 in + let E2' ≝ move ? x E2 in 〈 fst … E1' ∨ fst … E2', po ? (snd … E1') (snd … E2') 〉 | pk E ⇒ - 〈 true, pk ? (snd … (eclose S b E)) 〉 ]. - + let E' ≝ move S x E in + let E'' ≝ snd bool (pre S) E' in + match fst … E' with + [ true ⇒ 〈 true, pk ? (snd … (eclose … E'')) 〉 + | false ⇒ 〈 false, pk ? E'' 〉 ]]. + +(* +ntheorem move_ok: + ∀S:decidable.∀E,a,w. + in_pl S w (snd … (move S a E)) → in_pl S (a::w) E. + #S; #E; #a; #w; +nqed. +*) + +nlet rec move_star S w E on w ≝ + match w with + [ nil ⇒ E + | cons x w' ⇒ move_star S w' (move S x (snd … E))]. + +ndefinition in_moves ≝ λS,w,E. fst … (move_star S w E). + +ndefinition NAT: decidable. + @ nat eqb; /2/. +nqed. + +ndefinition test1 ≝ + pc ? (pk ? (po ? (ps ? 0) (ps ? 1))) (ps ? 0). + +ndefinition test2 ≝ + po ? + (pc ? (pk ? (pc ? (ps ? 0) (ps ? 1))) (ps ? 0)) + (pc ? (pk ? (pc ? (ps ? 0) (ps ? 1))) (ps ? 1)). + +ndefinition test3 ≝ + pk ? (pc ? (pc ? (ps ? 0) (pk ? (pc ? (ps ? 0) (ps ? 1)))) (ps ? 1)). + +nlemma foo: in_moves NAT + [0;0;1;0;1;1] (eclose ? test3) = true. + nnormalize; + (**********************************************************) ninductive der (S: Type[0]) (a: S) : re S → re S → CProp[0] ≝