From: Ferruccio Guidi Date: Fri, 10 Jan 2020 11:44:18 +0000 (+0100) Subject: update in ground_2, static_2, basic_2 X-Git-Tag: make_still_working~204 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=25c634037771dff0138e5e8e3d4378183ff49b86;p=helm.git update in ground_2, static_2, basic_2 + refactoring rt-transition counters (rtc) + bug fixed in the notation for lifts and drops --- diff --git a/helm/www/lambdadelta/Makefile b/helm/www/lambdadelta/Makefile index 98fb867c7..c58e3f597 100644 --- a/helm/www/lambdadelta/Makefile +++ b/helm/www/lambdadelta/Makefile @@ -115,7 +115,9 @@ up-home: $(HOMESTAMP) # GENERATE HTML LDDL ######################################################### -$(HTMLSTAMP): LDWS = `find $(LDDLDIR) -name *.ldw.xml` +ifeq ($(MAKECMDGOALS),html) + LDWS = $(shell find $(LDDLDIR) -name *.ldw.xml) +endif $(HTMLSTAMP): $(LDWSTAMP) $(SITEMAP) $(LDWEB:%=$(XSLTDIR)/%) $(H)for LDW in $(LDWS); do \ @@ -146,7 +148,9 @@ html-ix: $(HTMLIXSTAMP) # GENERATE HTML HOME ######################################################### -$(HOMESTAMP): LDWS = `find -L $(WEBDIRS) -name "*.ldw.xml"` +ifeq ($(MAKECMDGOALS),home) + LDWS = $(shell find -L $(WEBDIRS) -name *.ldw.xml) +endif $(HOMESTAMP): $(LDWS) $(TABLES) $(LDWEB:%=$(XSLTDIR)/%) $(H)for LDW in $(LDWS); do \ @@ -160,7 +164,7 @@ home: $(HOMESTAMP) # GENERATE XSL ############################################################### -$(TABLES) $(SITEMAP): TBLS = `find -L $(WEBDIRS) -name "*.tbl"` +TBLS = $(shell find -L $(WEBDIRS) -name *.tbl) $(TABLES) $(SITEMAP): $(TBLS) $(XHTBL) @echo " XHTBL $(XHTBLOPTS) *.tbl" @@ -259,3 +263,5 @@ up-download: # $(H)$(XSLT) --novalid $(XSLT_OUT) $(LDDLDIR)/$@.ldw.xml $(XSLT_XSL) $(XSLTDIR)/lddl.xsl $(XSLT_IN) $(XMLDIR)/$@.xml .PHONY: $(TAGS) + +.SUFFIXES: diff --git a/matita/matita/contribs/lambdadelta/apps_2/examples/ex_fpbg_refl.ma b/matita/matita/contribs/lambdadelta/apps_2/examples/ex_fpbg_refl.ma index 232f9e8a7..db674d19d 100644 --- a/matita/matita/contribs/lambdadelta/apps_2/examples/ex_fpbg_refl.ma +++ b/matita/matita/contribs/lambdadelta/apps_2/examples/ex_fpbg_refl.ma @@ -32,8 +32,8 @@ definition ApplOmega4 (s0) (s): term ≝ ⓐ⋆s.(ApplOmega1 s0 s). (* Basic properties *********************************************************) -lemma ApplDelta_lifts (f:rtmap) (s0) (s): - ⇧*[f] (ApplDelta s0 s) ≘ (ApplDelta s0 s). +lemma ApplDelta_lifts (f) (s0) (s): + ⇧*[f] (ApplDelta s0 s) ≘ (ApplDelta s0 s). /5 width=1 by lifts_sort, lifts_lref, lifts_bind, lifts_flat/ qed. lemma cpr_ApplOmega_12 (h) (G) (L) (s0) (s): ❪G,L❫ ⊢ ApplOmega1 s0 s ➡[h] ApplOmega2 s0 s. diff --git a/matita/matita/contribs/lambdadelta/apps_2/functional/mf_cpr.ma b/matita/matita/contribs/lambdadelta/apps_2/functional/mf_cpr.ma index fc472668b..46c1925c9 100644 --- a/matita/matita/contribs/lambdadelta/apps_2/functional/mf_cpr.ma +++ b/matita/matita/contribs/lambdadelta/apps_2/functional/mf_cpr.ma @@ -21,26 +21,26 @@ include "apps_2/functional/mf_exteq.ma". (* Properties with relocation ***********************************************) lemma mf_delta_drops (h) (G): ∀K,V1,V2. ❪G,K❫ ⊢ V1 ➡[h] V2 → - ∀T,L,l. ⇩*[l] L ≘ K.ⓓV1 → - ∀gv,lv. ❪G,L❫ ⊢ ●[gv,⇡[l←#l]lv]T ➡[h] ●[gv,⇡[l←↑[↑l]V2]lv]T. + ∀T,L,i. ⇩[i] L ≘ K.ⓓV1 → + ∀gv,lv. ❪G,L❫ ⊢ ●[gv,⇡[i←#i]lv]T ➡[h] ●[gv,⇡[i←↑[↑i]V2]lv]T. #h #G #K #V1 #V2 #HV #T elim T -T * // -[ #i #L #l #HKL #gv #lv +[ #i #L #j #HKL #gv #lv >mf_lref >mf_lref - elim (lt_or_eq_or_gt i l) #Hl destruct - [ >(mf_vpush_lt … Hl) >(mf_vpush_lt … Hl) // + elim (lt_or_eq_or_gt i j) #Hj destruct + [ >(mf_vpush_lt … Hj) >(mf_vpush_lt … Hj) // | >mf_vpush_eq >mf_vpush_eq /2 width=6 by cpm_delta_drops/ - | >(mf_vpush_gt … Hl) >(mf_vpush_gt … Hl) // + | >(mf_vpush_gt … Hj) >(mf_vpush_gt … Hj) // ] -| #p #I #V #T #IHV #IHT #L #l #HLK #gv #lv +| #p #I #V #T #IHV #IHT #L #j #HLK #gv #lv >mf_bind >mf_bind >(mf_comp … T) in ⊢ (?????%?); [2: @mf_vpush_swap // |4: @exteq_refl |3,5: skip ] >(mf_comp … T) in ⊢ (??????%); [2: @mf_vpush_swap // |4: @exteq_refl |3,5: skip ] - >(flifts_lref_uni 1 l) >(flifts_compose_uni 1 (↑l)) + >(flifts_lref_uni 1 j) >(flifts_compose_uni 1 (↑j)) /4 width=1 by cpm_bind, drops_drop/ -| #I #V #T #IHV #IHT #L #l #HLK #gv #lv +| #I #V #T #IHV #IHT #L #j #HLK #gv #lv >mf_flat >mf_flat /3 width=1 by cpr_flat/ ] qed. diff --git a/matita/matita/contribs/lambdadelta/apps_2/models/veq_lifts.ma b/matita/matita/contribs/lambdadelta/apps_2/models/veq_lifts.ma index 2c624e69f..e25f47051 100644 --- a/matita/matita/contribs/lambdadelta/apps_2/models/veq_lifts.ma +++ b/matita/matita/contribs/lambdadelta/apps_2/models/veq_lifts.ma @@ -66,6 +66,6 @@ fact lifts_fwd_vpush_aux (M): is_model M → is_extensional M → qed-. lemma lifts_SO_fwd_vpush (M) (gv): is_model M → is_extensional M → - ∀T1,T2. ⇧*[1] T1 ≘ T2 → + ∀T1,T2. ⇧[1] T1 ≘ T2 → ∀lv,d. ⟦T1⟧[gv,lv] ≗{M} ⟦T2⟧[gv,⫯[0←d]lv]. /2 width=3 by lifts_fwd_vpush_aux/ qed-. diff --git a/matita/matita/contribs/lambdadelta/basic_2/dynamic/cnv_cpm_conf.ma b/matita/matita/contribs/lambdadelta/basic_2/dynamic/cnv_cpm_conf.ma index ed24744da..8ac88c89b 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/dynamic/cnv_cpm_conf.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/dynamic/cnv_cpm_conf.ma @@ -34,9 +34,9 @@ fact cnv_cpm_conf_lpr_atom_ess_aux (h) (G) (L1) (L2) (s): fact cnv_cpm_conf_lpr_atom_delta_aux (h) (a) (G) (L) (i): (∀G0,L0,T0. ❪G,L,#i❫ >[h] ❪G0,L0,T0❫ → IH_cnv_cpms_conf_lpr h a G0 L0 T0) → ❪G,L❫⊢#i![h,a] → - ∀K,V. ⇩*[i]L ≘ K.ⓓV → + ∀K,V. ⇩[i]L ≘ K.ⓓV → ∀n,XV. ❪G,K❫ ⊢ V ➡[n,h] XV → - ∀X. ⇧*[↑i]XV ≘ X → + ∀X. ⇧[↑i]XV ≘ X → ∀L1. ❪G,L❫ ⊢ ➡[h] L1 → ∀L2. ❪G,L❫ ⊢ ➡[h] L2 → ∃∃T. ❪G,L1❫ ⊢ #i ➡*[n,h] T & ❪G,L2❫ ⊢ X ➡*[h] T. #h #a #G #L #i #IH #HT #K #V #HLK #n #XV #HVX #X #HXV #L1 #HL1 #L2 #HL2 @@ -56,9 +56,9 @@ qed-. fact cnv_cpm_conf_lpr_atom_ell_aux (h) (a) (G) (L) (i): (∀G0,L0,T0. ❪G,L,#i❫ >[h] ❪G0,L0,T0❫ → IH_cnv_cpms_conf_lpr h a G0 L0 T0) → ❪G,L❫⊢#i![h,a] → - ∀K,W. ⇩*[i]L ≘ K.ⓛW → + ∀K,W. ⇩[i]L ≘ K.ⓛW → ∀n,XW. ❪G,K❫ ⊢ W ➡[n,h] XW → - ∀X. ⇧*[↑i]XW ≘ X → + ∀X. ⇧[↑i]XW ≘ X → ∀L1. ❪G,L❫ ⊢ ➡[h] L1 → ∀L2. ❪G,L❫ ⊢ ➡[h] L2 → ∃∃T. ❪G,L1❫ ⊢ #i ➡*[↑n,h] T & ❪G,L2❫ ⊢ X ➡*[h] T. #h #a #G #L #i #IH #HT #K #W #HLK #n #XW #HWX #X #HXW #L1 #HL1 #L2 #HL2 @@ -78,9 +78,9 @@ qed-. fact cnv_cpm_conf_lpr_delta_delta_aux (h) (a) (I) (G) (L) (i): (∀G0,L0,T0. ❪G,L,#i❫ >[h] ❪G0,L0,T0❫ → IH_cnv_cpms_conf_lpr h a G0 L0 T0) → ❪G,L❫⊢#i![h,a] → - ∀K1,V1. ⇩*[i]L ≘ K1.ⓑ[I]V1 → ∀K2,V2. ⇩*[i]L ≘ K2.ⓑ[I]V2 → + ∀K1,V1. ⇩[i]L ≘ K1.ⓑ[I]V1 → ∀K2,V2. ⇩[i]L ≘ K2.ⓑ[I]V2 → ∀n1,XV1. ❪G,K1❫ ⊢ V1 ➡[n1,h] XV1 → ∀n2,XV2. ❪G,K2❫ ⊢ V2 ➡[n2,h] XV2 → - ∀X1. ⇧*[↑i]XV1 ≘ X1 → ∀X2. ⇧*[↑i]XV2 ≘ X2 → + ∀X1. ⇧[↑i]XV1 ≘ X1 → ∀X2. ⇧[↑i]XV2 ≘ X2 → ∀L1. ❪G,L❫ ⊢ ➡[h] L1 → ∀L2. ❪G,L❫ ⊢ ➡[h] L2 → ∃∃T. ❪G,L1❫ ⊢ X1 ➡*[n2-n1,h] T & ❪G,L2❫ ⊢ X2 ➡*[n1-n2,h] T. #h #a #I #G #L #i #IH #HT @@ -102,7 +102,7 @@ elim (cpms_lifts_sn … HVX1 … HLK1 … HXV1) -XV1 -HLK1 #W1 #HVW1 #HXW1 qed-. fact cnv_cpm_conf_lpr_delta_ell_aux (L) (K1) (K2) (V) (W) (i): - ⇩*[i]L ≘ K1.ⓓV → ⇩*[i]L ≘ K2.ⓛW → ⊥. + ⇩[i]L ≘ K1.ⓓV → ⇩[i]L ≘ K2.ⓛW → ⊥. #L #K1 #K2 #V #W #i #HLK1 #HLK2 lapply (drops_mono … HLK2 … HLK1) -L -i #H destruct qed-. @@ -128,7 +128,7 @@ fact cnv_cpm_conf_lpr_bind_zeta_aux (h) (a) (G) (L) (V) (T): (∀G0,L0,T0. ❪G,L,+ⓓV.T❫ >[h] ❪G0,L0,T0❫ → IH_cnv_cpms_conf_lpr h a G0 L0 T0) → ❪G,L❫ ⊢ +ⓓV.T ![h,a] → ∀V1. ❪G,L❫ ⊢V ➡[h] V1 → ∀n1,T1. ❪G,L.ⓓV❫ ⊢ T ➡[n1,h] T1 → - ∀T2. ⇧*[1]T2 ≘ T → ∀n2,XT2. ❪G,L❫ ⊢ T2 ➡[n2,h] XT2 → + ∀T2. ⇧[1]T2 ≘ T → ∀n2,XT2. ❪G,L❫ ⊢ T2 ➡[n2,h] XT2 → ∀L1. ❪G,L❫ ⊢ ➡[h] L1 → ∀L2. ❪G,L❫ ⊢ ➡[h] L2 → ∃∃T. ❪G,L1❫ ⊢ +ⓓV1.T1 ➡*[n2-n1,h] T & ❪G,L2❫ ⊢ XT2 ➡*[n1-n2,h] T. #h #a #G0 #L0 #V0 #T0 #IH #H0 @@ -147,7 +147,7 @@ qed-. fact cnv_cpm_conf_lpr_zeta_zeta_aux (h) (a) (G) (L) (V) (T): (∀G0,L0,T0. ❪G,L,+ⓓV.T❫ >[h] ❪G0,L0,T0❫ → IH_cnv_cpms_conf_lpr h a G0 L0 T0) → ❪G,L❫ ⊢ +ⓓV.T ![h,a] → - ∀T1. ⇧*[1]T1 ≘ T → ∀T2. ⇧*[1]T2 ≘ T → + ∀T1. ⇧[1]T1 ≘ T → ∀T2. ⇧[1]T2 ≘ T → ∀n1,XT1. ❪G,L❫ ⊢ T1 ➡[n1,h] XT1 → ∀n2,XT2. ❪G,L❫ ⊢ T2 ➡[n2,h] XT2 → ∀L1. ❪G,L❫ ⊢ ➡[h] L1 → ∀L2. ❪G,L❫ ⊢ ➡[h] L2 → ∃∃T. ❪G,L1❫ ⊢ XT1 ➡*[n2-n1,h] T & ❪G,L2❫ ⊢ XT2 ➡*[n1-n2,h] T. @@ -208,7 +208,7 @@ fact cnv_cpm_conf_lpr_appl_theta_aux (h) (a) (p) (G) (L) (V) (W) (T): ∀V1. ❪G,L❫ ⊢ V ➡[h] V1 → ∀V2. ❪G,L❫ ⊢ V ➡[h] V2 → ∀W2. ❪G,L❫ ⊢ W ➡[h] W2 → ∀n1,T1. ❪G,L❫ ⊢ ⓓ[p]W.T ➡[n1,h] T1 → ∀n2,T2. ❪G,L.ⓓW❫ ⊢ T ➡[n2,h] T2 → - ∀U2. ⇧*[1]V2 ≘ U2 → + ∀U2. ⇧[1]V2 ≘ U2 → ∀L1. ❪G,L❫ ⊢ ➡[h] L1 → ∀L2. ❪G,L❫ ⊢ ➡[h] L2 → ∃∃T. ❪G,L1❫ ⊢ ⓐV1.T1 ➡*[n2-n1,h] T & ❪G,L2❫ ⊢ ⓓ[p]W2.ⓐU2.T2 ➡*[n1-n2,h] T. #h #a #p #G0 #L0 #V0 #W0 #T0 #IH #H0 @@ -261,7 +261,7 @@ fact cnv_cpm_conf_lpr_theta_theta_aux (h) (a) (p) (G) (L) (V) (W) (T): ∀V1. ❪G,L❫ ⊢ V ➡[h] V1 → ∀V2. ❪G,L❫ ⊢ V ➡[h] V2 → ∀W1. ❪G,L❫ ⊢ W ➡[h] W1 → ∀W2. ❪G,L❫ ⊢ W ➡[h] W2 → ∀n1,T1. ❪G,L.ⓓW❫ ⊢ T ➡[n1,h] T1 → ∀n2,T2. ❪G,L.ⓓW❫ ⊢ T ➡[n2,h] T2 → - ∀U1. ⇧*[1]V1 ≘ U1 → ∀U2. ⇧*[1]V2 ≘ U2 → + ∀U1. ⇧[1]V1 ≘ U1 → ∀U2. ⇧[1]V2 ≘ U2 → ∀L1. ❪G,L❫ ⊢ ➡[h] L1 → ∀L2. ❪G,L❫ ⊢ ➡[h] L2 → ∃∃T. ❪G,L1❫ ⊢ ⓓ[p]W1.ⓐU1.T1 ➡*[n2-n1,h] T & ❪G,L2❫ ⊢ ⓓ[p]W2.ⓐU2.T2 ➡*[n1-n2,h] T. #h #a #p #G0 #L0 #V0 #W0 #T0 #IH #H0 diff --git a/matita/matita/contribs/lambdadelta/basic_2/dynamic/cnv_drops.ma b/matita/matita/contribs/lambdadelta/basic_2/dynamic/cnv_drops.ma index 1b8bf7714..654a694b2 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/dynamic/cnv_drops.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/dynamic/cnv_drops.ma @@ -22,7 +22,7 @@ include "basic_2/dynamic/cnv.ma". (* Basic_2A1: uses: snv_lref *) lemma cnv_lref_drops (h) (a) (G): ∀I,K,V,i,L. ❪G,K❫ ⊢ V ![h,a] → - ⇩*[i] L ≘ K.ⓑ[I]V → ❪G,L❫ ⊢ #i ![h,a]. + ⇩[i] L ≘ K.ⓑ[I]V → ❪G,L❫ ⊢ #i ![h,a]. #h #a #G #I #K #V #i elim i -i [ #L #HV #H lapply (drops_fwd_isid … H ?) -H // #H destruct @@ -38,7 +38,7 @@ qed. (* Basic_2A1: uses: snv_inv_lref *) lemma cnv_inv_lref_drops (h) (a) (G): ∀i,L. ❪G,L❫ ⊢ #i ![h,a] → - ∃∃I,K,V. ⇩*[i] L ≘ K.ⓑ[I]V & ❪G,K❫ ⊢ V ![h,a]. + ∃∃I,K,V. ⇩[i] L ≘ K.ⓑ[I]V & ❪G,K❫ ⊢ V ![h,a]. #h #a #G #i elim i -i [ #L #H elim (cnv_inv_zero … H) -H #I #K #V #HV #H destruct @@ -52,7 +52,7 @@ qed-. lemma cnv_inv_lref_pair (h) (a) (G): ∀i,L. ❪G,L❫ ⊢ #i ![h,a] → - ∀I,K,V. ⇩*[i] L ≘ K.ⓑ[I]V → ❪G,K❫ ⊢ V ![h,a]. + ∀I,K,V. ⇩[i] L ≘ K.ⓑ[I]V → ❪G,K❫ ⊢ V ![h,a]. #h #a #G #i #L #H #I #K #V #HLK elim (cnv_inv_lref_drops … H) -H #Z #Y #X #HLY #HX lapply (drops_mono … HLY … HLK) -L #H destruct // @@ -68,7 +68,7 @@ qed-. lemma cnv_inv_lref_unit (h) (a) (G): ∀i,L. ❪G,L❫ ⊢ #i ![h,a] → - ∀I,K. ⇩*[i] L ≘ K.ⓤ[I] → ⊥. + ∀I,K. ⇩[i] L ≘ K.ⓤ[I] → ⊥. #h #a #G #i #L #H #I #K #HLK elim (cnv_inv_lref_drops … H) -H #Z #Y #X #HLY #_ lapply (drops_mono … HLY … HLK) -L #H destruct diff --git a/matita/matita/contribs/lambdadelta/basic_2/dynamic/nta_aaa.ma b/matita/matita/contribs/lambdadelta/basic_2/dynamic/nta_aaa.ma index 485daf488..d2e11b9d3 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/dynamic/nta_aaa.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/dynamic/nta_aaa.ma @@ -43,7 +43,7 @@ qed-. (* Basic_1: uses: ty3_repellent *) theorem nta_abst_repellent (h) (a) (p) (G) (K): ∀W,T,U1. ❪G,K❫ ⊢ ⓛ[p]W.T :[h,a] U1 → - ∀U2. ❪G,K.ⓛW❫ ⊢ T :[h,a] U2 → ⇧*[1] U1 ≘ U2 → ⊥. + ∀U2. ❪G,K.ⓛW❫ ⊢ T :[h,a] U2 → ⇧[1] U1 ≘ U2 → ⊥. #h #a #p #G #K #W #T #U1 #H1 #U2 #H2 #HU12 elim (nta_fwd_aaa … H2) -H2 #A2 #H2T #H2U2 elim (nta_fwd_aaa … H1) -H1 #X1 #H1 #HU1 diff --git a/matita/matita/contribs/lambdadelta/basic_2/dynamic/nta_cpcs.ma b/matita/matita/contribs/lambdadelta/basic_2/dynamic/nta_cpcs.ma index 018ca9830..c032c5dd7 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/dynamic/nta_cpcs.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/dynamic/nta_cpcs.ma @@ -54,7 +54,7 @@ qed-. lemma nta_inv_ldec_sn_cnv (h) (a) (G) (K) (V): ∀X2. ❪G,K.ⓛV❫ ⊢ #0 :[h,a] X2 → - ∃∃U. ❪G,K❫ ⊢ V ![h,a] & ⇧*[1] V ≘ U & ❪G,K.ⓛV❫ ⊢ U ⬌*[h] X2 & ❪G,K.ⓛV❫ ⊢ X2 ![h,a]. + ∃∃U. ❪G,K❫ ⊢ V ![h,a] & ⇧[1] V ≘ U & ❪G,K.ⓛV❫ ⊢ U ⬌*[h] X2 & ❪G,K.ⓛV❫ ⊢ X2 ![h,a]. #h #a #G #Y #X #X2 #H elim (cnv_inv_cast … H) -H #X1 #HX2 #H1 #HX21 #H2 elim (cnv_inv_zero … H1) -H1 #Z #K #V #HV #H destruct diff --git a/matita/matita/contribs/lambdadelta/basic_2/dynamic/nta_drops.ma b/matita/matita/contribs/lambdadelta/basic_2/dynamic/nta_drops.ma index 5aea37112..600b6eea2 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/dynamic/nta_drops.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/dynamic/nta_drops.ma @@ -21,7 +21,7 @@ include "basic_2/dynamic/nta.ma". lemma nta_ldef (h) (a) (G) (K): ∀V,W. ❪G,K❫ ⊢ V :[h,a] W → - ∀U. ⇧*[1] W ≘ U → ❪G,K.ⓓV❫ ⊢ #0 :[h,a] U. + ∀U. ⇧[1] W ≘ U → ❪G,K.ⓓV❫ ⊢ #0 :[h,a] U. #h #a #G #K #V #W #H #U #HWU elim (cnv_inv_cast … H) -H #X #HW #HV #HWX #HVX lapply (cnv_lifts … HW (Ⓣ) … (K.ⓓV) … HWU) -HW @@ -33,7 +33,7 @@ qed. lemma nta_ldec_cnv (h) (a) (G) (K): ∀W. ❪G,K❫ ⊢ W ![h,a] → - ∀U. ⇧*[1] W ≘ U → ❪G,K.ⓛW❫ ⊢ #0 :[h,a] U. + ∀U. ⇧[1] W ≘ U → ❪G,K.ⓛW❫ ⊢ #0 :[h,a] U. #h #a #G #K #W #HW #U #HWU lapply (cnv_lifts … HW (Ⓣ) … (K.ⓛW) … HWU) /3 width=5 by cnv_zero, cnv_cast, cpms_ell, drops_refl, drops_drop/ @@ -41,7 +41,7 @@ qed. lemma nta_lref (h) (a) (I) (G) (K): ∀T,i. ❪G,K❫ ⊢ #i :[h,a] T → - ∀U. ⇧*[1] T ≘ U → ❪G,K.ⓘ[I]❫ ⊢ #(↑i) :[h,a] U. + ∀U. ⇧[1] T ≘ U → ❪G,K.ⓘ[I]❫ ⊢ #(↑i) :[h,a] U. #h #a #I #G #K #T #i #H #U #HTU elim (cnv_inv_cast … H) -H #X #HT #Hi #HTX #H2 lapply (cnv_lifts … HT (Ⓣ) … (K.ⓘ[I]) … HTU) -HT @@ -76,7 +76,7 @@ lemma nta_lifts_bi (h) (a) (G): d_liftable2_bi … lifts (nta a h G). (* Basic_2A1: was by definition: nta_ldef ntaa_ldef *) lemma nta_ldef_drops (h) (a) (G) (K) (L) (i): ∀V,W. ❪G,K❫ ⊢ V :[h,a] W → - ∀U. ⇧*[↑i] W ≘ U → ⇩*[i] L ≘ K.ⓓV → ❪G,L❫ ⊢ #i :[h,a] U. + ∀U. ⇧[↑i] W ≘ U → ⇩[i] L ≘ K.ⓓV → ❪G,L❫ ⊢ #i :[h,a] U. #h #a #G #K #L #i #V #W #HVW #U #HWU #HLK elim (lifts_split_trans … HWU (𝐔❨1❩) (𝐔❨i❩)) [| // ] #X #HWX #HXU /3 width=9 by nta_lifts_bi, nta_ldef/ @@ -84,7 +84,7 @@ qed. lemma nta_ldec_drops_cnv (h) (a) (G) (K) (L) (i): ∀W. ❪G,K❫ ⊢ W ![h,a] → - ∀U. ⇧*[↑i] W ≘ U → ⇩*[i] L ≘ K.ⓛW → ❪G,L❫ ⊢ #i :[h,a] U. + ∀U. ⇧[↑i] W ≘ U → ⇩[i] L ≘ K.ⓛW → ❪G,L❫ ⊢ #i :[h,a] U. #h #a #G #K #L #i #W #HW #U #HWU #HLK elim (lifts_split_trans … HWU (𝐔❨1❩) (𝐔❨i❩)) [| // ] #X #HWX #HXU /3 width=9 by nta_lifts_bi, nta_ldec_cnv/ diff --git a/matita/matita/contribs/lambdadelta/basic_2/dynamic/nta_ind.ma b/matita/matita/contribs/lambdadelta/basic_2/dynamic/nta_ind.ma index 74f376e7b..29d338f3f 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/dynamic/nta_ind.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/dynamic/nta_ind.ma @@ -24,12 +24,12 @@ include "basic_2/dynamic/nta_preserve.ma". lemma nta_ind_rest_cnv (h) (Q:relation4 …): (∀G,L,s. Q G L (⋆s) (⋆(⫯[h]s))) → (∀G,K,V,W,U. - ❪G,K❫ ⊢ V :[h,𝟐] W → ⇧*[1] W ≘ U → + ❪G,K❫ ⊢ V :[h,𝟐] W → ⇧[1] W ≘ U → Q G K V W → Q G (K.ⓓV) (#0) U ) → - (∀G,K,W,U. ❪G,K❫ ⊢ W ![h,𝟐] → ⇧*[1] W ≘ U → Q G (K.ⓛW) (#0) U) → + (∀G,K,W,U. ❪G,K❫ ⊢ W ![h,𝟐] → ⇧[1] W ≘ U → Q G (K.ⓛW) (#0) U) → (∀I,G,K,W,U,i. - ❪G,K❫ ⊢ #i :[h,𝟐] W → ⇧*[1] W ≘ U → + ❪G,K❫ ⊢ #i :[h,𝟐] W → ⇧[1] W ≘ U → Q G K (#i) W → Q G (K.ⓘ[I]) (#↑i) U ) → (∀p,I,G,K,V,T,U. @@ -81,12 +81,12 @@ qed-. lemma nta_ind_ext_cnv_mixed (h) (Q:relation4 …): (∀G,L,s. Q G L (⋆s) (⋆(⫯[h]s))) → (∀G,K,V,W,U. - ❪G,K❫ ⊢ V :[h,𝛚] W → ⇧*[1] W ≘ U → + ❪G,K❫ ⊢ V :[h,𝛚] W → ⇧[1] W ≘ U → Q G K V W → Q G (K.ⓓV) (#0) U ) → - (∀G,K,W,U. ❪G,K❫ ⊢ W ![h,𝛚] → ⇧*[1] W ≘ U → Q G (K.ⓛW) (#0) U) → + (∀G,K,W,U. ❪G,K❫ ⊢ W ![h,𝛚] → ⇧[1] W ≘ U → Q G (K.ⓛW) (#0) U) → (∀I,G,K,W,U,i. - ❪G,K❫ ⊢ #i :[h,𝛚] W → ⇧*[1] W ≘ U → + ❪G,K❫ ⊢ #i :[h,𝛚] W → ⇧[1] W ≘ U → Q G K (#i) W → Q G (K.ⓘ[I]) (#↑i) U ) → (∀p,I,G,K,V,T,U. @@ -146,12 +146,12 @@ qed-. lemma nta_ind_ext_cnv (h) (Q:relation4 …): (∀G,L,s. Q G L (⋆s) (⋆(⫯[h]s))) → (∀G,K,V,W,U. - ❪G,K❫ ⊢ V :[h,𝛚] W → ⇧*[1] W ≘ U → + ❪G,K❫ ⊢ V :[h,𝛚] W → ⇧[1] W ≘ U → Q G K V W → Q G (K.ⓓV) (#0) U ) → - (∀G,K,W,U. ❪G,K❫ ⊢ W ![h,𝛚] → ⇧*[1] W ≘ U → Q G (K.ⓛW) (#0) U) → + (∀G,K,W,U. ❪G,K❫ ⊢ W ![h,𝛚] → ⇧[1] W ≘ U → Q G (K.ⓛW) (#0) U) → (∀I,G,K,W,U,i. - ❪G,K❫ ⊢ #i :[h,𝛚] W → ⇧*[1] W ≘ U → + ❪G,K❫ ⊢ #i :[h,𝛚] W → ⇧[1] W ≘ U → Q G K (#i) W → Q G (K.ⓘ[I]) (#↑i) U ) → (∀p,I,G,K,V,T,U. diff --git a/matita/matita/contribs/lambdadelta/basic_2/dynamic/nta_preserve.ma b/matita/matita/contribs/lambdadelta/basic_2/dynamic/nta_preserve.ma index eb8d953a2..3a61f5dda 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/dynamic/nta_preserve.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/dynamic/nta_preserve.ma @@ -101,7 +101,7 @@ qed-. lemma nta_inv_ldef_sn (h) (a) (G) (K) (V): ∀X2. ❪G,K.ⓓV❫ ⊢ #0 :[h,a] X2 → - ∃∃W,U. ❪G,K❫ ⊢ V :[h,a] W & ⇧*[1] W ≘ U & ❪G,K.ⓓV❫ ⊢ U ⬌*[h] X2 & ❪G,K.ⓓV❫ ⊢ X2 ![h,a]. + ∃∃W,U. ❪G,K❫ ⊢ V :[h,a] W & ⇧[1] W ≘ U & ❪G,K.ⓓV❫ ⊢ U ⬌*[h] X2 & ❪G,K.ⓓV❫ ⊢ X2 ![h,a]. #h #a #G #Y #X #X2 #H elim (cnv_inv_cast … H) -H #X1 #HX2 #H1 #HX21 #H2 elim (cnv_inv_zero … H1) -H1 #Z #K #V #HV #H destruct @@ -114,7 +114,7 @@ qed-. lemma nta_inv_lref_sn (h) (a) (G) (L): ∀X2,i. ❪G,L❫ ⊢ #↑i :[h,a] X2 → - ∃∃I,K,T2,U2. ❪G,K❫ ⊢ #i :[h,a] T2 & ⇧*[1] T2 ≘ U2 & ❪G,K.ⓘ[I]❫ ⊢ U2 ⬌*[h] X2 & ❪G,K.ⓘ[I]❫ ⊢ X2 ![h,a] & L = K.ⓘ[I]. + ∃∃I,K,T2,U2. ❪G,K❫ ⊢ #i :[h,a] T2 & ⇧[1] T2 ≘ U2 & ❪G,K.ⓘ[I]❫ ⊢ U2 ⬌*[h] X2 & ❪G,K.ⓘ[I]❫ ⊢ X2 ![h,a] & L = K.ⓘ[I]. #h #a #G #L #X2 #i #H elim (cnv_inv_cast … H) -H #X1 #HX2 #H1 #HX21 #H2 elim (cnv_inv_lref … H1) -H1 #I #K #Hi #H destruct @@ -127,8 +127,8 @@ qed-. lemma nta_inv_lref_sn_drops_cnv (h) (a) (G) (L): ∀X2,i. ❪G,L❫ ⊢ #i :[h,a] X2 → - ∨∨ ∃∃K,V,W,U. ⇩*[i] L ≘ K.ⓓV & ❪G,K❫ ⊢ V :[h,a] W & ⇧*[↑i] W ≘ U & ❪G,L❫ ⊢ U ⬌*[h] X2 & ❪G,L❫ ⊢ X2 ![h,a] - | ∃∃K,W,U. ⇩*[i] L ≘ K. ⓛW & ❪G,K❫ ⊢ W ![h,a] & ⇧*[↑i] W ≘ U & ❪G,L❫ ⊢ U ⬌*[h] X2 & ❪G,L❫ ⊢ X2 ![h,a]. + ∨∨ ∃∃K,V,W,U. ⇩[i] L ≘ K.ⓓV & ❪G,K❫ ⊢ V :[h,a] W & ⇧[↑i] W ≘ U & ❪G,L❫ ⊢ U ⬌*[h] X2 & ❪G,L❫ ⊢ X2 ![h,a] + | ∃∃K,W,U. ⇩[i] L ≘ K. ⓛW & ❪G,K❫ ⊢ W ![h,a] & ⇧[↑i] W ≘ U & ❪G,L❫ ⊢ U ⬌*[h] X2 & ❪G,L❫ ⊢ X2 ![h,a]. #h #a #G #L #X2 #i #H elim (cnv_inv_cast … H) -H #X1 #HX2 #H1 #HX21 #H2 elim (cnv_inv_lref_drops … H1) -H1 #I #K #V #HLK #HV diff --git a/matita/matita/contribs/lambdadelta/basic_2/i_dynamic/ntas_nta_ind.ma b/matita/matita/contribs/lambdadelta/basic_2/i_dynamic/ntas_nta_ind.ma index a012d50ad..e2b47bd5f 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/i_dynamic/ntas_nta_ind.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/i_dynamic/ntas_nta_ind.ma @@ -48,12 +48,12 @@ qed-. lemma nta_ind_cnv (h) (a) (Q:relation4 …): (∀G,L,s. Q G L (⋆s) (⋆(⫯[h]s))) → (∀G,K,V,W,U. - ❪G,K❫ ⊢ V :[h,a] W → ⇧*[1] W ≘ U → + ❪G,K❫ ⊢ V :[h,a] W → ⇧[1] W ≘ U → Q G K V W → Q G (K.ⓓV) (#0) U ) → - (∀G,K,W,U. ❪G,K❫ ⊢ W ![h,a] → ⇧*[1] W ≘ U → Q G (K.ⓛW) (#0) U) → + (∀G,K,W,U. ❪G,K❫ ⊢ W ![h,a] → ⇧[1] W ≘ U → Q G (K.ⓛW) (#0) U) → (∀I,G,K,W,U,i. - ❪G,K❫ ⊢ #i :[h,a] W → ⇧*[1] W ≘ U → + ❪G,K❫ ⊢ #i :[h,a] W → ⇧[1] W ≘ U → Q G K (#i) W → Q G (K.ⓘ[I]) (#↑i) U ) → (∀p,I,G,K,V,T,U. diff --git a/matita/matita/contribs/lambdadelta/basic_2/rt_computation/cnuw_drops.ma b/matita/matita/contribs/lambdadelta/basic_2/rt_computation/cnuw_drops.ma index 478ef3de0..083737e6f 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/rt_computation/cnuw_drops.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/rt_computation/cnuw_drops.ma @@ -57,7 +57,7 @@ lapply (drops_mono … Hi … HLK) -L #H destruct qed. lemma cnuw_unit_drops (h) (I) (G) (L): - ∀K,i. ⇩*[i] L ≘ K.ⓤ[I] → ❪G,L❫ ⊢ ➡𝐍𝐖*[h] #i. + ∀K,i. ⇩[i] L ≘ K.ⓤ[I] → ❪G,L❫ ⊢ ➡𝐍𝐖*[h] #i. #h #I #G #L #K #i #HLK #n #X #H elim (cpms_inv_lref1_drops … H) -H * [ // || #m ] #Y #V1 #V2 #HLY lapply (drops_mono … HLK … HLY) -L #H destruct diff --git a/matita/matita/contribs/lambdadelta/basic_2/rt_computation/cpms.ma b/matita/matita/contribs/lambdadelta/basic_2/rt_computation/cpms.ma index 642158751..c5f0126aa 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/rt_computation/cpms.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/rt_computation/cpms.ma @@ -80,7 +80,7 @@ lemma cpms_appl_dx (n) (h) (G) (L): qed. lemma cpms_zeta (n) (h) (G) (L): - ∀T1,T. ⇧*[1] T ≘ T1 → + ∀T1,T. ⇧[1] T ≘ T1 → ∀V,T2. ❪G,L❫ ⊢ T ➡*[n,h] T2 → ❪G,L❫ ⊢ +ⓓV.T1 ➡*[n,h] T2. #n #h #G #L #T1 #T #HT1 #V #T2 #H @(cpms_ind_dx … H) -T2 /3 width=3 by cpms_step_dx, cpm_cpms, cpm_zeta/ @@ -88,7 +88,7 @@ qed. (* Basic_2A1: uses: cprs_zeta *) lemma cpms_zeta_dx (n) (h) (G) (L): - ∀T2,T. ⇧*[1] T2 ≘ T → + ∀T2,T. ⇧[1] T2 ≘ T → ∀V,T1. ❪G,L.ⓓV❫ ⊢ T1 ➡*[n,h] T → ❪G,L❫ ⊢ +ⓓV.T1 ➡*[n,h] T2. #n #h #G #L #T2 #T #HT2 #V #T1 #H @(cpms_ind_sn … H) -T1 /3 width=3 by cpms_step_sn, cpm_cpms, cpm_bind, cpm_zeta/ @@ -125,7 +125,7 @@ qed. (* Basic_2A1: uses: cprs_theta_dx *) lemma cpms_theta_dx (n) (h) (G) (L): ∀V1,V. ❪G,L❫ ⊢ V1 ➡[h] V → - ∀V2. ⇧*[1] V ≘ V2 → + ∀V2. ⇧[1] V ≘ V2 → ∀W1,W2. ❪G,L❫ ⊢ W1 ➡[h] W2 → ∀T1,T2. ❪G,L.ⓓW1❫ ⊢ T1 ➡*[n,h] T2 → ∀p. ❪G,L❫ ⊢ ⓐV1.ⓓ[p]W1.T1 ➡*[n,h] ⓓ[p]W2.ⓐV2.T2. diff --git a/matita/matita/contribs/lambdadelta/basic_2/rt_computation/cpms_cpms.ma b/matita/matita/contribs/lambdadelta/basic_2/rt_computation/cpms_cpms.ma index b87500bd7..e9c66826f 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/rt_computation/cpms_cpms.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/rt_computation/cpms_cpms.ma @@ -73,7 +73,7 @@ qed. (* Basic_2A1: includes: cprs_theta_rc *) theorem cpms_theta_rc (n) (h) (G) (L): - ∀V1,V. ❪G,L❫ ⊢ V1 ➡[h] V → ∀V2. ⇧*[1] V ≘ V2 → + ∀V1,V. ❪G,L❫ ⊢ V1 ➡[h] V → ∀V2. ⇧[1] V ≘ V2 → ∀W1,T1,T2. ❪G,L.ⓓW1❫ ⊢ T1 ➡*[n,h] T2 → ∀W2. ❪G,L❫ ⊢ W1 ➡*[h] W2 → ∀p. ❪G,L❫ ⊢ ⓐV1.ⓓ[p]W1.T1 ➡*[n,h] ⓓ[p]W2.ⓐV2.T2. @@ -86,7 +86,7 @@ qed. (* Basic_2A1: includes: cprs_theta *) theorem cpms_theta (n) (h) (G) (L): - ∀V,V2. ⇧*[1] V ≘ V2 → ∀W1,W2. ❪G,L❫ ⊢ W1 ➡*[h] W2 → + ∀V,V2. ⇧[1] V ≘ V2 → ∀W1,W2. ❪G,L❫ ⊢ W1 ➡*[h] W2 → ∀T1,T2. ❪G,L.ⓓW1❫ ⊢ T1 ➡*[n,h] T2 → ∀V1. ❪G,L❫ ⊢ V1 ➡*[h] V → ∀p. ❪G,L❫ ⊢ ⓐV1.ⓓ[p]W1.T1 ➡*[n,h] ⓓ[p]W2.ⓐV2.T2. @@ -121,7 +121,7 @@ lemma cpms_inv_appl_sn (n) (h) (G) (L): ❪G,L❫ ⊢ T1 ➡*[n1,h] ⓛ[p]W.T & ❪G,L❫ ⊢ ⓓ[p]ⓝW.V1.T ➡*[n2,h] X2 & n1 + n2 = n | ∃∃n1,n2,p,V0,V2,V,T. - ❪G,L❫ ⊢ V1 ➡*[h] V0 & ⇧*[1] V0 ≘ V2 & + ❪G,L❫ ⊢ V1 ➡*[h] V0 & ⇧[1] V0 ≘ V2 & ❪G,L❫ ⊢ T1 ➡*[n1,h] ⓓ[p]V.T & ❪G,L❫ ⊢ ⓓ[p]V.ⓐV2.T ➡*[n2,h] X2 & n1 + n2 = n. #n #h #G #L #V1 #T1 #U2 #H diff --git a/matita/matita/contribs/lambdadelta/basic_2/rt_computation/cpms_drops.ma b/matita/matita/contribs/lambdadelta/basic_2/rt_computation/cpms_drops.ma index 894ece04c..b8917b38c 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/rt_computation/cpms_drops.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/rt_computation/cpms_drops.ma @@ -47,7 +47,7 @@ qed-. (* Advanced properties ******************************************************) lemma cpms_delta (n) (h) (G): ∀K,V1,V2. ❪G,K❫ ⊢ V1 ➡*[n,h] V2 → - ∀W2. ⇧*[1] V2 ≘ W2 → ❪G,K.ⓓV1❫ ⊢ #0 ➡*[n,h] W2. + ∀W2. ⇧[1] V2 ≘ W2 → ❪G,K.ⓓV1❫ ⊢ #0 ➡*[n,h] W2. #n #h #G #K #V1 #V2 #H @(cpms_ind_dx … H) -V2 [ /3 width=3 by cpm_cpms, cpm_delta/ | #n1 #n2 #V #V2 #_ #IH #HV2 #W2 #HVW2 @@ -57,7 +57,7 @@ lemma cpms_delta (n) (h) (G): ∀K,V1,V2. ❪G,K❫ ⊢ V1 ➡*[n,h] V2 → qed. lemma cpms_ell (n) (h) (G): ∀K,V1,V2. ❪G,K❫ ⊢ V1 ➡*[n,h] V2 → - ∀W2. ⇧*[1] V2 ≘ W2 → ❪G,K.ⓛV1❫ ⊢ #0 ➡*[↑n,h] W2. + ∀W2. ⇧[1] V2 ≘ W2 → ❪G,K.ⓛV1❫ ⊢ #0 ➡*[↑n,h] W2. #n #h #G #K #V1 #V2 #H @(cpms_ind_dx … H) -V2 [ /3 width=3 by cpm_cpms, cpm_ell/ | #n1 #n2 #V #V2 #_ #IH #HV2 #W2 #HVW2 @@ -67,7 +67,7 @@ lemma cpms_ell (n) (h) (G): ∀K,V1,V2. ❪G,K❫ ⊢ V1 ➡*[n,h] V2 → qed. lemma cpms_lref (n) (h) (I) (G): ∀K,T,i. ❪G,K❫ ⊢ #i ➡*[n,h] T → - ∀U. ⇧*[1] T ≘ U → ❪G,K.ⓘ[I]❫ ⊢ #↑i ➡*[n,h] U. + ∀U. ⇧[1] T ≘ U → ❪G,K.ⓘ[I]❫ ⊢ #↑i ➡*[n,h] U. #n #h #I #G #K #T #i #H @(cpms_ind_dx … H) -T [ /3 width=3 by cpm_cpms, cpm_lref/ | #n1 #n2 #T #T2 #_ #IH #HT2 #U2 #HTU2 @@ -91,9 +91,9 @@ qed. (* Note: apparently this was missing in basic_1 *) (* Basic_2A1: uses: cprs_delta *) lemma cpms_delta_drops (n) (h) (G): - ∀L,K,V,i. ⇩*[i] L ≘ K.ⓓV → + ∀L,K,V,i. ⇩[i] L ≘ K.ⓓV → ∀V2. ❪G,K❫ ⊢ V ➡*[n,h] V2 → - ∀W2. ⇧*[↑i] V2 ≘ W2 → ❪G,L❫ ⊢ #i ➡*[n,h] W2. + ∀W2. ⇧[↑i] V2 ≘ W2 → ❪G,L❫ ⊢ #i ➡*[n,h] W2. #n #h #G #L #K #V #i #HLK #V2 #H @(cpms_ind_dx … H) -V2 [ /3 width=6 by cpm_cpms, cpm_delta_drops/ | #n1 #n2 #V1 #V2 #_ #IH #HV12 #W2 #HVW2 @@ -104,9 +104,9 @@ lemma cpms_delta_drops (n) (h) (G): qed. lemma cpms_ell_drops (n) (h) (G): - ∀L,K,W,i. ⇩*[i] L ≘ K.ⓛW → + ∀L,K,W,i. ⇩[i] L ≘ K.ⓛW → ∀W2. ❪G,K❫ ⊢ W ➡*[n,h] W2 → - ∀V2. ⇧*[↑i] W2 ≘ V2 → ❪G,L❫ ⊢ #i ➡*[↑n,h] V2. + ∀V2. ⇧[↑i] W2 ≘ V2 → ❪G,L❫ ⊢ #i ➡*[↑n,h] V2. #n #h #G #L #K #W #i #HLK #W2 #H @(cpms_ind_dx … H) -W2 [ /3 width=6 by cpm_cpms, cpm_ell_drops/ | #n1 #n2 #W1 #W2 #_ #IH #HW12 #V2 #HWV2 @@ -121,10 +121,10 @@ qed. lemma cpms_inv_lref1_drops (n) (h) (G): ∀L,T2,i. ❪G,L❫ ⊢ #i ➡*[n,h] T2 → ∨∨ ∧∧ T2 = #i & n = 0 - | ∃∃K,V,V2. ⇩*[i] L ≘ K.ⓓV & ❪G,K❫ ⊢ V ➡*[n,h] V2 & - ⇧*[↑i] V2 ≘ T2 - | ∃∃m,K,V,V2. ⇩*[i] L ≘ K.ⓛV & ❪G,K❫ ⊢ V ➡*[m,h] V2 & - ⇧*[↑i] V2 ≘ T2 & n = ↑m. + | ∃∃K,V,V2. ⇩[i] L ≘ K.ⓓV & ❪G,K❫ ⊢ V ➡*[n,h] V2 & + ⇧[↑i] V2 ≘ T2 + | ∃∃m,K,V,V2. ⇩[i] L ≘ K.ⓛV & ❪G,K❫ ⊢ V ➡*[m,h] V2 & + ⇧[↑i] V2 ≘ T2 & n = ↑m. #n #h #G #L #T2 #i #H @(cpms_ind_dx … H) -T2 [ /3 width=1 by or3_intro0, conj/ | #n1 #n2 #T #T2 #_ #IH #HT2 cases IH -IH * @@ -149,7 +149,7 @@ qed-. lemma cpms_inv_delta_sn (n) (h) (G) (K) (V): ∀T2. ❪G,K.ⓓV❫ ⊢ #0 ➡*[n,h] T2 → ∨∨ ∧∧ T2 = #0 & n = 0 - | ∃∃V2. ❪G,K❫ ⊢ V ➡*[n,h] V2 & ⇧*[1] V2 ≘ T2. + | ∃∃V2. ❪G,K❫ ⊢ V ➡*[n,h] V2 & ⇧[1] V2 ≘ T2. #n #h #G #K #V #T2 #H elim (cpms_inv_lref1_drops … H) -H * [ /3 width=1 by or_introl, conj/ @@ -164,7 +164,7 @@ qed-. lemma cpms_inv_ell_sn (n) (h) (G) (K) (V): ∀T2. ❪G,K.ⓛV❫ ⊢ #0 ➡*[n,h] T2 → ∨∨ ∧∧ T2 = #0 & n = 0 - | ∃∃m,V2. ❪G,K❫ ⊢ V ➡*[m,h] V2 & ⇧*[1] V2 ≘ T2 & n = ↑m. + | ∃∃m,V2. ❪G,K❫ ⊢ V ➡*[m,h] V2 & ⇧[1] V2 ≘ T2 & n = ↑m. #n #h #G #K #V #T2 #H elim (cpms_inv_lref1_drops … H) -H * [ /3 width=1 by or_introl, conj/ @@ -179,7 +179,7 @@ qed-. lemma cpms_inv_lref_sn (n) (h) (G) (I) (K): ∀U2,i. ❪G,K.ⓘ[I]❫ ⊢ #↑i ➡*[n,h] U2 → ∨∨ ∧∧ U2 = #↑i & n = 0 - | ∃∃T2. ❪G,K❫ ⊢ #i ➡*[n,h] T2 & ⇧*[1] T2 ≘ U2. + | ∃∃T2. ❪G,K❫ ⊢ #i ➡*[n,h] T2 & ⇧[1] T2 ≘ U2. #n #h #G #I #K #U2 #i #H elim (cpms_inv_lref1_drops … H) -H * [ /3 width=1 by or_introl, conj/ diff --git a/matita/matita/contribs/lambdadelta/basic_2/rt_computation/cprs_cprs.ma b/matita/matita/contribs/lambdadelta/basic_2/rt_computation/cprs_cprs.ma index 562b4e171..abd60ec8d 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/rt_computation/cprs_cprs.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/rt_computation/cprs_cprs.ma @@ -59,7 +59,7 @@ lemma cprs_inv_appl_sn (h) (G) (L): X2 = ⓐV2. T2 | ∃∃p,W,T. ❪G,L❫ ⊢ T1 ➡*[h] ⓛ[p]W.T & ❪G,L❫ ⊢ ⓓ[p]ⓝW.V1.T ➡*[h] X2 - | ∃∃p,V0,V2,V,T. ❪G,L❫ ⊢ V1 ➡*[h] V0 & ⇧*[1] V0 ≘ V2 & + | ∃∃p,V0,V2,V,T. ❪G,L❫ ⊢ V1 ➡*[h] V0 & ⇧[1] V0 ≘ V2 & ❪G,L❫ ⊢ T1 ➡*[h] ⓓ[p]V.T & ❪G,L❫ ⊢ ⓓ[p]V.ⓐV2.T ➡*[h] X2. #h #G #L #V1 #T1 #X2 #H elim (cpms_inv_appl_sn … H) -H * diff --git a/matita/matita/contribs/lambdadelta/basic_2/rt_computation/cprs_drops.ma b/matita/matita/contribs/lambdadelta/basic_2/rt_computation/cprs_drops.ma index 9d083bf26..8446ee1f2 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/rt_computation/cprs_drops.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/rt_computation/cprs_drops.ma @@ -22,8 +22,8 @@ include "basic_2/rt_computation/cpms_drops.ma". (* Basic_2A1: was: cprs_inv_lref1 *) lemma cprs_inv_lref1_drops (h) (G): ∀L,T2,i. ❪G,L❫ ⊢ #i ➡*[h] T2 → ∨∨ T2 = #i - | ∃∃K,V1,T1. ⇩*[i] L ≘ K.ⓓV1 & ❪G,K❫ ⊢ V1 ➡*[h] T1 & - ⇧*[↑i] T1 ≘ T2. + | ∃∃K,V1,T1. ⇩[i] L ≘ K.ⓓV1 & ❪G,K❫ ⊢ V1 ➡*[h] T1 & + ⇧[↑i] T1 ≘ T2. #h #G #L #T2 #i #H elim (cpms_inv_lref1_drops … H) -H * [ /2 width=1 by or_introl/ | /3 width=6 by ex3_3_intro, or_intror/ diff --git a/matita/matita/contribs/lambdadelta/basic_2/rt_computation/cpts_drops.ma b/matita/matita/contribs/lambdadelta/basic_2/rt_computation/cpts_drops.ma index a240f4a0e..0754a138f 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/rt_computation/cpts_drops.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/rt_computation/cpts_drops.ma @@ -46,7 +46,7 @@ qed-. lemma cpts_delta (h) (n) (G): ∀K,V1,V2. ❪G,K❫ ⊢ V1 ⬆*[h,n] V2 → - ∀W2. ⇧*[1] V2 ≘ W2 → ❪G,K.ⓓV1❫ ⊢ #0 ⬆*[h,n] W2. + ∀W2. ⇧[1] V2 ≘ W2 → ❪G,K.ⓓV1❫ ⊢ #0 ⬆*[h,n] W2. #h #n #G #K #V1 #V2 #H @(cpts_ind_dx … H) -V2 [ /3 width=3 by cpt_cpts, cpt_delta/ | #n1 #n2 #V #V2 #_ #IH #HV2 #W2 #HVW2 @@ -57,7 +57,7 @@ qed. lemma cpts_ell (h) (n) (G): ∀K,V1,V2. ❪G,K❫ ⊢ V1 ⬆*[h,n] V2 → - ∀W2. ⇧*[1] V2 ≘ W2 → ❪G,K.ⓛV1❫ ⊢ #0 ⬆*[h,↑n] W2. + ∀W2. ⇧[1] V2 ≘ W2 → ❪G,K.ⓛV1❫ ⊢ #0 ⬆*[h,↑n] W2. #h #n #G #K #V1 #V2 #H @(cpts_ind_dx … H) -V2 [ /3 width=3 by cpt_cpts, cpt_ell/ | #n1 #n2 #V #V2 #_ #IH #HV2 #W2 #HVW2 @@ -68,7 +68,7 @@ qed. lemma cpts_lref (h) (n) (I) (G): ∀K,T,i. ❪G,K❫ ⊢ #i ⬆*[h,n] T → - ∀U. ⇧*[1] T ≘ U → ❪G,K.ⓘ[I]❫ ⊢ #↑i ⬆*[h,n] U. + ∀U. ⇧[1] T ≘ U → ❪G,K.ⓘ[I]❫ ⊢ #↑i ⬆*[h,n] U. #h #n #I #G #K #T #i #H @(cpts_ind_dx … H) -T [ /3 width=3 by cpt_cpts, cpt_lref/ | #n1 #n2 #T #T2 #_ #IH #HT2 #U2 #HTU2 @@ -89,9 +89,9 @@ lemma cpts_cast_sn (h) (n) (G) (L): qed. lemma cpts_delta_drops (h) (n) (G): - ∀L,K,V,i. ⇩*[i] L ≘ K.ⓓV → + ∀L,K,V,i. ⇩[i] L ≘ K.ⓓV → ∀V2. ❪G,K❫ ⊢ V ⬆*[h,n] V2 → - ∀W2. ⇧*[↑i] V2 ≘ W2 → ❪G,L❫ ⊢ #i ⬆*[h,n] W2. + ∀W2. ⇧[↑i] V2 ≘ W2 → ❪G,L❫ ⊢ #i ⬆*[h,n] W2. #h #n #G #L #K #V #i #HLK #V2 #H @(cpts_ind_dx … H) -V2 [ /3 width=6 by cpt_cpts, cpt_delta_drops/ | #n1 #n2 #V1 #V2 #_ #IH #HV12 #W2 #HVW2 @@ -102,9 +102,9 @@ lemma cpts_delta_drops (h) (n) (G): qed. lemma cpts_ell_drops (h) (n) (G): - ∀L,K,W,i. ⇩*[i] L ≘ K.ⓛW → + ∀L,K,W,i. ⇩[i] L ≘ K.ⓛW → ∀W2. ❪G,K❫ ⊢ W ⬆*[h,n] W2 → - ∀V2. ⇧*[↑i] W2 ≘ V2 → ❪G,L❫ ⊢ #i ⬆*[h,↑n] V2. + ∀V2. ⇧[↑i] W2 ≘ V2 → ❪G,L❫ ⊢ #i ⬆*[h,↑n] V2. #h #n #G #L #K #W #i #HLK #W2 #H @(cpts_ind_dx … H) -W2 [ /3 width=6 by cpt_cpts, cpt_ell_drops/ | #n1 #n2 #W1 #W2 #_ #IH #HW12 #V2 #HWV2 @@ -119,8 +119,8 @@ qed. lemma cpts_inv_lref_sn_drops (h) (n) (G) (L) (i): ∀X2. ❪G,L❫ ⊢ #i ⬆*[h,n] X2 → ∨∨ ∧∧ X2 = #i & n = 0 - | ∃∃K,V,V2. ⇩*[i] L ≘ K.ⓓV & ❪G,K❫ ⊢ V ⬆*[h,n] V2 & ⇧*[↑i] V2 ≘ X2 - | ∃∃m,K,V,V2. ⇩*[i] L ≘ K.ⓛV & ❪G,K❫ ⊢ V ⬆*[h,m] V2 & ⇧*[↑i] V2 ≘ X2 & n = ↑m. + | ∃∃K,V,V2. ⇩[i] L ≘ K.ⓓV & ❪G,K❫ ⊢ V ⬆*[h,n] V2 & ⇧[↑i] V2 ≘ X2 + | ∃∃m,K,V,V2. ⇩[i] L ≘ K.ⓛV & ❪G,K❫ ⊢ V ⬆*[h,m] V2 & ⇧[↑i] V2 ≘ X2 & n = ↑m. #h #n #G #L #i #X2 #H @(cpts_ind_dx … H) -X2 [ /3 width=1 by or3_intro0, conj/ | #n1 #n2 #T #T2 #_ #IH #HT2 cases IH -IH * @@ -145,7 +145,7 @@ qed-. lemma cpts_inv_delta_sn (h) (n) (G) (K) (V): ∀X2. ❪G,K.ⓓV❫ ⊢ #0 ⬆*[h,n] X2 → ∨∨ ∧∧ X2 = #0 & n = 0 - | ∃∃V2. ❪G,K❫ ⊢ V ⬆*[h,n] V2 & ⇧*[1] V2 ≘ X2. + | ∃∃V2. ❪G,K❫ ⊢ V ⬆*[h,n] V2 & ⇧[1] V2 ≘ X2. #h #n #G #K #V #X2 #H elim (cpts_inv_lref_sn_drops … H) -H * [ /3 width=1 by or_introl, conj/ @@ -160,7 +160,7 @@ qed-. lemma cpts_inv_ell_sn (h) (n) (G) (K) (V): ∀X2. ❪G,K.ⓛV❫ ⊢ #0 ⬆*[h,n] X2 → ∨∨ ∧∧ X2 = #0 & n = 0 - | ∃∃m,V2. ❪G,K❫ ⊢ V ⬆*[h,m] V2 & ⇧*[1] V2 ≘ X2 & n = ↑m. + | ∃∃m,V2. ❪G,K❫ ⊢ V ⬆*[h,m] V2 & ⇧[1] V2 ≘ X2 & n = ↑m. #h #n #G #K #V #X2 #H elim (cpts_inv_lref_sn_drops … H) -H * [ /3 width=1 by or_introl, conj/ @@ -175,7 +175,7 @@ qed-. lemma cpts_inv_lref_sn (h) (n) (I) (G) (K) (i): ∀X2. ❪G,K.ⓘ[I]❫ ⊢ #↑i ⬆*[h,n] X2 → ∨∨ ∧∧ X2 = #↑i & n = 0 - | ∃∃T2. ❪G,K❫ ⊢ #i ⬆*[h,n] T2 & ⇧*[1] T2 ≘ X2. + | ∃∃T2. ❪G,K❫ ⊢ #i ⬆*[h,n] T2 & ⇧[1] T2 ≘ X2. #h #n #I #G #K #i #X2 #H elim (cpts_inv_lref_sn_drops … H) -H * [ /3 width=1 by or_introl, conj/ diff --git a/matita/matita/contribs/lambdadelta/basic_2/rt_computation/cpxs.ma b/matita/matita/contribs/lambdadelta/basic_2/rt_computation/cpxs.ma index bbf9483b2..e872f21c7 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/rt_computation/cpxs.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/rt_computation/cpxs.ma @@ -90,7 +90,7 @@ lemma cpxs_pair_sn: ∀h,I,G,L,V1,V2. ❪G,L❫ ⊢ V1 ⬈*[h] V2 → qed. lemma cpxs_zeta (h) (G) (L) (V): - ∀T1,T. ⇧*[1] T ≘ T1 → + ∀T1,T. ⇧[1] T ≘ T1 → ∀T2. ❪G,L❫ ⊢ T ⬈*[h] T2 → ❪G,L❫ ⊢ +ⓓV.T1 ⬈*[h] T2. #h #G #L #V #T1 #T #HT1 #T2 #H @(cpxs_ind … H) -T2 /3 width=3 by cpxs_strap1, cpx_cpxs, cpx_zeta/ @@ -98,7 +98,7 @@ qed. (* Basic_2A1: was: cpxs_zeta *) lemma cpxs_zeta_dx (h) (G) (L) (V): - ∀T2,T. ⇧*[1] T2 ≘ T → + ∀T2,T. ⇧[1] T2 ≘ T → ∀T1. ❪G,L.ⓓV❫ ⊢ T1 ⬈*[h] T → ❪G,L❫ ⊢ +ⓓV.T1 ⬈*[h] T2. #h #G #L #V #T2 #T #HT2 #T1 #H @(cpxs_ind_dx … H) -T1 /3 width=3 by cpxs_strap2, cpx_cpxs, cpx_bind, cpx_zeta/ @@ -125,7 +125,7 @@ lemma cpxs_beta_dx: ∀h,p,G,L,V1,V2,W1,W2,T1,T2. qed. lemma cpxs_theta_dx: ∀h,p,G,L,V1,V,V2,W1,W2,T1,T2. - ❪G,L❫ ⊢ V1 ⬈[h] V → ⇧*[1] V ≘ V2 → ❪G,L.ⓓW1❫ ⊢ T1 ⬈*[h] T2 → + ❪G,L❫ ⊢ V1 ⬈[h] V → ⇧[1] V ≘ V2 → ❪G,L.ⓓW1❫ ⊢ T1 ⬈*[h] T2 → ❪G,L❫ ⊢ W1 ⬈[h] W2 → ❪G,L❫ ⊢ ⓐV1.ⓓ[p]W1.T1 ⬈*[h] ⓓ[p]W2.ⓐV2.T2. #h #p #G #L #V1 #V #V2 #W1 #W2 #T1 #T2 #HV1 #HV2 * -T2 /4 width=9 by cpx_cpxs, cpxs_strap1, cpxs_bind_dx, cpxs_flat_dx, cpx_theta/ diff --git a/matita/matita/contribs/lambdadelta/basic_2/rt_computation/cpxs_cpxs.ma b/matita/matita/contribs/lambdadelta/basic_2/rt_computation/cpxs_cpxs.ma index 5ab4a3915..0ee400264 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/rt_computation/cpxs_cpxs.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/rt_computation/cpxs_cpxs.ma @@ -52,7 +52,7 @@ theorem cpxs_beta: ∀h,p,G,L,V1,V2,W1,W2,T1,T2. qed. theorem cpxs_theta_rc: ∀h,p,G,L,V1,V,V2,W1,W2,T1,T2. - ❪G,L❫ ⊢ V1 ⬈[h] V → ⇧*[1] V ≘ V2 → + ❪G,L❫ ⊢ V1 ⬈[h] V → ⇧[1] V ≘ V2 → ❪G,L.ⓓW1❫ ⊢ T1 ⬈*[h] T2 → ❪G,L❫ ⊢ W1 ⬈*[h] W2 → ❪G,L❫ ⊢ ⓐV1.ⓓ[p]W1.T1 ⬈*[h] ⓓ[p]W2.ⓐV2.T2. #h #p #G #L #V1 #V #V2 #W1 #W2 #T1 #T2 #HV1 #HV2 #HT12 #H @(cpxs_ind … H) -W2 @@ -60,7 +60,7 @@ theorem cpxs_theta_rc: ∀h,p,G,L,V1,V,V2,W1,W2,T1,T2. qed. theorem cpxs_theta: ∀h,p,G,L,V1,V,V2,W1,W2,T1,T2. - ⇧*[1] V ≘ V2 → ❪G,L❫ ⊢ W1 ⬈*[h] W2 → + ⇧[1] V ≘ V2 → ❪G,L❫ ⊢ W1 ⬈*[h] W2 → ❪G,L.ⓓW1❫ ⊢ T1 ⬈*[h] T2 → ❪G,L❫ ⊢ V1 ⬈*[h] V → ❪G,L❫ ⊢ ⓐV1.ⓓ[p]W1.T1 ⬈*[h] ⓓ[p]W2.ⓐV2.T2. #h #p #G #L #V1 #V #V2 #W1 #W2 #T1 #T2 #HV2 #HW12 #HT12 #H @(TC_ind_dx … V1 H) -V1 @@ -73,7 +73,7 @@ lemma cpxs_inv_appl1: ∀h,G,L,V1,T1,U2. ❪G,L❫ ⊢ ⓐV1.T1 ⬈*[h] U2 → ∨∨ ∃∃V2,T2. ❪G,L❫ ⊢ V1 ⬈*[h] V2 & ❪G,L❫ ⊢ T1 ⬈*[h] T2 & U2 = ⓐV2.T2 | ∃∃p,W,T. ❪G,L❫ ⊢ T1 ⬈*[h] ⓛ[p]W.T & ❪G,L❫ ⊢ ⓓ[p]ⓝW.V1.T ⬈*[h] U2 - | ∃∃p,V0,V2,V,T. ❪G,L❫ ⊢ V1 ⬈*[h] V0 & ⇧*[1] V0 ≘ V2 & + | ∃∃p,V0,V2,V,T. ❪G,L❫ ⊢ V1 ⬈*[h] V0 & ⇧[1] V0 ≘ V2 & ❪G,L❫ ⊢ T1 ⬈*[h] ⓓ[p]V.T & ❪G,L❫ ⊢ ⓓ[p]V.ⓐV2.T ⬈*[h] U2. #h #G #L #V1 #T1 #U2 #H @(cpxs_ind … H) -U2 [ /3 width=5 by or3_intro0, ex3_2_intro/ ] #U #U2 #_ #HU2 * * diff --git a/matita/matita/contribs/lambdadelta/basic_2/rt_computation/cpxs_drops.ma b/matita/matita/contribs/lambdadelta/basic_2/rt_computation/cpxs_drops.ma index 7f617b13a..7f472e2ad 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/rt_computation/cpxs_drops.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/rt_computation/cpxs_drops.ma @@ -21,7 +21,7 @@ include "basic_2/rt_computation/cpxs.ma". (* Advanced properties ******************************************************) lemma cpxs_delta: ∀h,I,G,K,V1,V2. ❪G,K❫ ⊢ V1 ⬈*[h] V2 → - ∀W2. ⇧*[1] V2 ≘ W2 → ❪G,K.ⓑ[I]V1❫ ⊢ #0 ⬈*[h] W2. + ∀W2. ⇧[1] V2 ≘ W2 → ❪G,K.ⓑ[I]V1❫ ⊢ #0 ⬈*[h] W2. #h #I #G #K #V1 #V2 #H @(cpxs_ind … H) -V2 [ /3 width=3 by cpx_cpxs, cpx_delta/ | #V #V2 #_ #HV2 #IH #W2 #HVW2 @@ -31,7 +31,7 @@ lemma cpxs_delta: ∀h,I,G,K,V1,V2. ❪G,K❫ ⊢ V1 ⬈*[h] V2 → qed. lemma cpxs_lref: ∀h,I,G,K,T,i. ❪G,K❫ ⊢ #i ⬈*[h] T → - ∀U. ⇧*[1] T ≘ U → ❪G,K.ⓘ[I]❫ ⊢ #↑i ⬈*[h] U. + ∀U. ⇧[1] T ≘ U → ❪G,K.ⓘ[I]❫ ⊢ #↑i ⬈*[h] U. #h #I #G #K #T #i #H @(cpxs_ind … H) -T [ /3 width=3 by cpx_cpxs, cpx_lref/ | #T0 #T #_ #HT2 #IH #U #HTU @@ -42,8 +42,8 @@ qed. (* Basic_2A1: was: cpxs_delta *) lemma cpxs_delta_drops: ∀h,I,G,L,K,V1,V2,i. - ⇩*[i] L ≘ K.ⓑ[I]V1 → ❪G,K❫ ⊢ V1 ⬈*[h] V2 → - ∀W2. ⇧*[↑i] V2 ≘ W2 → ❪G,L❫ ⊢ #i ⬈*[h] W2. + ⇩[i] L ≘ K.ⓑ[I]V1 → ❪G,K❫ ⊢ V1 ⬈*[h] V2 → + ∀W2. ⇧[↑i] V2 ≘ W2 → ❪G,L❫ ⊢ #i ⬈*[h] W2. #h #I #G #L #K #V1 #V2 #i #HLK #H @(cpxs_ind … H) -V2 [ /3 width=7 by cpx_cpxs, cpx_delta_drops/ | #V #V2 #_ #HV2 #IH #W2 #HVW2 @@ -56,7 +56,7 @@ qed. lemma cpxs_inv_zero1: ∀h,G,L,T2. ❪G,L❫ ⊢ #0 ⬈*[h] T2 → T2 = #0 ∨ - ∃∃I,K,V1,V2. ❪G,K❫ ⊢ V1 ⬈*[h] V2 & ⇧*[1] V2 ≘ T2 & + ∃∃I,K,V1,V2. ❪G,K❫ ⊢ V1 ⬈*[h] V2 & ⇧[1] V2 ≘ T2 & L = K.ⓑ[I]V1. #h #G #L #T2 #H @(cpxs_ind … H) -T2 /2 width=1 by or_introl/ #T #T2 #_ #HT2 * @@ -71,7 +71,7 @@ qed-. lemma cpxs_inv_lref1: ∀h,G,L,T2,i. ❪G,L❫ ⊢ #↑i ⬈*[h] T2 → T2 = #(↑i) ∨ - ∃∃I,K,T. ❪G,K❫ ⊢ #i ⬈*[h] T & ⇧*[1] T ≘ T2 & L = K.ⓘ[I]. + ∃∃I,K,T. ❪G,K❫ ⊢ #i ⬈*[h] T & ⇧[1] T ≘ T2 & L = K.ⓘ[I]. #h #G #L #T2 #i #H @(cpxs_ind … H) -T2 /2 width=1 by or_introl/ #T #T2 #_ #HT2 * [ #H destruct @@ -86,8 +86,8 @@ qed-. (* Basic_2A1: was: cpxs_inv_lref1 *) lemma cpxs_inv_lref1_drops: ∀h,G,L,T2,i. ❪G,L❫ ⊢ #i ⬈*[h] T2 → T2 = #i ∨ - ∃∃I,K,V1,T1. ⇩*[i] L ≘ K.ⓑ[I]V1 & ❪G,K❫ ⊢ V1 ⬈*[h] T1 & - ⇧*[↑i] T1 ≘ T2. + ∃∃I,K,V1,T1. ⇩[i] L ≘ K.ⓑ[I]V1 & ❪G,K❫ ⊢ V1 ⬈*[h] T1 & + ⇧[↑i] T1 ≘ T2. #h #G #L #T2 #i #H @(cpxs_ind … H) -T2 /2 width=1 by or_introl/ #T #T2 #_ #HT2 * [ #H destruct diff --git a/matita/matita/contribs/lambdadelta/basic_2/rt_computation/cpxs_teqo.ma b/matita/matita/contribs/lambdadelta/basic_2/rt_computation/cpxs_teqo.ma index 93d8cd3de..cd6c84688 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/rt_computation/cpxs_teqo.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/rt_computation/cpxs_teqo.ma @@ -30,8 +30,8 @@ qed-. (* Note: probably this is an inversion lemma *) (* Basic_2A1: was: cpxs_fwd_delta *) lemma cpxs_fwd_delta_drops (h) (I) (G) (L) (K): - ∀V1,i. ⇩*[i] L ≘ K.ⓑ[I]V1 → - ∀V2. ⇧*[↑i] V1 ≘ V2 → + ∀V1,i. ⇩[i] L ≘ K.ⓑ[I]V1 → + ∀V2. ⇧[↑i] V1 ≘ V2 → ∀X2. ❪G,L❫ ⊢ #i ⬈*[h] X2 → ∨∨ #i ⩳ X2 | ❪G,L❫ ⊢ V2 ⬈*[h] X2. #h #I #G #L #K #V1 #i #HLK #V2 #HV12 #X2 #H @@ -58,7 +58,7 @@ qed-. lemma cpxs_fwd_theta (h) (p) (G) (L): ∀V1,V,T,X2. ❪G,L❫ ⊢ ⓐV1.ⓓ[p]V.T ⬈*[h] X2 → - ∀V2. ⇧*[1] V1 ≘ V2 → + ∀V2. ⇧[1] V1 ≘ V2 → ∨∨ ⓐV1.ⓓ[p]V.T ⩳ X2 | ❪G,L❫ ⊢ ⓓ[p]V.ⓐV2.T ⬈*[h] X2. #h #p #G #L #V1 #V #T #X2 #H #V2 #HV12 elim (cpxs_inv_appl1 … H) -H * diff --git a/matita/matita/contribs/lambdadelta/basic_2/rt_computation/cpxs_teqo_vector.ma b/matita/matita/contribs/lambdadelta/basic_2/rt_computation/cpxs_teqo_vector.ma index 496201579..b3236af74 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/rt_computation/cpxs_teqo_vector.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/rt_computation/cpxs_teqo_vector.ma @@ -37,8 +37,8 @@ qed-. (* Basic_2A1: was: cpxs_fwd_delta_vector *) lemma cpxs_fwd_delta_drops_vector (h) (I) (G) (L) (K): - ∀V1,i. ⇩*[i] L ≘ K.ⓑ[I]V1 → - ∀V2. ⇧*[↑i] V1 ≘ V2 → + ∀V1,i. ⇩[i] L ≘ K.ⓑ[I]V1 → + ∀V2. ⇧[↑i] V1 ≘ V2 → ∀Vs,X2. ❪G,L❫ ⊢ ⒶVs.#i ⬈*[h] X2 → ∨∨ ⒶVs.#i ⩳ X2 | ❪G,L❫ ⊢ ⒶVs.V2 ⬈*[h] X2. #h #I #G #L #K #V1 #i #HLK #V2 #HV12 #Vs @@ -90,7 +90,7 @@ qed-. (* Basic_1: was just: pr3_iso_appls_abbr *) lemma cpxs_fwd_theta_vector (h) (G) (L): - ∀V1b,V2b. ⇧*[1] V1b ≘ V2b → + ∀V1b,V2b. ⇧[1] V1b ≘ V2b → ∀p,V,T,X2. ❪G,L❫ ⊢ ⒶV1b.ⓓ[p]V.T ⬈*[h] X2 → ∨∨ ⒶV1b.ⓓ[p]V.T ⩳ X2 | ❪G,L❫ ⊢ ⓓ[p]V.ⒶV2b.T ⬈*[h] X2. #h #G #L #V1b #V2b * -V1b -V2b /3 width=1 by or_intror/ diff --git a/matita/matita/contribs/lambdadelta/basic_2/rt_computation/csx_csx.ma b/matita/matita/contribs/lambdadelta/basic_2/rt_computation/csx_csx.ma index 0500e4254..6948d70bb 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/rt_computation/csx_csx.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/rt_computation/csx_csx.ma @@ -55,7 +55,7 @@ qed. (* Basic_1: was just: sn3_abbr *) (* Basic_2A1: was: csx_lref_bind *) lemma csx_lref_pair_drops (h) (G): - ∀I,L,K,V,i. ⇩*[i] L ≘ K.ⓑ[I]V → + ∀I,L,K,V,i. ⇩[i] L ≘ K.ⓑ[I]V → ❪G,K❫ ⊢ ⬈*[h] 𝐒❪V❫ → ❪G,L❫ ⊢ ⬈*[h] 𝐒❪#i❫. #h #G #I #L #K #V #i #HLK #HV @csx_intro #X #H #Hi elim (cpx_inv_lref1_drops … H) -H @@ -71,7 +71,7 @@ qed. (* Basic_1: was: sn3_gen_def *) (* Basic_2A1: was: csx_inv_lref_bind *) lemma csx_inv_lref_pair_drops (h) (G): - ∀I,L,K,V,i. ⇩*[i] L ≘ K.ⓑ[I]V → + ∀I,L,K,V,i. ⇩[i] L ≘ K.ⓑ[I]V → ❪G,L❫ ⊢ ⬈*[h] 𝐒❪#i❫ → ❪G,K❫ ⊢ ⬈*[h] 𝐒❪V❫. #h #G #I #L #K #V #i #HLK #Hi elim (lifts_total V (𝐔❨↑i❩)) @@ -81,8 +81,8 @@ qed-. lemma csx_inv_lref_drops (h) (G): ∀L,i. ❪G,L❫ ⊢ ⬈*[h] 𝐒❪#i❫ → ∨∨ ⇩*[Ⓕ,𝐔❨i❩] L ≘ ⋆ - | ∃∃I,K. ⇩*[i] L ≘ K.ⓤ[I] - | ∃∃I,K,V. ⇩*[i] L ≘ K.ⓑ[I]V & ❪G,K❫ ⊢ ⬈*[h] 𝐒❪V❫. + | ∃∃I,K. ⇩[i] L ≘ K.ⓤ[I] + | ∃∃I,K,V. ⇩[i] L ≘ K.ⓑ[I]V & ❪G,K❫ ⊢ ⬈*[h] 𝐒❪V❫. #h #G #L #i #H elim (drops_F_uni L i) /2 width=1 by or3_intro0/ * * /4 width=9 by csx_inv_lref_pair_drops, ex2_3_intro, ex1_2_intro, or3_intro2, or3_intro1/ qed-. diff --git a/matita/matita/contribs/lambdadelta/basic_2/rt_computation/csx_csx_vector.ma b/matita/matita/contribs/lambdadelta/basic_2/rt_computation/csx_csx_vector.ma index cab82ac33..2aa49c5bd 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/rt_computation/csx_csx_vector.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/rt_computation/csx_csx_vector.ma @@ -39,8 +39,8 @@ elim (cpxs_fwd_beta_vector … H) -H #H qed. lemma csx_applv_delta_drops (h) (G): - ∀I,L,K,V1,i. ⇩*[i] L ≘ K.ⓑ[I]V1 → - ∀V2. ⇧*[↑i] V1 ≘ V2 → + ∀I,L,K,V1,i. ⇩[i] L ≘ K.ⓑ[I]V1 → + ∀V2. ⇧[↑i] V1 ≘ V2 → ∀Vs. ❪G,L❫ ⊢ ⬈*[h] 𝐒❪ⒶVs.V2❫ → ❪G,L❫ ⊢ ⬈*[h] 𝐒❪ⒶVs.#i❫. #h #G #I #L #K #V1 #i #HLK #V2 #HV12 #Vs elim Vs -Vs [ /4 width=11 by csx_inv_lifts, csx_lref_pair_drops, drops_isuni_fwd_drop2/ @@ -58,7 +58,7 @@ qed. (* Basic_1: was just: sn3_appls_abbr *) lemma csx_applv_theta (h) (G): - ∀p,L,V1b,V2b. ⇧*[1] V1b ≘ V2b → + ∀p,L,V1b,V2b. ⇧[1] V1b ≘ V2b → ∀V,T. ❪G,L❫ ⊢ ⬈*[h] 𝐒❪ⓓ[p]V.ⒶV2b.T❫ → ❪G,L❫ ⊢ ⬈*[h] 𝐒❪ⒶV1b.ⓓ[p]V.T❫. #h #G #p #L #V1b #V2b * -V1b -V2b /2 width=1 by/ #V1b #V2b #V1 #V2 #HV12 #H diff --git a/matita/matita/contribs/lambdadelta/basic_2/rt_computation/csx_lpx.ma b/matita/matita/contribs/lambdadelta/basic_2/rt_computation/csx_lpx.ma index 5c4018a72..df0dc9948 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/rt_computation/csx_lpx.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/rt_computation/csx_lpx.ma @@ -71,7 +71,7 @@ lemma csx_bind (h) (G): qed. fact csx_appl_theta_aux (h) (G): - ∀p,L,U. ❪G,L❫ ⊢ ⬈*[h] 𝐒❪U❫ → ∀V1,V2. ⇧*[1] V1 ≘ V2 → + ∀p,L,U. ❪G,L❫ ⊢ ⬈*[h] 𝐒❪U❫ → ∀V1,V2. ⇧[1] V1 ≘ V2 → ∀V,T. U = ⓓ[p]V.ⓐV2.T → ❪G,L❫ ⊢ ⬈*[h] 𝐒❪ⓐV1.ⓓ[p]V.T❫. #h #G #p #L #X #H @(csx_ind_cpxs … H) -X #X #HVT #IHVT #V1 #V2 #HV12 #V #T #H destruct @@ -107,5 +107,5 @@ qed-. lemma csx_appl_theta (h) (G): ∀p,L,V,V2,T. ❪G,L❫ ⊢ ⬈*[h] 𝐒❪ⓓ[p]V.ⓐV2.T❫ → - ∀V1. ⇧*[1] V1 ≘ V2 → ❪G,L❫ ⊢ ⬈*[h] 𝐒❪ⓐV1.ⓓ[p]V.T❫. + ∀V1. ⇧[1] V1 ≘ V2 → ❪G,L❫ ⊢ ⬈*[h] 𝐒❪ⓐV1.ⓓ[p]V.T❫. /2 width=5 by csx_appl_theta_aux/ qed. diff --git a/matita/matita/contribs/lambdadelta/basic_2/rt_computation/lprs_cpms.ma b/matita/matita/contribs/lambdadelta/basic_2/rt_computation/lprs_cpms.ma index 8bfdf9432..7cd332093 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/rt_computation/lprs_cpms.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/rt_computation/lprs_cpms.ma @@ -75,7 +75,7 @@ qed-. lemma cpms_inv_abbr_sn_dx (n) (h) (G) (L): ∀p,V1,T1,X2. ❪G,L❫ ⊢ ⓓ[p]V1.T1 ➡*[n,h] X2 → ∨∨ ∃∃V2,T2. ❪G,L❫ ⊢ V1 ➡*[h] V2 & ❪G,L.ⓓV1❫ ⊢ T1 ➡*[n,h] T2 & X2 = ⓓ[p]V2.T2 - | ∃∃T2. ❪G,L.ⓓV1❫ ⊢ T1 ➡*[n ,h] T2 & ⇧*[1] X2 ≘ T2 & p = Ⓣ. + | ∃∃T2. ❪G,L.ⓓV1❫ ⊢ T1 ➡*[n ,h] T2 & ⇧[1] X2 ≘ T2 & p = Ⓣ. #n #h #G #L #p #V1 #T1 #X2 #H @(cpms_ind_dx … H) -X2 -n /3 width=5 by ex3_2_intro, or_introl/ #n1 #n2 #X #X2 #_ * * @@ -96,7 +96,7 @@ qed-. (* Basic_2A1: uses: scpds_inv_abbr_abst *) lemma cpms_inv_abbr_abst (n) (h) (G) (L): ∀p1,p2,V1,W2,T1,T2. ❪G,L❫ ⊢ ⓓ[p1]V1.T1 ➡*[n,h] ⓛ[p2]W2.T2 → - ∃∃T. ❪G,L.ⓓV1❫ ⊢ T1 ➡*[n,h] T & ⇧*[1] ⓛ[p2]W2.T2 ≘ T & p1 = Ⓣ. + ∃∃T. ❪G,L.ⓓV1❫ ⊢ T1 ➡*[n,h] T & ⇧[1] ⓛ[p2]W2.T2 ≘ T & p1 = Ⓣ. #n #h #G #L #p1 #p2 #V1 #W2 #T1 #T2 #H elim (cpms_inv_abbr_sn_dx … H) -H * [ #V #T #_ #_ #H destruct diff --git a/matita/matita/contribs/lambdadelta/basic_2/rt_computation/lpxs_cpxs.ma b/matita/matita/contribs/lambdadelta/basic_2/rt_computation/lpxs_cpxs.ma index b04bf7ba2..87f5bc330 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/rt_computation/lpxs_cpxs.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/rt_computation/lpxs_cpxs.ma @@ -41,7 +41,7 @@ lemma cpxs_inv_abbr1_dx (h) (p) (G) (L): ∀V1,T1,U2. ❪G,L❫ ⊢ ⓓ[p]V1.T1 ⬈*[h] U2 → ∨∨ ∃∃V2,T2. ❪G,L❫ ⊢ V1 ⬈*[h] V2 & ❪G,L.ⓓV1❫ ⊢ T1 ⬈*[h] T2 & U2 = ⓓ[p]V2.T2 - | ∃∃T2. ❪G,L.ⓓV1❫ ⊢ T1 ⬈*[h] T2 & ⇧*[1] U2 ≘ T2 & p = Ⓣ. + | ∃∃T2. ❪G,L.ⓓV1❫ ⊢ T1 ⬈*[h] T2 & ⇧[1] U2 ≘ T2 & p = Ⓣ. #h #p #G #L #V1 #T1 #U2 #H @(cpxs_ind … H) -U2 /3 width=5 by ex3_2_intro, or_introl/ #U0 #U2 #_ #HU02 * * diff --git a/matita/matita/contribs/lambdadelta/basic_2/rt_computation/rsx_csx.ma b/matita/matita/contribs/lambdadelta/basic_2/rt_computation/rsx_csx.ma index f9f97bca8..24ff0f82a 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/rt_computation/rsx_csx.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/rt_computation/rsx_csx.ma @@ -38,7 +38,7 @@ lemma rsx_fwd_lref_pair_csx (h) (G): /2 width=4 by rsx_fwd_lref_pair_csx_aux/ qed-. lemma rsx_fwd_lref_pair_csx_drops (h) (G): - ∀I,K,V,i,L. ⇩*[i] L ≘ K.ⓑ[I]V → G ⊢ ⬈*[h,#i] 𝐒❪L❫ → ❪G,K❫ ⊢ ⬈*[h] 𝐒❪V❫. + ∀I,K,V,i,L. ⇩[i] L ≘ K.ⓑ[I]V → G ⊢ ⬈*[h,#i] 𝐒❪L❫ → ❪G,K❫ ⊢ ⬈*[h] 𝐒❪V❫. #h #G #I #K #V #i elim i -i [ #L #H >(drops_fwd_isid … H) -H /2 width=2 by rsx_fwd_lref_pair_csx/ @@ -57,15 +57,15 @@ lemma rsx_inv_lref_pair (h) (G): /3 width=2 by rsx_fwd_lref_pair_csx, rsx_fwd_pair, conj/ qed-. lemma rsx_inv_lref_pair_drops (h) (G): - ∀I,K,V,i,L. ⇩*[i] L ≘ K.ⓑ[I]V → G ⊢ ⬈*[h,#i] 𝐒❪L❫ → + ∀I,K,V,i,L. ⇩[i] L ≘ K.ⓑ[I]V → G ⊢ ⬈*[h,#i] 𝐒❪L❫ → ∧∧ ❪G,K❫ ⊢ ⬈*[h] 𝐒❪V❫ & G ⊢ ⬈*[h,V] 𝐒❪K❫. /3 width=5 by rsx_fwd_lref_pair_csx_drops, rsx_fwd_lref_pair_drops, conj/ qed-. lemma rsx_inv_lref_drops (h) (G): ∀L,i. G ⊢ ⬈*[h,#i] 𝐒❪L❫ → ∨∨ ⇩*[Ⓕ,𝐔❨i❩] L ≘ ⋆ - | ∃∃I,K. ⇩*[i] L ≘ K.ⓤ[I] - | ∃∃I,K,V. ⇩*[i] L ≘ K.ⓑ[I]V & ❪G,K❫ ⊢ ⬈*[h] 𝐒❪V❫ & G ⊢ ⬈*[h,V] 𝐒❪K❫. + | ∃∃I,K. ⇩[i] L ≘ K.ⓤ[I] + | ∃∃I,K,V. ⇩[i] L ≘ K.ⓑ[I]V & ❪G,K❫ ⊢ ⬈*[h] 𝐒❪V❫ & G ⊢ ⬈*[h,V] 𝐒❪K❫. #h #G #L #i #H elim (drops_F_uni L i) [ /2 width=1 by or3_intro0/ | * * /4 width=10 by rsx_fwd_lref_pair_csx_drops, rsx_fwd_lref_pair_drops, ex3_3_intro, ex1_2_intro, or3_intro2, or3_intro1/ @@ -102,7 +102,7 @@ lemma rsx_lref_pair (h) (G): (* Basic_2A1: uses: lsx_lref_be *) lemma rsx_lref_pair_drops (h) (G): ∀K,V. ❪G,K❫ ⊢ ⬈*[h] 𝐒❪V❫ → G ⊢ ⬈*[h,V] 𝐒❪K❫ → - ∀I,i,L. ⇩*[i] L ≘ K.ⓑ[I]V → G ⊢ ⬈*[h,#i] 𝐒❪L❫. + ∀I,i,L. ⇩[i] L ≘ K.ⓑ[I]V → G ⊢ ⬈*[h,#i] 𝐒❪L❫. #h #G #K #V #HV #HK #I #i elim i -i [ #L #H >(drops_fwd_isid … H) -H /2 width=1 by rsx_lref_pair/ | #i #IH #L #H diff --git a/matita/matita/contribs/lambdadelta/basic_2/rt_computation/rsx_drops.ma b/matita/matita/contribs/lambdadelta/basic_2/rt_computation/rsx_drops.ma index cf607f56b..55999f8f8 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/rt_computation/rsx_drops.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/rt_computation/rsx_drops.ma @@ -49,7 +49,7 @@ lemma rsx_lref_atom_drops (h) (G): ∀L,i. ⇩*[Ⓕ,𝐔❨i❩] L ≘ ⋆ → G qed. (* Basic_2A1: uses: lsx_lref_skip *) -lemma rsx_lref_unit_drops (h) (G): ∀I,L,K,i. ⇩*[i] L ≘ K.ⓤ[I] → G ⊢ ⬈*[h,#i] 𝐒❪L❫. +lemma rsx_lref_unit_drops (h) (G): ∀I,L,K,i. ⇩[i] L ≘ K.ⓤ[I] → G ⊢ ⬈*[h,#i] 𝐒❪L❫. #h #G #I #L1 #K1 #i #HL1 @(rsx_lifts … (#0) … HL1) -HL1 // qed. @@ -59,7 +59,7 @@ qed. (* Basic_2A1: uses: lsx_fwd_lref_be *) lemma rsx_fwd_lref_pair_drops (h) (G): ∀L,i. G ⊢ ⬈*[h,#i] 𝐒❪L❫ → - ∀I,K,V. ⇩*[i] L ≘ K.ⓑ[I]V → G ⊢ ⬈*[h,V] 𝐒❪K❫. + ∀I,K,V. ⇩[i] L ≘ K.ⓑ[I]V → G ⊢ ⬈*[h,V] 𝐒❪K❫. #h #G #L #i #HL #I #K #V #HLK lapply (rsx_inv_lifts … HL … HLK … (#0) ?) -L /2 width=2 by rsx_fwd_pair/ diff --git a/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cnr_drops.ma b/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cnr_drops.ma index ff227f401..6a34bb604 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cnr_drops.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cnr_drops.ma @@ -30,7 +30,7 @@ qed. (* Basic_1: was: nf2_lref_abst *) lemma cnr_lref_abst (h) (G) (L): - ∀K,V,i. ⇩*[i] L ≘ K.ⓛV → ❪G,L❫ ⊢ ➡[h] 𝐍❪#i❫. + ∀K,V,i. ⇩[i] L ≘ K.ⓛV → ❪G,L❫ ⊢ ➡[h] 𝐍❪#i❫. #h #G #L #K #V #i #HLK #X #H elim (cpr_inv_lref1_drops … H) -H // * #K0 #V1 #V2 #HLK0 #_ #_ @@ -38,7 +38,7 @@ lapply (drops_mono … HLK … HLK0) -L #H destruct qed. lemma cnr_lref_unit (h) (I) (G) (L): - ∀K,i. ⇩*[i] L ≘ K.ⓤ[I] → ❪G,L❫ ⊢ ➡[h] 𝐍❪#i❫. + ∀K,i. ⇩[i] L ≘ K.ⓤ[I] → ❪G,L❫ ⊢ ➡[h] 𝐍❪#i❫. #h #I #G #L #K #i #HLK #X #H elim (cpr_inv_lref1_drops … H) -H // * #K0 #V1 #V2 #HLK0 #_ #_ @@ -59,7 +59,7 @@ qed-. (* Basic_2A1: was: cnr_inv_delta *) lemma cnr_inv_lref_abbr (h) (G) (L): - ∀K,V,i. ⇩*[i] L ≘ K.ⓓV → ❪G,L❫ ⊢ ➡[h] 𝐍❪#i❫ → ⊥. + ∀K,V,i. ⇩[i] L ≘ K.ⓓV → ❪G,L❫ ⊢ ➡[h] 𝐍❪#i❫ → ⊥. #h #G #L #K #V #i #HLK #H elim (lifts_total V 𝐔❨↑i❩) #W #HVW lapply (H W ?) -H [ /3 width=6 by cpm_delta_drops/ ] -HLK #H destruct diff --git a/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cnx_drops.ma b/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cnx_drops.ma index 76f8f77b0..20b92902e 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cnx_drops.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cnx_drops.ma @@ -20,12 +20,12 @@ include "basic_2/rt_transition/cnx.ma". (* Properties with generic slicing ******************************************) -lemma cnx_lref_atom: ∀h,G,L,i. ⇩*[i] L ≘ ⋆ → ❪G,L❫ ⊢ ⬈[h] 𝐍❪#i❫. +lemma cnx_lref_atom: ∀h,G,L,i. ⇩[i] L ≘ ⋆ → ❪G,L❫ ⊢ ⬈[h] 𝐍❪#i❫. #h #G #L #i #Hi #X #H elim (cpx_inv_lref1_drops … H) -H // * #I #K #V1 #V2 #HLK lapply (drops_mono … Hi … HLK) -L #H destruct qed. -lemma cnx_lref_unit: ∀h,I,G,L,K,i. ⇩*[i] L ≘ K.ⓤ[I] → ❪G,L❫ ⊢ ⬈[h] 𝐍❪#i❫. +lemma cnx_lref_unit: ∀h,I,G,L,K,i. ⇩[i] L ≘ K.ⓤ[I] → ❪G,L❫ ⊢ ⬈[h] 𝐍❪#i❫. #h #I #G #L #K #i #HLK #X #H elim (cpx_inv_lref1_drops … H) -H // * #Z #Y #V1 #V2 #HLY lapply (drops_mono … HLK … HLY) -L #H destruct qed. @@ -40,7 +40,7 @@ qed-. (* Inversion lemmas with generic slicing ************************************) (* Basic_2A1: was: cnx_inv_delta *) -lemma cnx_inv_lref_pair: ∀h,I,G,L,K,V,i. ⇩*[i] L ≘ K.ⓑ[I]V → ❪G,L❫ ⊢ ⬈[h] 𝐍❪#i❫ → ⊥. +lemma cnx_inv_lref_pair: ∀h,I,G,L,K,V,i. ⇩[i] L ≘ K.ⓑ[I]V → ❪G,L❫ ⊢ ⬈[h] 𝐍❪#i❫ → ⊥. #h #I #G #L #K #V #i #HLK #H elim (lifts_total V (𝐔❨↑i❩)) #W #HVW lapply (H W ?) -H /2 width=7 by cpx_delta_drops/ -HLK diff --git a/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpg.ma b/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpg.ma index 377d39ea6..c8ce84946 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpg.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpg.ma @@ -19,8 +19,9 @@ include "ground_2/xoa/ex_5_2.ma". include "ground_2/xoa/ex_6_9.ma". include "ground_2/xoa/ex_7_10.ma". include "ground_2/xoa/or_5.ma". -include "ground_2/steps/rtc_max.ma". +include "ground_2/steps/rtc_shift.ma". include "ground_2/steps/rtc_plus.ma". +include "ground_2/steps/rtc_max.ma". include "basic_2/notation/relations/predty_7.ma". include "static_2/syntax/sh.ma". include "static_2/syntax/lenv.ma". @@ -34,11 +35,11 @@ inductive cpg (Rt:relation rtc) (h): rtc → relation4 genv lenv term term ≝ | cpg_atom : ∀I,G,L. cpg Rt h (𝟘𝟘) G L (⓪[I]) (⓪[I]) | cpg_ess : ∀G,L,s. cpg Rt h (𝟘𝟙) G L (⋆s) (⋆(⫯[h]s)) | cpg_delta: ∀c,G,L,V1,V2,W2. cpg Rt h c G L V1 V2 → - ⇧*[1] V2 ≘ W2 → cpg Rt h c G (L.ⓓV1) (#0) W2 + ⇧[1] V2 ≘ W2 → cpg Rt h c G (L.ⓓV1) (#0) W2 | cpg_ell : ∀c,G,L,V1,V2,W2. cpg Rt h c G L V1 V2 → - ⇧*[1] V2 ≘ W2 → cpg Rt h (c+𝟘𝟙) G (L.ⓛV1) (#0) W2 + ⇧[1] V2 ≘ W2 → cpg Rt h (c+𝟘𝟙) G (L.ⓛV1) (#0) W2 | cpg_lref : ∀c,I,G,L,T,U,i. cpg Rt h c G L (#i) T → - ⇧*[1] T ≘ U → cpg Rt h c G (L.ⓘ[I]) (#↑i) U + ⇧[1] T ≘ U → cpg Rt h c G (L.ⓘ[I]) (#↑i) U | cpg_bind : ∀cV,cT,p,I,G,L,V1,V2,T1,T2. cpg Rt h cV G L V1 V2 → cpg Rt h cT G (L.ⓑ[I]V1) T1 T2 → cpg Rt h ((↕*cV)∨cT) G L (ⓑ[p,I]V1.T1) (ⓑ[p,I]V2.T2) @@ -48,7 +49,7 @@ inductive cpg (Rt:relation rtc) (h): rtc → relation4 genv lenv term term ≝ | cpg_cast : ∀cU,cT,G,L,U1,U2,T1,T2. Rt cU cT → cpg Rt h cU G L U1 U2 → cpg Rt h cT G L T1 T2 → cpg Rt h (cU∨cT) G L (ⓝU1.T1) (ⓝU2.T2) -| cpg_zeta : ∀c,G,L,V,T1,T,T2. ⇧*[1] T ≘ T1 → cpg Rt h c G L T T2 → +| cpg_zeta : ∀c,G,L,V,T1,T,T2. ⇧[1] T ≘ T1 → cpg Rt h c G L T T2 → cpg Rt h (c+𝟙𝟘) G L (+ⓓV.T1) T2 | cpg_eps : ∀c,G,L,V,T1,T2. cpg Rt h c G L T1 T2 → cpg Rt h (c+𝟙𝟘) G L (ⓝV.T1) T2 | cpg_ee : ∀c,G,L,V1,V2,T. cpg Rt h c G L V1 V2 → cpg Rt h (c+𝟘𝟙) G L (ⓝV1.T) V2 @@ -56,7 +57,7 @@ inductive cpg (Rt:relation rtc) (h): rtc → relation4 genv lenv term term ≝ cpg Rt h cV G L V1 V2 → cpg Rt h cW G L W1 W2 → cpg Rt h cT G (L.ⓛW1) T1 T2 → cpg Rt h (((↕*cV)∨(↕*cW)∨cT)+𝟙𝟘) G L (ⓐV1.ⓛ[p]W1.T1) (ⓓ[p]ⓝW2.V2.T2) | cpg_theta: ∀cV,cW,cT,p,G,L,V1,V,V2,W1,W2,T1,T2. - cpg Rt h cV G L V1 V → ⇧*[1] V ≘ V2 → cpg Rt h cW G L W1 W2 → + cpg Rt h cV G L V1 V → ⇧[1] V ≘ V2 → cpg Rt h cW G L W1 W2 → cpg Rt h cT G (L.ⓓW1) T1 T2 → cpg Rt h (((↕*cV)∨(↕*cW)∨cT)+𝟙𝟘) G L (ⓐV1.ⓓ[p]W1.T1) (ⓓ[p]W2.ⓐV2.T2) . @@ -78,11 +79,11 @@ qed. fact cpg_inv_atom1_aux: ∀Rt,c,h,G,L,T1,T2. ❪G,L❫ ⊢ T1 ⬈[Rt,c,h] T2 → ∀J. T1 = ⓪[J] → ∨∨ T2 = ⓪[J] ∧ c = 𝟘𝟘 | ∃∃s. J = Sort s & T2 = ⋆(⫯[h]s) & c = 𝟘𝟙 - | ∃∃cV,K,V1,V2. ❪G,K❫ ⊢ V1 ⬈[Rt,cV,h] V2 & ⇧*[1] V2 ≘ T2 & + | ∃∃cV,K,V1,V2. ❪G,K❫ ⊢ V1 ⬈[Rt,cV,h] V2 & ⇧[1] V2 ≘ T2 & L = K.ⓓV1 & J = LRef 0 & c = cV - | ∃∃cV,K,V1,V2. ❪G,K❫ ⊢ V1 ⬈[Rt,cV,h] V2 & ⇧*[1] V2 ≘ T2 & + | ∃∃cV,K,V1,V2. ❪G,K❫ ⊢ V1 ⬈[Rt,cV,h] V2 & ⇧[1] V2 ≘ T2 & L = K.ⓛV1 & J = LRef 0 & c = cV+𝟘𝟙 - | ∃∃I,K,T,i. ❪G,K❫ ⊢ #i ⬈[Rt,c,h] T & ⇧*[1] T ≘ T2 & + | ∃∃I,K,T,i. ❪G,K❫ ⊢ #i ⬈[Rt,c,h] T & ⇧[1] T ≘ T2 & L = K.ⓘ[I] & J = LRef (↑i). #Rt #c #h #G #L #T1 #T2 * -c -G -L -T1 -T2 [ #I #G #L #J #H destruct /3 width=1 by or5_intro0, conj/ @@ -104,11 +105,11 @@ qed-. lemma cpg_inv_atom1: ∀Rt,c,h,J,G,L,T2. ❪G,L❫ ⊢ ⓪[J] ⬈[Rt,c,h] T2 → ∨∨ T2 = ⓪[J] ∧ c = 𝟘𝟘 | ∃∃s. J = Sort s & T2 = ⋆(⫯[h]s) & c = 𝟘𝟙 - | ∃∃cV,K,V1,V2. ❪G,K❫ ⊢ V1 ⬈[Rt,cV,h] V2 & ⇧*[1] V2 ≘ T2 & + | ∃∃cV,K,V1,V2. ❪G,K❫ ⊢ V1 ⬈[Rt,cV,h] V2 & ⇧[1] V2 ≘ T2 & L = K.ⓓV1 & J = LRef 0 & c = cV - | ∃∃cV,K,V1,V2. ❪G,K❫ ⊢ V1 ⬈[Rt,cV,h] V2 & ⇧*[1] V2 ≘ T2 & + | ∃∃cV,K,V1,V2. ❪G,K❫ ⊢ V1 ⬈[Rt,cV,h] V2 & ⇧[1] V2 ≘ T2 & L = K.ⓛV1 & J = LRef 0 & c = cV+𝟘𝟙 - | ∃∃I,K,T,i. ❪G,K❫ ⊢ #i ⬈[Rt,c,h] T & ⇧*[1] T ≘ T2 & + | ∃∃I,K,T,i. ❪G,K❫ ⊢ #i ⬈[Rt,c,h] T & ⇧[1] T ≘ T2 & L = K.ⓘ[I] & J = LRef (↑i). /2 width=3 by cpg_inv_atom1_aux/ qed-. @@ -124,9 +125,9 @@ qed-. lemma cpg_inv_zero1: ∀Rt,c,h,G,L,T2. ❪G,L❫ ⊢ #0 ⬈[Rt,c,h] T2 → ∨∨ T2 = #0 ∧ c = 𝟘𝟘 - | ∃∃cV,K,V1,V2. ❪G,K❫ ⊢ V1 ⬈[Rt,cV,h] V2 & ⇧*[1] V2 ≘ T2 & + | ∃∃cV,K,V1,V2. ❪G,K❫ ⊢ V1 ⬈[Rt,cV,h] V2 & ⇧[1] V2 ≘ T2 & L = K.ⓓV1 & c = cV - | ∃∃cV,K,V1,V2. ❪G,K❫ ⊢ V1 ⬈[Rt,cV,h] V2 & ⇧*[1] V2 ≘ T2 & + | ∃∃cV,K,V1,V2. ❪G,K❫ ⊢ V1 ⬈[Rt,cV,h] V2 & ⇧[1] V2 ≘ T2 & L = K.ⓛV1 & c = cV+𝟘𝟙. #Rt #c #h #G #L #T2 #H elim (cpg_inv_atom1 … H) -H * /3 width=1 by or3_intro0, conj/ @@ -138,7 +139,7 @@ qed-. lemma cpg_inv_lref1: ∀Rt,c,h,G,L,T2,i. ❪G,L❫ ⊢ #↑i ⬈[Rt,c,h] T2 → ∨∨ T2 = #(↑i) ∧ c = 𝟘𝟘 - | ∃∃I,K,T. ❪G,K❫ ⊢ #i ⬈[Rt,c,h] T & ⇧*[1] T ≘ T2 & L = K.ⓘ[I]. + | ∃∃I,K,T. ❪G,K❫ ⊢ #i ⬈[Rt,c,h] T & ⇧[1] T ≘ T2 & L = K.ⓘ[I]. #Rt #c #h #G #L #T2 #i #H elim (cpg_inv_atom1 … H) -H * /3 width=1 by or_introl, conj/ [ #s #H destruct @@ -160,7 +161,7 @@ fact cpg_inv_bind1_aux: ∀Rt,c,h,G,L,U,U2. ❪G,L❫ ⊢ U ⬈[Rt,c,h] U2 → ∀p,J,V1,U1. U = ⓑ[p,J]V1.U1 → ∨∨ ∃∃cV,cT,V2,T2. ❪G,L❫ ⊢ V1 ⬈[Rt,cV,h] V2 & ❪G,L.ⓑ[J]V1❫ ⊢ U1 ⬈[Rt,cT,h] T2 & U2 = ⓑ[p,J]V2.T2 & c = ((↕*cV)∨cT) - | ∃∃cT,T. ⇧*[1] T ≘ U1 & ❪G,L❫ ⊢ T ⬈[Rt,cT,h] U2 & + | ∃∃cT,T. ⇧[1] T ≘ U1 & ❪G,L❫ ⊢ T ⬈[Rt,cT,h] U2 & p = true & J = Abbr & c = cT+𝟙𝟘. #Rt #c #h #G #L #U #U2 * -c -G -L -U -U2 [ #I #G #L #q #J #W #U1 #H destruct @@ -182,14 +183,14 @@ qed-. lemma cpg_inv_bind1: ∀Rt,c,h,p,I,G,L,V1,T1,U2. ❪G,L❫ ⊢ ⓑ[p,I]V1.T1 ⬈[Rt,c,h] U2 → ∨∨ ∃∃cV,cT,V2,T2. ❪G,L❫ ⊢ V1 ⬈[Rt,cV,h] V2 & ❪G,L.ⓑ[I]V1❫ ⊢ T1 ⬈[Rt,cT,h] T2 & U2 = ⓑ[p,I]V2.T2 & c = ((↕*cV)∨cT) - | ∃∃cT,T. ⇧*[1] T ≘ T1 & ❪G,L❫ ⊢ T ⬈[Rt,cT,h] U2 & + | ∃∃cT,T. ⇧[1] T ≘ T1 & ❪G,L❫ ⊢ T ⬈[Rt,cT,h] U2 & p = true & I = Abbr & c = cT+𝟙𝟘. /2 width=3 by cpg_inv_bind1_aux/ qed-. lemma cpg_inv_abbr1: ∀Rt,c,h,p,G,L,V1,T1,U2. ❪G,L❫ ⊢ ⓓ[p]V1.T1 ⬈[Rt,c,h] U2 → ∨∨ ∃∃cV,cT,V2,T2. ❪G,L❫ ⊢ V1 ⬈[Rt,cV,h] V2 & ❪G,L.ⓓV1❫ ⊢ T1 ⬈[Rt,cT,h] T2 & U2 = ⓓ[p]V2.T2 & c = ((↕*cV)∨cT) - | ∃∃cT,T. ⇧*[1] T ≘ T1 & ❪G,L❫ ⊢ T ⬈[Rt,cT,h] U2 & + | ∃∃cT,T. ⇧[1] T ≘ T1 & ❪G,L❫ ⊢ T ⬈[Rt,cT,h] U2 & p = true & c = cT+𝟙𝟘. #Rt #c #h #p #G #L #V1 #T1 #U2 #H elim (cpg_inv_bind1 … H) -H * /3 width=8 by ex4_4_intro, ex4_2_intro, or_introl, or_intror/ @@ -210,7 +211,7 @@ fact cpg_inv_appl1_aux: ∀Rt,c,h,G,L,U,U2. ❪G,L❫ ⊢ U ⬈[Rt,c,h] U2 → U2 = ⓐV2.T2 & c = ((↕*cV)∨cT) | ∃∃cV,cW,cT,p,V2,W1,W2,T1,T2. ❪G,L❫ ⊢ V1 ⬈[Rt,cV,h] V2 & ❪G,L❫ ⊢ W1 ⬈[Rt,cW,h] W2 & ❪G,L.ⓛW1❫ ⊢ T1 ⬈[Rt,cT,h] T2 & U1 = ⓛ[p]W1.T1 & U2 = ⓓ[p]ⓝW2.V2.T2 & c = ((↕*cV)∨(↕*cW)∨cT)+𝟙𝟘 - | ∃∃cV,cW,cT,p,V,V2,W1,W2,T1,T2. ❪G,L❫ ⊢ V1 ⬈[Rt,cV,h] V & ⇧*[1] V ≘ V2 & ❪G,L❫ ⊢ W1 ⬈[Rt,cW,h] W2 & ❪G,L.ⓓW1❫ ⊢ T1 ⬈[Rt,cT,h] T2 & + | ∃∃cV,cW,cT,p,V,V2,W1,W2,T1,T2. ❪G,L❫ ⊢ V1 ⬈[Rt,cV,h] V & ⇧[1] V ≘ V2 & ❪G,L❫ ⊢ W1 ⬈[Rt,cW,h] W2 & ❪G,L.ⓓW1❫ ⊢ T1 ⬈[Rt,cT,h] T2 & U1 = ⓓ[p]W1.T1 & U2 = ⓓ[p]W2.ⓐV2.T2 & c = ((↕*cV)∨(↕*cW)∨cT)+𝟙𝟘. #Rt #c #h #G #L #U #U2 * -c -G -L -U -U2 [ #I #G #L #W #U1 #H destruct @@ -234,7 +235,7 @@ lemma cpg_inv_appl1: ∀Rt,c,h,G,L,V1,U1,U2. ❪G,L❫ ⊢ ⓐV1.U1 ⬈[Rt,c,h] U2 = ⓐV2.T2 & c = ((↕*cV)∨cT) | ∃∃cV,cW,cT,p,V2,W1,W2,T1,T2. ❪G,L❫ ⊢ V1 ⬈[Rt,cV,h] V2 & ❪G,L❫ ⊢ W1 ⬈[Rt,cW,h] W2 & ❪G,L.ⓛW1❫ ⊢ T1 ⬈[Rt,cT,h] T2 & U1 = ⓛ[p]W1.T1 & U2 = ⓓ[p]ⓝW2.V2.T2 & c = ((↕*cV)∨(↕*cW)∨cT)+𝟙𝟘 - | ∃∃cV,cW,cT,p,V,V2,W1,W2,T1,T2. ❪G,L❫ ⊢ V1 ⬈[Rt,cV,h] V & ⇧*[1] V ≘ V2 & ❪G,L❫ ⊢ W1 ⬈[Rt,cW,h] W2 & ❪G,L.ⓓW1❫ ⊢ T1 ⬈[Rt,cT,h] T2 & + | ∃∃cV,cW,cT,p,V,V2,W1,W2,T1,T2. ❪G,L❫ ⊢ V1 ⬈[Rt,cV,h] V & ⇧[1] V ≘ V2 & ❪G,L❫ ⊢ W1 ⬈[Rt,cW,h] W2 & ❪G,L.ⓓW1❫ ⊢ T1 ⬈[Rt,cT,h] T2 & U1 = ⓓ[p]W1.T1 & U2 = ⓓ[p]W2.ⓐV2.T2 & c = ((↕*cV)∨(↕*cW)∨cT)+𝟙𝟘. /2 width=3 by cpg_inv_appl1_aux/ qed-. @@ -272,9 +273,9 @@ lemma cpg_inv_cast1: ∀Rt,c,h,G,L,V1,U1,U2. ❪G,L❫ ⊢ ⓝV1.U1 ⬈[Rt,c,h] lemma cpg_inv_zero1_pair: ∀Rt,c,h,I,G,K,V1,T2. ❪G,K.ⓑ[I]V1❫ ⊢ #0 ⬈[Rt,c,h] T2 → ∨∨ T2 = #0 ∧ c = 𝟘𝟘 - | ∃∃cV,V2. ❪G,K❫ ⊢ V1 ⬈[Rt,cV,h] V2 & ⇧*[1] V2 ≘ T2 & + | ∃∃cV,V2. ❪G,K❫ ⊢ V1 ⬈[Rt,cV,h] V2 & ⇧[1] V2 ≘ T2 & I = Abbr & c = cV - | ∃∃cV,V2. ❪G,K❫ ⊢ V1 ⬈[Rt,cV,h] V2 & ⇧*[1] V2 ≘ T2 & + | ∃∃cV,V2. ❪G,K❫ ⊢ V1 ⬈[Rt,cV,h] V2 & ⇧[1] V2 ≘ T2 & I = Abst & c = cV+𝟘𝟙. #Rt #c #h #I #G #K #V1 #T2 #H elim (cpg_inv_zero1 … H) -H /2 width=1 by or3_intro0/ * #z #Y #X1 #X2 #HX12 #HXT2 #H1 #H2 destruct /3 width=5 by or3_intro1, or3_intro2, ex4_2_intro/ @@ -282,7 +283,7 @@ qed-. lemma cpg_inv_lref1_bind: ∀Rt,c,h,I,G,K,T2,i. ❪G,K.ⓘ[I]❫ ⊢ #↑i ⬈[Rt,c,h] T2 → ∨∨ T2 = #(↑i) ∧ c = 𝟘𝟘 - | ∃∃T. ❪G,K❫ ⊢ #i ⬈[Rt,c,h] T & ⇧*[1] T ≘ T2. + | ∃∃T. ❪G,K❫ ⊢ #i ⬈[Rt,c,h] T & ⇧[1] T ≘ T2. #Rt #c #h #I #G #L #T2 #i #H elim (cpg_inv_lref1 … H) -H /2 width=1 by or_introl/ * #Z #Y #T #HT #HT2 #H destruct /3 width=3 by ex2_intro, or_intror/ qed-. diff --git a/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpg_drops.ma b/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpg_drops.ma index 6bfc84c4e..9ea5a2521 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpg_drops.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpg_drops.ma @@ -22,8 +22,8 @@ include "basic_2/rt_transition/cpg.ma". (* Advanced properties ******************************************************) -lemma cpg_delta_drops: ∀Rt,c,h,G,K,V,V2,i,L,T2. ⇩*[i] L ≘ K.ⓓV → ❪G,K❫ ⊢ V ⬈[Rt,c,h] V2 → - ⇧*[↑i] V2 ≘ T2 → ❪G,L❫ ⊢ #i ⬈[Rt,c,h] T2. +lemma cpg_delta_drops: ∀Rt,c,h,G,K,V,V2,i,L,T2. ⇩[i] L ≘ K.ⓓV → ❪G,K❫ ⊢ V ⬈[Rt,c,h] V2 → + ⇧[↑i] V2 ≘ T2 → ❪G,L❫ ⊢ #i ⬈[Rt,c,h] T2. #Rt #c #h #G #K #V #V2 #i elim i -i [ #L #T2 #HLK lapply (drops_fwd_isid … HLK ?) // #H destruct /3 width=3 by cpg_delta/ | #i #IH #L0 #T0 #H0 #HV2 #HVT2 @@ -32,8 +32,8 @@ lemma cpg_delta_drops: ∀Rt,c,h,G,K,V,V2,i,L,T2. ⇩*[i] L ≘ K.ⓓV → ❪G, ] qed. -lemma cpg_ell_drops: ∀Rt,c,h,G,K,V,V2,i,L,T2. ⇩*[i] L ≘ K.ⓛV → ❪G,K❫ ⊢ V ⬈[Rt,c,h] V2 → - ⇧*[↑i] V2 ≘ T2 → ❪G,L❫ ⊢ #i ⬈[Rt,c+𝟘𝟙,h] T2. +lemma cpg_ell_drops: ∀Rt,c,h,G,K,V,V2,i,L,T2. ⇩[i] L ≘ K.ⓛV → ❪G,K❫ ⊢ V ⬈[Rt,c,h] V2 → + ⇧[↑i] V2 ≘ T2 → ❪G,L❫ ⊢ #i ⬈[Rt,c+𝟘𝟙,h] T2. #Rt #c #h #G #K #V #V2 #i elim i -i [ #L #T2 #HLK lapply (drops_fwd_isid … HLK ?) // #H destruct /3 width=3 by cpg_ell/ | #i #IH #L0 #T0 #H0 #HV2 #HVT2 @@ -46,18 +46,22 @@ qed. lemma cpg_inv_lref1_drops: ∀Rt,c,h,G,i,L,T2. ❪G,L❫ ⊢ #i ⬈[Rt,c,h] T2 → ∨∨ T2 = #i ∧ c = 𝟘𝟘 - | ∃∃cV,K,V,V2. ⇩*[i] L ≘ K.ⓓV & ❪G,K❫ ⊢ V ⬈[Rt,cV,h] V2 & - ⇧*[↑i] V2 ≘ T2 & c = cV - | ∃∃cV,K,V,V2. ⇩*[i] L ≘ K.ⓛV & ❪G,K❫ ⊢ V ⬈[Rt,cV,h] V2 & - ⇧*[↑i] V2 ≘ T2 & c = cV + 𝟘𝟙. + | ∃∃cV,K,V,V2. ⇩[i] L ≘ K.ⓓV & ❪G,K❫ ⊢ V ⬈[Rt,cV,h] V2 & + ⇧[↑i] V2 ≘ T2 & c = cV + | ∃∃cV,K,V,V2. ⇩[i] L ≘ K.ⓛV & ❪G,K❫ ⊢ V ⬈[Rt,cV,h] V2 & + ⇧[↑i] V2 ≘ T2 & c = cV + 𝟘𝟙. #Rt #c #h #G #i elim i -i [ #L #T2 #H elim (cpg_inv_zero1 … H) -H * /3 width=1 by or3_intro0, conj/ /4 width=8 by drops_refl, ex4_4_intro, or3_intro2, or3_intro1/ | #i #IH #L #T2 #H elim (cpg_inv_lref1 … H) -H * /3 width=1 by or3_intro0, conj/ #I #K #V2 #H #HVT2 #H0 destruct elim (IH … H) -IH -H - [ * #H1 #H2 destruct lapply (lifts_inv_lref1_uni … HVT2) -HVT2 #H destruct /3 width=1 by or3_intro0, conj/ ] * + [ * #H1 #H2 destruct + lapply (lifts_inv_lref1_uni … HVT2) -HVT2 #H destruct + /3 width=1 by or3_intro0, conj/ + ] * #cV #L #W #W2 #HKL #HW2 #HWV2 #H destruct - lapply (lifts_trans … HWV2 … HVT2 ??) -V2 + lapply (lifts_trans … HWV2 … HVT2 ??) -V2 [3,6: |*: // ] #H + lapply (lifts_uni … H) -H #H /4 width=8 by drops_drop, ex4_4_intro, or3_intro2, or3_intro1/ ] qed-. @@ -65,10 +69,10 @@ qed-. lemma cpg_inv_atom1_drops: ∀Rt,c,h,I,G,L,T2. ❪G,L❫ ⊢ ⓪[I] ⬈[Rt,c,h] T2 → ∨∨ T2 = ⓪[I] ∧ c = 𝟘𝟘 | ∃∃s. T2 = ⋆(⫯[h]s) & I = Sort s & c = 𝟘𝟙 - | ∃∃cV,i,K,V,V2. ⇩*[i] L ≘ K.ⓓV & ❪G,K❫ ⊢ V ⬈[Rt,cV,h] V2 & - ⇧*[↑i] V2 ≘ T2 & I = LRef i & c = cV - | ∃∃cV,i,K,V,V2. ⇩*[i] L ≘ K.ⓛV & ❪G,K❫ ⊢ V ⬈[Rt,cV,h] V2 & - ⇧*[↑i] V2 ≘ T2 & I = LRef i & c = cV + 𝟘𝟙. + | ∃∃cV,i,K,V,V2. ⇩[i] L ≘ K.ⓓV & ❪G,K❫ ⊢ V ⬈[Rt,cV,h] V2 & + ⇧[↑i] V2 ≘ T2 & I = LRef i & c = cV + | ∃∃cV,i,K,V,V2. ⇩[i] L ≘ K.ⓛV & ❪G,K❫ ⊢ V ⬈[Rt,cV,h] V2 & + ⇧[↑i] V2 ≘ T2 & I = LRef i & c = cV + 𝟘𝟙. #Rt #c #h * #n #G #L #T2 #H [ elim (cpg_inv_sort1 … H) -H * /3 width=3 by or4_intro0, or4_intro1, ex3_intro, conj/ diff --git a/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpm.ma b/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpm.ma index f9a51d5b6..8e60c4f2e 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpm.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpm.ma @@ -16,6 +16,9 @@ include "ground_2/xoa/ex_4_1.ma". include "ground_2/xoa/ex_4_3.ma". include "ground_2/xoa/ex_5_6.ma". include "ground_2/xoa/ex_6_7.ma". +include "ground_2/steps/rtc_max_shift.ma". +include "ground_2/steps/rtc_isrt_plus.ma". +include "ground_2/steps/rtc_isrt_max_shift.ma". include "basic_2/notation/relations/pred_6.ma". include "basic_2/notation/relations/pred_5.ma". include "basic_2/rt_transition/cpg.ma". @@ -40,19 +43,19 @@ lemma cpm_ess: ∀h,G,L,s. ❪G,L❫ ⊢ ⋆s ➡[1,h] ⋆(⫯[h]s). /2 width=3 by cpg_ess, ex2_intro/ qed. lemma cpm_delta: ∀n,h,G,K,V1,V2,W2. ❪G,K❫ ⊢ V1 ➡[n,h] V2 → - ⇧*[1] V2 ≘ W2 → ❪G,K.ⓓV1❫ ⊢ #0 ➡[n,h] W2. + ⇧[1] V2 ≘ W2 → ❪G,K.ⓓV1❫ ⊢ #0 ➡[n,h] W2. #n #h #G #K #V1 #V2 #W2 * /3 width=5 by cpg_delta, ex2_intro/ qed. lemma cpm_ell: ∀n,h,G,K,V1,V2,W2. ❪G,K❫ ⊢ V1 ➡[n,h] V2 → - ⇧*[1] V2 ≘ W2 → ❪G,K.ⓛV1❫ ⊢ #0 ➡[↑n,h] W2. + ⇧[1] V2 ≘ W2 → ❪G,K.ⓛV1❫ ⊢ #0 ➡[↑n,h] W2. #n #h #G #K #V1 #V2 #W2 * /3 width=5 by cpg_ell, ex2_intro, isrt_succ/ qed. lemma cpm_lref: ∀n,h,I,G,K,T,U,i. ❪G,K❫ ⊢ #i ➡[n,h] T → - ⇧*[1] T ≘ U → ❪G,K.ⓘ[I]❫ ⊢ #↑i ➡[n,h] U. + ⇧[1] T ≘ U → ❪G,K.ⓘ[I]❫ ⊢ #↑i ➡[n,h] U. #n #h #I #G #K #T #U #i * /3 width=5 by cpg_lref, ex2_intro/ qed. @@ -81,7 +84,7 @@ qed. (* Basic_2A1: includes: cpr_zeta *) lemma cpm_zeta (n) (h) (G) (L): - ∀T1,T. ⇧*[1] T ≘ T1 → ∀T2. ❪G,L❫ ⊢ T ➡[n,h] T2 → + ∀T1,T. ⇧[1] T ≘ T1 → ∀T2. ❪G,L❫ ⊢ T ➡[n,h] T2 → ∀V. ❪G,L❫ ⊢ +ⓓV.T1 ➡[n,h] T2. #n #h #G #L #T1 #T #HT1 #T2 * /3 width=5 by cpg_zeta, isrt_plus_O2, ex2_intro/ @@ -108,7 +111,7 @@ qed. (* Basic_2A1: includes: cpr_theta *) lemma cpm_theta: ∀n,h,p,G,L,V1,V,V2,W1,W2,T1,T2. - ❪G,L❫ ⊢ V1 ➡[h] V → ⇧*[1] V ≘ V2 → ❪G,L❫ ⊢ W1 ➡[h] W2 → + ❪G,L❫ ⊢ V1 ➡[h] V → ⇧[1] V ≘ V2 → ❪G,L❫ ⊢ W1 ➡[h] W2 → ❪G,L.ⓓW1❫ ⊢ T1 ➡[n,h] T2 → ❪G,L❫ ⊢ ⓐV1.ⓓ[p]W1.T1 ➡[n,h] ⓓ[p]W2.ⓐV2.T2. #n #h #p #G #L #V1 #V #V2 #W1 #W2 #T1 #T2 * #riV #rhV #HV1 #HV2 * #riW #rhW #HW12 * @@ -136,11 +139,11 @@ qed. lemma cpm_inv_atom1: ∀n,h,J,G,L,T2. ❪G,L❫ ⊢ ⓪[J] ➡[n,h] T2 → ∨∨ T2 = ⓪[J] ∧ n = 0 | ∃∃s. T2 = ⋆(⫯[h]s) & J = Sort s & n = 1 - | ∃∃K,V1,V2. ❪G,K❫ ⊢ V1 ➡[n,h] V2 & ⇧*[1] V2 ≘ T2 & + | ∃∃K,V1,V2. ❪G,K❫ ⊢ V1 ➡[n,h] V2 & ⇧[1] V2 ≘ T2 & L = K.ⓓV1 & J = LRef 0 - | ∃∃m,K,V1,V2. ❪G,K❫ ⊢ V1 ➡[m,h] V2 & ⇧*[1] V2 ≘ T2 & + | ∃∃m,K,V1,V2. ❪G,K❫ ⊢ V1 ➡[m,h] V2 & ⇧[1] V2 ≘ T2 & L = K.ⓛV1 & J = LRef 0 & n = ↑m - | ∃∃I,K,T,i. ❪G,K❫ ⊢ #i ➡[n,h] T & ⇧*[1] T ≘ T2 & + | ∃∃I,K,T,i. ❪G,K❫ ⊢ #i ➡[n,h] T & ⇧[1] T ≘ T2 & L = K.ⓘ[I] & J = LRef (↑i). #n #h #J #G #L #T2 * #c #Hc #H elim (cpg_inv_atom1 … H) -H * [ #H1 #H2 destruct /4 width=1 by isrt_inv_00, or5_intro0, conj/ @@ -165,9 +168,9 @@ qed-. lemma cpm_inv_zero1: ∀n,h,G,L,T2. ❪G,L❫ ⊢ #0 ➡[n,h] T2 → ∨∨ T2 = #0 ∧ n = 0 - | ∃∃K,V1,V2. ❪G,K❫ ⊢ V1 ➡[n,h] V2 & ⇧*[1] V2 ≘ T2 & + | ∃∃K,V1,V2. ❪G,K❫ ⊢ V1 ➡[n,h] V2 & ⇧[1] V2 ≘ T2 & L = K.ⓓV1 - | ∃∃m,K,V1,V2. ❪G,K❫ ⊢ V1 ➡[m,h] V2 & ⇧*[1] V2 ≘ T2 & + | ∃∃m,K,V1,V2. ❪G,K❫ ⊢ V1 ➡[m,h] V2 & ⇧[1] V2 ≘ T2 & L = K.ⓛV1 & n = ↑m. #n #h #G #L #T2 * #c #Hc #H elim (cpg_inv_zero1 … H) -H * [ #H1 #H2 destruct /4 width=1 by isrt_inv_00, or3_intro0, conj/ @@ -191,7 +194,7 @@ qed. lemma cpm_inv_lref1: ∀n,h,G,L,T2,i. ❪G,L❫ ⊢ #↑i ➡[n,h] T2 → ∨∨ T2 = #(↑i) ∧ n = 0 - | ∃∃I,K,T. ❪G,K❫ ⊢ #i ➡[n,h] T & ⇧*[1] T ≘ T2 & L = K.ⓘ[I]. + | ∃∃I,K,T. ❪G,K❫ ⊢ #i ➡[n,h] T & ⇧[1] T ≘ T2 & L = K.ⓘ[I]. #n #h #G #L #T2 #i * #c #Hc #H elim (cpg_inv_lref1 … H) -H * [ #H1 #H2 destruct /4 width=1 by isrt_inv_00, or_introl, conj/ | #I #K #V2 #HV2 #HVT2 #H destruct @@ -223,7 +226,7 @@ qed-. lemma cpm_inv_bind1: ∀n,h,p,I,G,L,V1,T1,U2. ❪G,L❫ ⊢ ⓑ[p,I]V1.T1 ➡[n,h] U2 → ∨∨ ∃∃V2,T2. ❪G,L❫ ⊢ V1 ➡[h] V2 & ❪G,L.ⓑ[I]V1❫ ⊢ T1 ➡[n,h] T2 & U2 = ⓑ[p,I]V2.T2 - | ∃∃T. ⇧*[1] T ≘ T1 & ❪G,L❫ ⊢ T ➡[n,h] U2 & + | ∃∃T. ⇧[1] T ≘ T1 & ❪G,L❫ ⊢ T ➡[n,h] U2 & p = true & I = Abbr. #n #h #p #I #G #L #V1 #T1 #U2 * #c #Hc #H elim (cpg_inv_bind1 … H) -H * [ #cV #cT #V2 #T2 #HV12 #HT12 #H1 #H2 destruct @@ -240,7 +243,7 @@ qed-. lemma cpm_inv_abbr1: ∀n,h,p,G,L,V1,T1,U2. ❪G,L❫ ⊢ ⓓ[p]V1.T1 ➡[n,h] U2 → ∨∨ ∃∃V2,T2. ❪G,L❫ ⊢ V1 ➡[h] V2 & ❪G,L.ⓓV1❫ ⊢ T1 ➡[n,h] T2 & U2 = ⓓ[p]V2.T2 - | ∃∃T. ⇧*[1] T ≘ T1 & ❪G,L❫ ⊢ T ➡[n,h] U2 & p = true. + | ∃∃T. ⇧[1] T ≘ T1 & ❪G,L❫ ⊢ T ➡[n,h] U2 & p = true. #n #h #p #G #L #V1 #T1 #U2 #H elim (cpm_inv_bind1 … H) -H [ /3 width=1 by or_introl/ @@ -275,7 +278,7 @@ lemma cpm_inv_appl1: ∀n,h,G,L,V1,U1,U2. ❪G,L❫ ⊢ ⓐ V1.U1 ➡[n,h] U2 | ∃∃p,V2,W1,W2,T1,T2. ❪G,L❫ ⊢ V1 ➡[h] V2 & ❪G,L❫ ⊢ W1 ➡[h] W2 & ❪G,L.ⓛW1❫ ⊢ T1 ➡[n,h] T2 & U1 = ⓛ[p]W1.T1 & U2 = ⓓ[p]ⓝW2.V2.T2 - | ∃∃p,V,V2,W1,W2,T1,T2. ❪G,L❫ ⊢ V1 ➡[h] V & ⇧*[1] V ≘ V2 & + | ∃∃p,V,V2,W1,W2,T1,T2. ❪G,L❫ ⊢ V1 ➡[h] V & ⇧[1] V ≘ V2 & ❪G,L❫ ⊢ W1 ➡[h] W2 & ❪G,L.ⓓW1❫ ⊢ T1 ➡[n,h] T2 & U1 = ⓓ[p]W1.T1 & U2 = ⓓ[p]W2.ⓐV2.T2. #n #h #G #L #V1 #U1 #U2 * #c #Hc #H elim (cpg_inv_appl1 … H) -H * @@ -335,18 +338,18 @@ lemma cpm_ind (h): ∀Q:relation5 nat genv lenv term term. (∀I,G,L. Q 0 G L (⓪[I]) (⓪[I])) → (∀G,L,s. Q 1 G L (⋆s) (⋆(⫯[h]s))) → (∀n,G,K,V1,V2,W2. ❪G,K❫ ⊢ V1 ➡[n,h] V2 → Q n G K V1 V2 → - ⇧*[1] V2 ≘ W2 → Q n G (K.ⓓV1) (#0) W2 + ⇧[1] V2 ≘ W2 → Q n G (K.ⓓV1) (#0) W2 ) → (∀n,G,K,V1,V2,W2. ❪G,K❫ ⊢ V1 ➡[n,h] V2 → Q n G K V1 V2 → - ⇧*[1] V2 ≘ W2 → Q (↑n) G (K.ⓛV1) (#0) W2 + ⇧[1] V2 ≘ W2 → Q (↑n) G (K.ⓛV1) (#0) W2 ) → (∀n,I,G,K,T,U,i. ❪G,K❫ ⊢ #i ➡[n,h] T → Q n G K (#i) T → - ⇧*[1] T ≘ U → Q n G (K.ⓘ[I]) (#↑i) (U) + ⇧[1] T ≘ U → Q n G (K.ⓘ[I]) (#↑i) (U) ) → (∀n,p,I,G,L,V1,V2,T1,T2. ❪G,L❫ ⊢ V1 ➡[h] V2 → ❪G,L.ⓑ[I]V1❫ ⊢ T1 ➡[n,h] T2 → Q 0 G L V1 V2 → Q n G (L.ⓑ[I]V1) T1 T2 → Q n G L (ⓑ[p,I]V1.T1) (ⓑ[p,I]V2.T2) ) → (∀n,G,L,V1,V2,T1,T2. ❪G,L❫ ⊢ V1 ➡[h] V2 → ❪G,L❫ ⊢ T1 ➡[n,h] T2 → Q 0 G L V1 V2 → Q n G L T1 T2 → Q n G L (ⓐV1.T1) (ⓐV2.T2) ) → (∀n,G,L,V1,V2,T1,T2. ❪G,L❫ ⊢ V1 ➡[n,h] V2 → ❪G,L❫ ⊢ T1 ➡[n,h] T2 → Q n G L V1 V2 → Q n G L T1 T2 → Q n G L (ⓝV1.T1) (ⓝV2.T2) - ) → (∀n,G,L,V,T1,T,T2. ⇧*[1] T ≘ T1 → ❪G,L❫ ⊢ T ➡[n,h] T2 → + ) → (∀n,G,L,V,T1,T,T2. ⇧[1] T ≘ T1 → ❪G,L❫ ⊢ T ➡[n,h] T2 → Q n G L T T2 → Q n G L (+ⓓV.T1) T2 ) → (∀n,G,L,V,T1,T2. ❪G,L❫ ⊢ T1 ➡[n,h] T2 → Q n G L T1 T2 → Q n G L (ⓝV.T1) T2 @@ -357,7 +360,7 @@ lemma cpm_ind (h): ∀Q:relation5 nat genv lenv term term. Q n G L (ⓐV1.ⓛ[p]W1.T1) (ⓓ[p]ⓝW2.V2.T2) ) → (∀n,p,G,L,V1,V,V2,W1,W2,T1,T2. ❪G,L❫ ⊢ V1 ➡[h] V → ❪G,L❫ ⊢ W1 ➡[h] W2 → ❪G,L.ⓓW1❫ ⊢ T1 ➡[n,h] T2 → Q 0 G L V1 V → Q 0 G L W1 W2 → Q n G (L.ⓓW1) T1 T2 → - ⇧*[1] V ≘ V2 → Q n G L (ⓐV1.ⓓ[p]W1.T1) (ⓓ[p]W2.ⓐV2.T2) + ⇧[1] V ≘ V2 → Q n G L (ⓐV1.ⓓ[p]W1.T1) (ⓓ[p]W2.ⓐV2.T2) ) → ∀n,G,L,T1,T2. ❪G,L❫ ⊢ T1 ➡[n,h] T2 → Q n G L T1 T2. #h #Q #IH1 #IH2 #IH3 #IH4 #IH5 #IH6 #IH7 #IH8 #IH9 #IH10 #IH11 #IH12 #IH13 #n #G #L #T1 #T2 diff --git a/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpm_drops.ma b/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpm_drops.ma index 8dcb983e1..acdcba165 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpm_drops.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpm_drops.ma @@ -50,15 +50,15 @@ qed-. (* Basic_1: includes: pr2_delta1 *) (* Basic_2A1: includes: cpr_delta *) lemma cpm_delta_drops: ∀n,h,G,L,K,V,V2,W2,i. - ⇩*[i] L ≘ K.ⓓV → ❪G,K❫ ⊢ V ➡[n,h] V2 → - ⇧*[↑i] V2 ≘ W2 → ❪G,L❫ ⊢ #i ➡[n,h] W2. + ⇩[i] L ≘ K.ⓓV → ❪G,K❫ ⊢ V ➡[n,h] V2 → + ⇧[↑i] V2 ≘ W2 → ❪G,L❫ ⊢ #i ➡[n,h] W2. #n #h #G #L #K #V #V2 #W2 #i #HLK * /3 width=8 by cpg_delta_drops, ex2_intro/ qed. lemma cpm_ell_drops: ∀n,h,G,L,K,V,V2,W2,i. - ⇩*[i] L ≘ K.ⓛV → ❪G,K❫ ⊢ V ➡[n,h] V2 → - ⇧*[↑i] V2 ≘ W2 → ❪G,L❫ ⊢ #i ➡[↑n,h] W2. + ⇩[i] L ≘ K.ⓛV → ❪G,K❫ ⊢ V ➡[n,h] V2 → + ⇧[↑i] V2 ≘ W2 → ❪G,L❫ ⊢ #i ➡[↑n,h] W2. #n #h #G #L #K #V #V2 #W2 #i #HLK * /3 width=8 by cpg_ell_drops, isrt_succ, ex2_intro/ qed. @@ -68,10 +68,10 @@ qed. lemma cpm_inv_atom1_drops: ∀n,h,I,G,L,T2. ❪G,L❫ ⊢ ⓪[I] ➡[n,h] T2 → ∨∨ T2 = ⓪[I] ∧ n = 0 | ∃∃s. T2 = ⋆(⫯[h]s) & I = Sort s & n = 1 - | ∃∃K,V,V2,i. ⇩*[i] L ≘ K.ⓓV & ❪G,K❫ ⊢ V ➡[n,h] V2 & - ⇧*[↑i] V2 ≘ T2 & I = LRef i - | ∃∃m,K,V,V2,i. ⇩*[i] L ≘ K.ⓛV & ❪G,K❫ ⊢ V ➡[m,h] V2 & - ⇧*[↑i] V2 ≘ T2 & I = LRef i & n = ↑m. + | ∃∃K,V,V2,i. ⇩[i] L ≘ K.ⓓV & ❪G,K❫ ⊢ V ➡[n,h] V2 & + ⇧[↑i] V2 ≘ T2 & I = LRef i + | ∃∃m,K,V,V2,i. ⇩[i] L ≘ K.ⓛV & ❪G,K❫ ⊢ V ➡[m,h] V2 & + ⇧[↑i] V2 ≘ T2 & I = LRef i & n = ↑m. #n #h #I #G #L #T2 * #c #Hc #H elim (cpg_inv_atom1_drops … H) -H * [ #H1 #H2 destruct lapply (isrt_inv_00 … Hc) -Hc /3 width=1 by or4_intro0, conj/ @@ -87,10 +87,10 @@ qed-. lemma cpm_inv_lref1_drops: ∀n,h,G,L,T2,i. ❪G,L❫ ⊢ #i ➡[n,h] T2 → ∨∨ T2 = #i ∧ n = 0 - | ∃∃K,V,V2. ⇩*[i] L ≘ K.ⓓV & ❪G,K❫ ⊢ V ➡[n,h] V2 & - ⇧*[↑i] V2 ≘ T2 - | ∃∃m,K,V,V2. ⇩*[i] L ≘ K. ⓛV & ❪G,K❫ ⊢ V ➡[m,h] V2 & - ⇧*[↑i] V2 ≘ T2 & n = ↑m. + | ∃∃K,V,V2. ⇩[i] L ≘ K.ⓓV & ❪G,K❫ ⊢ V ➡[n,h] V2 & + ⇧[↑i] V2 ≘ T2 + | ∃∃m,K,V,V2. ⇩[i] L ≘ K. ⓛV & ❪G,K❫ ⊢ V ➡[m,h] V2 & + ⇧[↑i] V2 ≘ T2 & n = ↑m. #n #h #G #L #T2 #i * #c #Hc #H elim (cpg_inv_lref1_drops … H) -H * [ #H1 #H2 destruct lapply (isrt_inv_00 … Hc) -Hc /3 width=1 by or3_intro0, conj/ diff --git a/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpr.ma b/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpr.ma index 978c42b7c..2d0608f92 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpr.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpr.ma @@ -40,9 +40,9 @@ qed. lemma cpr_inv_atom1: ∀h,J,G,L,T2. ❪G,L❫ ⊢ ⓪[J] ➡[h] T2 → ∨∨ T2 = ⓪[J] - | ∃∃K,V1,V2. ❪G,K❫ ⊢ V1 ➡[h] V2 & ⇧*[1] V2 ≘ T2 & + | ∃∃K,V1,V2. ❪G,K❫ ⊢ V1 ➡[h] V2 & ⇧[1] V2 ≘ T2 & L = K.ⓓV1 & J = LRef 0 - | ∃∃I,K,T,i. ❪G,K❫ ⊢ #i ➡[h] T & ⇧*[1] T ≘ T2 & + | ∃∃I,K,T,i. ❪G,K❫ ⊢ #i ➡[h] T & ⇧[1] T ≘ T2 & L = K.ⓘ[I] & J = LRef (↑i). #h #J #G #L #T2 #H elim (cpm_inv_atom1 … H) -H * [2,4:|*: /3 width=8 by or3_intro0, or3_intro1, or3_intro2, ex4_4_intro, ex4_3_intro/ ] @@ -58,7 +58,7 @@ qed-. lemma cpr_inv_zero1: ∀h,G,L,T2. ❪G,L❫ ⊢ #0 ➡[h] T2 → ∨∨ T2 = #0 - | ∃∃K,V1,V2. ❪G,K❫ ⊢ V1 ➡[h] V2 & ⇧*[1] V2 ≘ T2 & + | ∃∃K,V1,V2. ❪G,K❫ ⊢ V1 ➡[h] V2 & ⇧[1] V2 ≘ T2 & L = K.ⓓV1. #h #G #L #T2 #H elim (cpm_inv_zero1 … H) -H * /3 width=6 by ex3_3_intro, or_introl, or_intror/ @@ -67,7 +67,7 @@ qed-. lemma cpr_inv_lref1: ∀h,G,L,T2,i. ❪G,L❫ ⊢ #↑i ➡[h] T2 → ∨∨ T2 = #(↑i) - | ∃∃I,K,T. ❪G,K❫ ⊢ #i ➡[h] T & ⇧*[1] T ≘ T2 & L = K.ⓘ[I]. + | ∃∃I,K,T. ❪G,K❫ ⊢ #i ➡[h] T & ⇧[1] T ≘ T2 & L = K.ⓘ[I]. #h #G #L #T2 #i #H elim (cpm_inv_lref1 … H) -H * /3 width=6 by ex3_3_intro, or_introl, or_intror/ qed-. @@ -92,7 +92,7 @@ lemma cpr_inv_flat1: ∀h,I,G,L,V1,U1,U2. ❪G,L❫ ⊢ ⓕ[I]V1.U1 ➡[h] U2 | ∃∃p,V2,W1,W2,T1,T2. ❪G,L❫ ⊢ V1 ➡[h] V2 & ❪G,L❫ ⊢ W1 ➡[h] W2 & ❪G,L.ⓛW1❫ ⊢ T1 ➡[h] T2 & U1 = ⓛ[p]W1.T1 & U2 = ⓓ[p]ⓝW2.V2.T2 & I = Appl - | ∃∃p,V,V2,W1,W2,T1,T2. ❪G,L❫ ⊢ V1 ➡[h] V & ⇧*[1] V ≘ V2 & + | ∃∃p,V,V2,W1,W2,T1,T2. ❪G,L❫ ⊢ V1 ➡[h] V & ⇧[1] V ≘ V2 & ❪G,L❫ ⊢ W1 ➡[h] W2 & ❪G,L.ⓓW1❫ ⊢ T1 ➡[h] T2 & U1 = ⓓ[p]W1.T1 & U2 = ⓓ[p]W2.ⓐV2.T2 & I = Appl. @@ -109,14 +109,14 @@ qed-. lemma cpr_ind (h): ∀Q:relation4 genv lenv term term. (∀I,G,L. Q G L (⓪[I]) (⓪[I])) → (∀G,K,V1,V2,W2. ❪G,K❫ ⊢ V1 ➡[h] V2 → Q G K V1 V2 → - ⇧*[1] V2 ≘ W2 → Q G (K.ⓓV1) (#0) W2 + ⇧[1] V2 ≘ W2 → Q G (K.ⓓV1) (#0) W2 ) → (∀I,G,K,T,U,i. ❪G,K❫ ⊢ #i ➡[h] T → Q G K (#i) T → - ⇧*[1] T ≘ U → Q G (K.ⓘ[I]) (#↑i) (U) + ⇧[1] T ≘ U → Q G (K.ⓘ[I]) (#↑i) (U) ) → (∀p,I,G,L,V1,V2,T1,T2. ❪G,L❫ ⊢ V1 ➡[h] V2 → ❪G,L.ⓑ[I]V1❫ ⊢ T1 ➡[h] T2 → Q G L V1 V2 → Q G (L.ⓑ[I]V1) T1 T2 → Q G L (ⓑ[p,I]V1.T1) (ⓑ[p,I]V2.T2) ) → (∀I,G,L,V1,V2,T1,T2. ❪G,L❫ ⊢ V1 ➡[h] V2 → ❪G,L❫ ⊢ T1 ➡[h] T2 → Q G L V1 V2 → Q G L T1 T2 → Q G L (ⓕ[I]V1.T1) (ⓕ[I]V2.T2) - ) → (∀G,L,V,T1,T,T2. ⇧*[1] T ≘ T1 → ❪G,L❫ ⊢ T ➡[h] T2 → + ) → (∀G,L,V,T1,T,T2. ⇧[1] T ≘ T1 → ❪G,L❫ ⊢ T ➡[h] T2 → Q G L T T2 → Q G L (+ⓓV.T1) T2 ) → (∀G,L,V,T1,T2. ❪G,L❫ ⊢ T1 ➡[h] T2 → Q G L T1 T2 → Q G L (ⓝV.T1) T2 @@ -125,7 +125,7 @@ lemma cpr_ind (h): ∀Q:relation4 genv lenv term term. Q G L (ⓐV1.ⓛ[p]W1.T1) (ⓓ[p]ⓝW2.V2.T2) ) → (∀p,G,L,V1,V,V2,W1,W2,T1,T2. ❪G,L❫ ⊢ V1 ➡[h] V → ❪G,L❫ ⊢ W1 ➡[h] W2 → ❪G,L.ⓓW1❫ ⊢ T1 ➡[h] T2 → Q G L V1 V → Q G L W1 W2 → Q G (L.ⓓW1) T1 T2 → - ⇧*[1] V ≘ V2 → Q G L (ⓐV1.ⓓ[p]W1.T1) (ⓓ[p]W2.ⓐV2.T2) + ⇧[1] V ≘ V2 → Q G L (ⓐV1.ⓓ[p]W1.T1) (ⓓ[p]W2.ⓐV2.T2) ) → ∀G,L,T1,T2. ❪G,L❫ ⊢ T1 ➡[h] T2 → Q G L T1 T2. #h #Q #IH1 #IH2 #IH3 #IH4 #IH5 #IH6 #IH7 #IH8 #IH9 #G #L #T1 #T2 diff --git a/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpr_drops.ma b/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpr_drops.ma index 2481e3c38..973329139 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpr_drops.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpr_drops.ma @@ -21,8 +21,8 @@ include "basic_2/rt_transition/cpm_drops.ma". (* Basic_2A1: includes: cpr_inv_atom1 *) lemma cpr_inv_atom1_drops: ∀h,I,G,L,T2. ❪G,L❫ ⊢ ⓪[I] ➡[h] T2 → ∨∨ T2 = ⓪[I] - | ∃∃K,V,V2,i. ⇩*[i] L ≘ K.ⓓV & ❪G,K❫ ⊢ V ➡[h] V2 & - ⇧*[↑i] V2 ≘ T2 & I = LRef i. + | ∃∃K,V,V2,i. ⇩[i] L ≘ K.ⓓV & ❪G,K❫ ⊢ V ➡[h] V2 & + ⇧[↑i] V2 ≘ T2 & I = LRef i. #h #I #G #L #T2 #H elim (cpm_inv_atom1_drops … H) -H * [ /2 width=1 by or_introl/ | #s #_ #_ #H destruct @@ -35,8 +35,8 @@ qed-. (* Basic_2A1: includes: cpr_inv_lref1 *) lemma cpr_inv_lref1_drops: ∀h,G,L,T2,i. ❪G,L❫ ⊢ #i ➡[h] T2 → ∨∨ T2 = #i - | ∃∃K,V,V2. ⇩*[i] L ≘ K. ⓓV & ❪G,K❫ ⊢ V ➡[h] V2 & - ⇧*[↑i] V2 ≘ T2. + | ∃∃K,V,V2. ⇩[i] L ≘ K. ⓓV & ❪G,K❫ ⊢ V ➡[h] V2 & + ⇧[↑i] V2 ≘ T2. #h #G #L #T2 #i #H elim (cpm_inv_lref1_drops … H) -H * [ /2 width=1 by or_introl/ | /3 width=6 by ex3_3_intro, or_intror/ diff --git a/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpr_drops_basic.ma b/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpr_drops_basic.ma index 661ee4ab5..988a3d32e 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpr_drops_basic.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpr_drops_basic.ma @@ -21,7 +21,7 @@ include "basic_2/rt_transition/cpr.ma". (* Properties with basic relocation *****************************************) lemma cpr_subst (h) (G) (L) (U1) (i): - ∀K,V. ⇩*[i] L ≘ K.ⓓV → + ∀K,V. ⇩[i] L ≘ K.ⓓV → ∃∃U2,T2. ❪G,L❫ ⊢ U1 ➡[h] U2 & ⇧[i,1] T2 ≘ U2. #h #G #L #U1 @(fqup_wf_ind_eq (Ⓣ) … G L U1) -G -L -U1 #G0 #L0 #U0 #IH #G #L * * diff --git a/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpt.ma b/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpt.ma index 59fe4d34e..d1a733be6 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpt.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpt.ma @@ -36,20 +36,20 @@ lemma cpt_ess (h) (G) (L): lemma cpt_delta (h) (n) (G) (K): ∀V1,V2. ❪G,K❫ ⊢ V1 ⬆[h,n] V2 → - ∀W2. ⇧*[1] V2 ≘ W2 → ❪G,K.ⓓV1❫ ⊢ #0 ⬆[h,n] W2. + ∀W2. ⇧[1] V2 ≘ W2 → ❪G,K.ⓓV1❫ ⊢ #0 ⬆[h,n] W2. #h #n #G #K #V1 #V2 * /3 width=5 by cpg_delta, ex2_intro/ qed. lemma cpt_ell (h) (n) (G) (K): ∀V1,V2. ❪G,K❫ ⊢ V1 ⬆[h,n] V2 → - ∀W2. ⇧*[1] V2 ≘ W2 → ❪G,K.ⓛV1❫ ⊢ #0 ⬆[h,↑n] W2. + ∀W2. ⇧[1] V2 ≘ W2 → ❪G,K.ⓛV1❫ ⊢ #0 ⬆[h,↑n] W2. #h #n #G #K #V1 #V2 * /3 width=5 by cpg_ell, ex2_intro, ist_succ/ qed. lemma cpt_lref (h) (n) (G) (K): - ∀T,i. ❪G,K❫ ⊢ #i ⬆[h,n] T → ∀U. ⇧*[1] T ≘ U → + ∀T,i. ❪G,K❫ ⊢ #i ⬆[h,n] T → ∀U. ⇧[1] T ≘ U → ∀I. ❪G,K.ⓘ[I]❫ ⊢ #↑i ⬆[h,n] U. #h #n #G #K #T #i * /3 width=5 by cpg_lref, ex2_intro/ @@ -99,9 +99,9 @@ lemma cpt_inv_atom_sn (h) (n) (J) (G) (L): ∀X2. ❪G,L❫ ⊢ ⓪[J] ⬆[h,n] X2 → ∨∨ ∧∧ X2 = ⓪[J] & n = 0 | ∃∃s. X2 = ⋆(⫯[h]s) & J = Sort s & n =1 - | ∃∃K,V1,V2. ❪G,K❫ ⊢ V1 ⬆[h,n] V2 & ⇧*[1] V2 ≘ X2 & L = K.ⓓV1 & J = LRef 0 - | ∃∃m,K,V1,V2. ❪G,K❫ ⊢ V1 ⬆[h,m] V2 & ⇧*[1] V2 ≘ X2 & L = K.ⓛV1 & J = LRef 0 & n = ↑m - | ∃∃I,K,T,i. ❪G,K❫ ⊢ #i ⬆[h,n] T & ⇧*[1] T ≘ X2 & L = K.ⓘ[I] & J = LRef (↑i). + | ∃∃K,V1,V2. ❪G,K❫ ⊢ V1 ⬆[h,n] V2 & ⇧[1] V2 ≘ X2 & L = K.ⓓV1 & J = LRef 0 + | ∃∃m,K,V1,V2. ❪G,K❫ ⊢ V1 ⬆[h,m] V2 & ⇧[1] V2 ≘ X2 & L = K.ⓛV1 & J = LRef 0 & n = ↑m + | ∃∃I,K,T,i. ❪G,K❫ ⊢ #i ⬆[h,n] T & ⇧[1] T ≘ X2 & L = K.ⓘ[I] & J = LRef (↑i). #h #n #J #G #L #X2 * #c #Hc #H elim (cpg_inv_atom1 … H) -H * [ #H1 #H2 destruct /3 width=1 by or5_intro0, conj/ @@ -127,10 +127,10 @@ qed-. lemma cpt_inv_zero_sn (h) (n) (G) (L): ∀X2. ❪G,L❫ ⊢ #0 ⬆[h,n] X2 → ∨∨ ∧∧ X2 = #0 & n = 0 - | ∃∃K,V1,V2. ❪G,K❫ ⊢ V1 ⬆[h,n] V2 & ⇧*[1] V2 ≘ X2 & L = K.ⓓV1 - | ∃∃m,K,V1,V2. ❪G,K❫ ⊢ V1 ⬆[h,m] V2 & ⇧*[1] V2 ≘ X2 & L = K.ⓛV1 & n = ↑m. + | ∃∃K,V1,V2. ❪G,K❫ ⊢ V1 ⬆[h,n] V2 & ⇧[1] V2 ≘ X2 & L = K.ⓓV1 + | ∃∃m,K,V1,V2. ❪G,K❫ ⊢ V1 ⬆[h,m] V2 & ⇧[1] V2 ≘ X2 & L = K.ⓛV1 & n = ↑m. #h #n #G #L #X2 * #c #Hc #H elim (cpg_inv_zero1 … H) -H * -[ #H1 #H2 destruct /4 width=1 by isrt_inv_00, or3_intro0, conj/ +[ #H1 #H2 destruct /4 width=1 by ist_inv_00, or3_intro0, conj/ | #cV #K #V1 #V2 #HV12 #HVT2 #H1 #H2 destruct /4 width=8 by or3_intro1, ex3_3_intro, ex2_intro/ | #cV #K #V1 #V2 #HV12 #HVT2 #H1 #H2 destruct @@ -152,9 +152,9 @@ qed. lemma cpt_inv_lref_sn (h) (n) (G) (L) (i): ∀X2. ❪G,L❫ ⊢ #↑i ⬆[h,n] X2 → ∨∨ ∧∧ X2 = #(↑i) & n = 0 - | ∃∃I,K,T. ❪G,K❫ ⊢ #i ⬆[h,n] T & ⇧*[1] T ≘ X2 & L = K.ⓘ[I]. + | ∃∃I,K,T. ❪G,K❫ ⊢ #i ⬆[h,n] T & ⇧[1] T ≘ X2 & L = K.ⓘ[I]. #h #n #G #L #i #X2 * #c #Hc #H elim (cpg_inv_lref1 … H) -H * -[ #H1 #H2 destruct /4 width=1 by isrt_inv_00, or_introl, conj/ +[ #H1 #H2 destruct /4 width=1 by ist_inv_00, or_introl, conj/ | #I #K #V2 #HV2 #HVT2 #H destruct /4 width=6 by ex3_3_intro, ex2_intro, or_intror/ ] diff --git a/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpt_drops.ma b/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpt_drops.ma index eee1c0f9b..1d4e8b33a 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpt_drops.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpt_drops.ma @@ -48,15 +48,15 @@ qed-. (* Advanced properties ******************************************************) lemma cpt_delta_drops (h) (n) (G): - ∀L,K,V,i. ⇩*[i] L ≘ K.ⓓV → ∀V2. ❪G,K❫ ⊢ V ⬆[h,n] V2 → - ∀W2. ⇧*[↑i] V2 ≘ W2 → ❪G,L❫ ⊢ #i ⬆[h,n] W2. + ∀L,K,V,i. ⇩[i] L ≘ K.ⓓV → ∀V2. ❪G,K❫ ⊢ V ⬆[h,n] V2 → + ∀W2. ⇧[↑i] V2 ≘ W2 → ❪G,L❫ ⊢ #i ⬆[h,n] W2. #h #n #G #L #K #V #i #HLK #V2 * /3 width=8 by cpg_delta_drops, ex2_intro/ qed. lemma cpt_ell_drops (h) (n) (G): - ∀L,K,V,i. ⇩*[i] L ≘ K.ⓛV → ∀V2. ❪G,K❫ ⊢ V ⬆[h,n] V2 → - ∀W2. ⇧*[↑i] V2 ≘ W2 → ❪G,L❫ ⊢ #i ⬆[h,↑n] W2. + ∀L,K,V,i. ⇩[i] L ≘ K.ⓛV → ∀V2. ❪G,K❫ ⊢ V ⬆[h,n] V2 → + ∀W2. ⇧[↑i] V2 ≘ W2 → ❪G,L❫ ⊢ #i ⬆[h,↑n] W2. #h #n #G #L #K #V #i #HLK #V2 * /3 width=8 by cpg_ell_drops, ist_succ, ex2_intro/ qed. @@ -67,8 +67,8 @@ lemma cpt_inv_atom_sn_drops (h) (n) (I) (G) (L): ∀X2. ❪G,L❫ ⊢ ⓪[I] ⬆[h,n] X2 → ∨∨ ∧∧ X2 = ⓪[I] & n = 0 | ∃∃s. X2 = ⋆(⫯[h]s) & I = Sort s & n = 1 - | ∃∃K,V,V2,i. ⇩*[i] L ≘ K.ⓓV & ❪G,K❫ ⊢ V ⬆[h,n] V2 & ⇧*[↑i] V2 ≘ X2 & I = LRef i - | ∃∃m,K,V,V2,i. ⇩*[i] L ≘ K.ⓛV & ❪G,K❫ ⊢ V ⬆[h,m] V2 & ⇧*[↑i] V2 ≘ X2 & I = LRef i & n = ↑m. + | ∃∃K,V,V2,i. ⇩[i] L ≘ K.ⓓV & ❪G,K❫ ⊢ V ⬆[h,n] V2 & ⇧[↑i] V2 ≘ X2 & I = LRef i + | ∃∃m,K,V,V2,i. ⇩[i] L ≘ K.ⓛV & ❪G,K❫ ⊢ V ⬆[h,m] V2 & ⇧[↑i] V2 ≘ X2 & I = LRef i & n = ↑m. #h #n #I #G #L #X2 * #c #Hc #H elim (cpg_inv_atom1_drops … H) -H * [ #H1 #H2 destruct /3 width=1 by or4_intro0, conj/ @@ -85,8 +85,8 @@ qed-. lemma cpt_inv_lref_sn_drops (h) (n) (G) (L) (i): ∀X2. ❪G,L❫ ⊢ #i ⬆[h,n] X2 → ∨∨ ∧∧ X2 = #i & n = 0 - | ∃∃K,V,V2. ⇩*[i] L ≘ K.ⓓV & ❪G,K❫ ⊢ V ⬆[h,n] V2 & ⇧*[↑i] V2 ≘ X2 - | ∃∃m,K,V,V2. ⇩*[i] L ≘ K. ⓛV & ❪G,K❫ ⊢ V ⬆[h,m] V2 & ⇧*[↑i] V2 ≘ X2 & n = ↑m. + | ∃∃K,V,V2. ⇩[i] L ≘ K.ⓓV & ❪G,K❫ ⊢ V ⬆[h,n] V2 & ⇧[↑i] V2 ≘ X2 + | ∃∃m,K,V,V2. ⇩[i] L ≘ K. ⓛV & ❪G,K❫ ⊢ V ⬆[h,m] V2 & ⇧[↑i] V2 ≘ X2 & n = ↑m. #h #n #G #L #i #X2 * #c #Hc #H elim (cpg_inv_lref1_drops … H) -H * [ #H1 #H2 destruct /3 width=1 by or3_intro0, conj/ diff --git a/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpt_fqu.ma b/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpt_fqu.ma index 5ac497f65..ebcb2ed05 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpt_fqu.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpt_fqu.ma @@ -23,11 +23,11 @@ lemma cpt_ind (h) (Q:relation5 …): (∀I,G,L. Q 0 G L (⓪[I]) (⓪[I])) → (∀G,L,s. Q 1 G L (⋆s) (⋆(⫯[h]s))) → (∀n,G,K,V1,V2,W2. ❪G,K❫ ⊢ V1 ⬆[h,n] V2 → Q n G K V1 V2 → - ⇧*[1] V2 ≘ W2 → Q n G (K.ⓓV1) (#0) W2 + ⇧[1] V2 ≘ W2 → Q n G (K.ⓓV1) (#0) W2 ) → (∀n,G,K,V1,V2,W2. ❪G,K❫ ⊢ V1 ⬆[h,n] V2 → Q n G K V1 V2 → - ⇧*[1] V2 ≘ W2 → Q (↑n) G (K.ⓛV1) (#0) W2 + ⇧[1] V2 ≘ W2 → Q (↑n) G (K.ⓛV1) (#0) W2 ) → (∀n,I,G,K,T,U,i. ❪G,K❫ ⊢ #i ⬆[h,n] T → Q n G K (#i) T → - ⇧*[1] T ≘ U → Q n G (K.ⓘ[I]) (#↑i) (U) + ⇧[1] T ≘ U → Q n G (K.ⓘ[I]) (#↑i) (U) ) → (∀n,p,I,G,L,V1,V2,T1,T2. ❪G,L❫ ⊢ V1 ⬆[h,0] V2 → ❪G,L.ⓑ[I]V1❫ ⊢ T1 ⬆[h,n] T2 → Q 0 G L V1 V2 → Q n G (L.ⓑ[I]V1) T1 T2 → Q n G L (ⓑ[p,I]V1.T1) (ⓑ[p,I]V2.T2) ) → (∀n,G,L,V1,V2,T1,T2. ❪G,L❫ ⊢ V1 ⬆[h,0] V2 → ❪G,L❫ ⊢ T1 ⬆[h,n] T2 → diff --git a/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpx.ma b/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpx.ma index 37fe4e7c5..fab42da8d 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpx.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpx.ma @@ -38,13 +38,13 @@ lemma cpx_ess: ∀h,G,L,s. ❪G,L❫ ⊢ ⋆s ⬈[h] ⋆(⫯[h]s). /2 width=2 by cpg_ess, ex_intro/ qed. lemma cpx_delta: ∀h,I,G,K,V1,V2,W2. ❪G,K❫ ⊢ V1 ⬈[h] V2 → - ⇧*[1] V2 ≘ W2 → ❪G,K.ⓑ[I]V1❫ ⊢ #0 ⬈[h] W2. + ⇧[1] V2 ≘ W2 → ❪G,K.ⓑ[I]V1❫ ⊢ #0 ⬈[h] W2. #h * #G #K #V1 #V2 #W2 * /3 width=4 by cpg_delta, cpg_ell, ex_intro/ qed. lemma cpx_lref: ∀h,I,G,K,T,U,i. ❪G,K❫ ⊢ #i ⬈[h] T → - ⇧*[1] T ≘ U → ❪G,K.ⓘ[I]❫ ⊢ #↑i ⬈[h] U. + ⇧[1] T ≘ U → ❪G,K.ⓘ[I]❫ ⊢ #↑i ⬈[h] U. #h #I #G #K #T #U #i * /3 width=4 by cpg_lref, ex_intro/ qed. @@ -64,7 +64,7 @@ lemma cpx_flat: ∀h,I,G,L,V1,V2,T1,T2. qed. lemma cpx_zeta (h) (G) (L): - ∀T1,T. ⇧*[1] T ≘ T1 → ∀T2. ❪G,L❫ ⊢ T ⬈[h] T2 → + ∀T1,T. ⇧[1] T ≘ T1 → ∀T2. ❪G,L❫ ⊢ T ⬈[h] T2 → ∀V. ❪G,L❫ ⊢ +ⓓV.T1 ⬈[h] T2. #h #G #L #T1 #T #HT1 #T2 * /3 width=4 by cpg_zeta, ex_intro/ @@ -89,7 +89,7 @@ lemma cpx_beta: ∀h,p,G,L,V1,V2,W1,W2,T1,T2. qed. lemma cpx_theta: ∀h,p,G,L,V1,V,V2,W1,W2,T1,T2. - ❪G,L❫ ⊢ V1 ⬈[h] V → ⇧*[1] V ≘ V2 → ❪G,L❫ ⊢ W1 ⬈[h] W2 → + ❪G,L❫ ⊢ V1 ⬈[h] V → ⇧[1] V ≘ V2 → ❪G,L❫ ⊢ W1 ⬈[h] W2 → ❪G,L.ⓓW1❫ ⊢ T1 ⬈[h] T2 → ❪G,L❫ ⊢ ⓐV1.ⓓ[p]W1.T1 ⬈[h] ⓓ[p]W2.ⓐV2.T2. #h #p #G #L #V1 #V #V2 #W1 #W2 #T1 #T2 * #cV #HV1 #HV2 * #cW #HW12 * @@ -118,9 +118,9 @@ qed. lemma cpx_inv_atom1: ∀h,J,G,L,T2. ❪G,L❫ ⊢ ⓪[J] ⬈[h] T2 → ∨∨ T2 = ⓪[J] | ∃∃s. T2 = ⋆(⫯[h]s) & J = Sort s - | ∃∃I,K,V1,V2. ❪G,K❫ ⊢ V1 ⬈[h] V2 & ⇧*[1] V2 ≘ T2 & + | ∃∃I,K,V1,V2. ❪G,K❫ ⊢ V1 ⬈[h] V2 & ⇧[1] V2 ≘ T2 & L = K.ⓑ[I]V1 & J = LRef 0 - | ∃∃I,K,T,i. ❪G,K❫ ⊢ #i ⬈[h] T & ⇧*[1] T ≘ T2 & + | ∃∃I,K,T,i. ❪G,K❫ ⊢ #i ⬈[h] T & ⇧[1] T ≘ T2 & L = K.ⓘ[I] & J = LRef (↑i). #h #J #G #L #T2 * #c #H elim (cpg_inv_atom1 … H) -H * /4 width=8 by or4_intro0, or4_intro1, or4_intro2, or4_intro3, ex4_4_intro, ex2_intro, ex_intro/ @@ -134,7 +134,7 @@ qed-. lemma cpx_inv_zero1: ∀h,G,L,T2. ❪G,L❫ ⊢ #0 ⬈[h] T2 → ∨∨ T2 = #0 - | ∃∃I,K,V1,V2. ❪G,K❫ ⊢ V1 ⬈[h] V2 & ⇧*[1] V2 ≘ T2 & + | ∃∃I,K,V1,V2. ❪G,K❫ ⊢ V1 ⬈[h] V2 & ⇧[1] V2 ≘ T2 & L = K.ⓑ[I]V1. #h #G #L #T2 * #c #H elim (cpg_inv_zero1 … H) -H * /4 width=7 by ex3_4_intro, ex_intro, or_introl, or_intror/ @@ -142,7 +142,7 @@ qed-. lemma cpx_inv_lref1: ∀h,G,L,T2,i. ❪G,L❫ ⊢ #↑i ⬈[h] T2 → ∨∨ T2 = #(↑i) - | ∃∃I,K,T. ❪G,K❫ ⊢ #i ⬈[h] T & ⇧*[1] T ≘ T2 & L = K.ⓘ[I]. + | ∃∃I,K,T. ❪G,K❫ ⊢ #i ⬈[h] T & ⇧[1] T ≘ T2 & L = K.ⓘ[I]. #h #G #L #T2 #i * #c #H elim (cpg_inv_lref1 … H) -H * /4 width=6 by ex3_3_intro, ex_intro, or_introl, or_intror/ qed-. @@ -154,7 +154,7 @@ qed-. lemma cpx_inv_bind1: ∀h,p,I,G,L,V1,T1,U2. ❪G,L❫ ⊢ ⓑ[p,I]V1.T1 ⬈[h] U2 → ∨∨ ∃∃V2,T2. ❪G,L❫ ⊢ V1 ⬈[h] V2 & ❪G,L.ⓑ[I]V1❫ ⊢ T1 ⬈[h] T2 & U2 = ⓑ[p,I]V2.T2 - | ∃∃T. ⇧*[1] T ≘ T1 & ❪G,L❫ ⊢ T ⬈[h] U2 & + | ∃∃T. ⇧[1] T ≘ T1 & ❪G,L❫ ⊢ T ⬈[h] U2 & p = true & I = Abbr. #h #p #I #G #L #V1 #T1 #U2 * #c #H elim (cpg_inv_bind1 … H) -H * /4 width=5 by ex4_intro, ex3_2_intro, ex_intro, or_introl, or_intror/ @@ -163,7 +163,7 @@ qed-. lemma cpx_inv_abbr1: ∀h,p,G,L,V1,T1,U2. ❪G,L❫ ⊢ ⓓ[p]V1.T1 ⬈[h] U2 → ∨∨ ∃∃V2,T2. ❪G,L❫ ⊢ V1 ⬈[h] V2 & ❪G,L.ⓓV1❫ ⊢ T1 ⬈[h] T2 & U2 = ⓓ[p]V2.T2 - | ∃∃T. ⇧*[1] T ≘ T1 & ❪G,L❫ ⊢ T ⬈[h] U2 & p = true. + | ∃∃T. ⇧[1] T ≘ T1 & ❪G,L❫ ⊢ T ⬈[h] U2 & p = true. #h #p #G #L #V1 #T1 #U2 * #c #H elim (cpg_inv_abbr1 … H) -H * /4 width=5 by ex3_2_intro, ex3_intro, ex_intro, or_introl, or_intror/ qed-. @@ -181,7 +181,7 @@ lemma cpx_inv_appl1: ∀h,G,L,V1,U1,U2. ❪G,L❫ ⊢ ⓐ V1.U1 ⬈[h] U2 → | ∃∃p,V2,W1,W2,T1,T2. ❪G,L❫ ⊢ V1 ⬈[h] V2 & ❪G,L❫ ⊢ W1 ⬈[h] W2 & ❪G,L.ⓛW1❫ ⊢ T1 ⬈[h] T2 & U1 = ⓛ[p]W1.T1 & U2 = ⓓ[p]ⓝW2.V2.T2 - | ∃∃p,V,V2,W1,W2,T1,T2. ❪G,L❫ ⊢ V1 ⬈[h] V & ⇧*[1] V ≘ V2 & + | ∃∃p,V,V2,W1,W2,T1,T2. ❪G,L❫ ⊢ V1 ⬈[h] V & ⇧[1] V ≘ V2 & ❪G,L❫ ⊢ W1 ⬈[h] W2 & ❪G,L.ⓓW1❫ ⊢ T1 ⬈[h] T2 & U1 = ⓓ[p]W1.T1 & U2 = ⓓ[p]W2.ⓐV2.T2. #h #G #L #V1 #U1 #U2 * #c #H elim (cpg_inv_appl1 … H) -H * @@ -201,14 +201,14 @@ qed-. lemma cpx_inv_zero1_pair: ∀h,I,G,K,V1,T2. ❪G,K.ⓑ[I]V1❫ ⊢ #0 ⬈[h] T2 → ∨∨ T2 = #0 - | ∃∃V2. ❪G,K❫ ⊢ V1 ⬈[h] V2 & ⇧*[1] V2 ≘ T2. + | ∃∃V2. ❪G,K❫ ⊢ V1 ⬈[h] V2 & ⇧[1] V2 ≘ T2. #h #I #G #L #V1 #T2 * #c #H elim (cpg_inv_zero1_pair … H) -H * /4 width=3 by ex2_intro, ex_intro, or_intror, or_introl/ qed-. lemma cpx_inv_lref1_bind: ∀h,I,G,K,T2,i. ❪G,K.ⓘ[I]❫ ⊢ #↑i ⬈[h] T2 → ∨∨ T2 = #(↑i) - | ∃∃T. ❪G,K❫ ⊢ #i ⬈[h] T & ⇧*[1] T ≘ T2. + | ∃∃T. ❪G,K❫ ⊢ #i ⬈[h] T & ⇧[1] T ≘ T2. #h #I #G #L #T2 #i * #c #H elim (cpg_inv_lref1_bind … H) -H * /4 width=3 by ex2_intro, ex_intro, or_introl, or_intror/ qed-. @@ -222,7 +222,7 @@ lemma cpx_inv_flat1: ∀h,I,G,L,V1,U1,U2. ❪G,L❫ ⊢ ⓕ[I]V1.U1 ⬈[h] U2 ❪G,L.ⓛW1❫ ⊢ T1 ⬈[h] T2 & U1 = ⓛ[p]W1.T1 & U2 = ⓓ[p]ⓝW2.V2.T2 & I = Appl - | ∃∃p,V,V2,W1,W2,T1,T2. ❪G,L❫ ⊢ V1 ⬈[h] V & ⇧*[1] V ≘ V2 & + | ∃∃p,V,V2,W1,W2,T1,T2. ❪G,L❫ ⊢ V1 ⬈[h] V & ⇧[1] V ≘ V2 & ❪G,L❫ ⊢ W1 ⬈[h] W2 & ❪G,L.ⓓW1❫ ⊢ T1 ⬈[h] T2 & U1 = ⓓ[p]W1.T1 & U2 = ⓓ[p]W2.ⓐV2.T2 & I = Appl. @@ -249,14 +249,14 @@ lemma cpx_ind: ∀h. ∀Q:relation4 genv lenv term term. (∀I,G,L. Q G L (⓪[I]) (⓪[I])) → (∀G,L,s. Q G L (⋆s) (⋆(⫯[h]s))) → (∀I,G,K,V1,V2,W2. ❪G,K❫ ⊢ V1 ⬈[h] V2 → Q G K V1 V2 → - ⇧*[1] V2 ≘ W2 → Q G (K.ⓑ[I]V1) (#0) W2 + ⇧[1] V2 ≘ W2 → Q G (K.ⓑ[I]V1) (#0) W2 ) → (∀I,G,K,T,U,i. ❪G,K❫ ⊢ #i ⬈[h] T → Q G K (#i) T → - ⇧*[1] T ≘ U → Q G (K.ⓘ[I]) (#↑i) (U) + ⇧[1] T ≘ U → Q G (K.ⓘ[I]) (#↑i) (U) ) → (∀p,I,G,L,V1,V2,T1,T2. ❪G,L❫ ⊢ V1 ⬈[h] V2 → ❪G,L.ⓑ[I]V1❫ ⊢ T1 ⬈[h] T2 → Q G L V1 V2 → Q G (L.ⓑ[I]V1) T1 T2 → Q G L (ⓑ[p,I]V1.T1) (ⓑ[p,I]V2.T2) ) → (∀I,G,L,V1,V2,T1,T2. ❪G,L❫ ⊢ V1 ⬈[h] V2 → ❪G,L❫ ⊢ T1 ⬈[h] T2 → Q G L V1 V2 → Q G L T1 T2 → Q G L (ⓕ[I]V1.T1) (ⓕ[I]V2.T2) - ) → (∀G,L,V,T1,T,T2. ⇧*[1] T ≘ T1 → ❪G,L❫ ⊢ T ⬈[h] T2 → Q G L T T2 → + ) → (∀G,L,V,T1,T,T2. ⇧[1] T ≘ T1 → ❪G,L❫ ⊢ T ⬈[h] T2 → Q G L T T2 → Q G L (+ⓓV.T1) T2 ) → (∀G,L,V,T1,T2. ❪G,L❫ ⊢ T1 ⬈[h] T2 → Q G L T1 T2 → Q G L (ⓝV.T1) T2 @@ -267,7 +267,7 @@ lemma cpx_ind: ∀h. ∀Q:relation4 genv lenv term term. Q G L (ⓐV1.ⓛ[p]W1.T1) (ⓓ[p]ⓝW2.V2.T2) ) → (∀p,G,L,V1,V,V2,W1,W2,T1,T2. ❪G,L❫ ⊢ V1 ⬈[h] V → ❪G,L❫ ⊢ W1 ⬈[h] W2 → ❪G,L.ⓓW1❫ ⊢ T1 ⬈[h] T2 → Q G L V1 V → Q G L W1 W2 → Q G (L.ⓓW1) T1 T2 → - ⇧*[1] V ≘ V2 → Q G L (ⓐV1.ⓓ[p]W1.T1) (ⓓ[p]W2.ⓐV2.T2) + ⇧[1] V ≘ V2 → Q G L (ⓐV1.ⓓ[p]W1.T1) (ⓓ[p]W2.ⓐV2.T2) ) → ∀G,L,T1,T2. ❪G,L❫ ⊢ T1 ⬈[h] T2 → Q G L T1 T2. #h #Q #IH1 #IH2 #IH3 #IH4 #IH5 #IH6 #IH7 #IH8 #IH9 #IH10 #IH11 #G #L #T1 #T2 diff --git a/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpx_drops.ma b/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpx_drops.ma index 6ad56889f..2a97fa4b4 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpx_drops.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpx_drops.ma @@ -22,8 +22,8 @@ include "basic_2/rt_transition/cpx.ma". (* Basic_2A1: was: cpx_delta *) lemma cpx_delta_drops: ∀h,I,G,L,K,V,V2,W2,i. - ⇩*[i] L ≘ K.ⓑ[I]V → ❪G,K❫ ⊢ V ⬈[h] V2 → - ⇧*[↑i] V2 ≘ W2 → ❪G,L❫ ⊢ #i ⬈[h] W2. + ⇩[i] L ≘ K.ⓑ[I]V → ❪G,K❫ ⊢ V ⬈[h] V2 → + ⇧[↑i] V2 ≘ W2 → ❪G,L❫ ⊢ #i ⬈[h] W2. #h * #G #L #K #V #V2 #W2 #i #HLK * /3 width=7 by cpg_ell_drops, cpg_delta_drops, ex_intro/ qed. @@ -34,8 +34,8 @@ qed. lemma cpx_inv_atom1_drops: ∀h,I,G,L,T2. ❪G,L❫ ⊢ ⓪[I] ⬈[h] T2 → ∨∨ T2 = ⓪[I] | ∃∃s. T2 = ⋆(⫯[h]s) & I = Sort s - | ∃∃J,K,V,V2,i. ⇩*[i] L ≘ K.ⓑ[J]V & ❪G,K❫ ⊢ V ⬈[h] V2 & - ⇧*[↑i] V2 ≘ T2 & I = LRef i. + | ∃∃J,K,V,V2,i. ⇩[i] L ≘ K.ⓑ[J]V & ❪G,K❫ ⊢ V ⬈[h] V2 & + ⇧[↑i] V2 ≘ T2 & I = LRef i. #h #I #G #L #T2 * #c #H elim (cpg_inv_atom1_drops … H) -H * /4 width=9 by or3_intro0, or3_intro1, or3_intro2, ex4_5_intro, ex2_intro, ex_intro/ qed-. @@ -43,8 +43,8 @@ qed-. (* Basic_2A1: was: cpx_inv_lref1 *) lemma cpx_inv_lref1_drops: ∀h,G,L,T2,i. ❪G,L❫ ⊢ #i ⬈[h] T2 → T2 = #i ∨ - ∃∃J,K,V,V2. ⇩*[i] L ≘ K. ⓑ[J]V & ❪G,K❫ ⊢ V ⬈[h] V2 & - ⇧*[↑i] V2 ≘ T2. + ∃∃J,K,V,V2. ⇩[i] L ≘ K. ⓑ[J]V & ❪G,K❫ ⊢ V ⬈[h] V2 & + ⇧[↑i] V2 ≘ T2. #h #G #L #T1 #i * #c #H elim (cpg_inv_lref1_drops … H) -H * /4 width=7 by ex3_4_intro, ex_intro, or_introl, or_intror/ qed-. diff --git a/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpx_drops_basic.ma b/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpx_drops_basic.ma index 13c54293a..b01b5d58d 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpx_drops_basic.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpx_drops_basic.ma @@ -20,7 +20,7 @@ include "basic_2/rt_transition/cpx_drops.ma". (* Properties with basic relocation *****************************************) lemma cpx_subst (h) (G) (L) (U1) (i): - ∀I,K,V. ⇩*[i] L ≘ K.ⓑ[I]V → + ∀I,K,V. ⇩[i] L ≘ K.ⓑ[I]V → ∃∃U2,T2. ❪G,L❫ ⊢ U1 ⬈[h] U2 & ⇧[i,1] T2 ≘ U2. #h #G #L #U1 @(fqup_wf_ind_eq (Ⓣ) … G L U1) -G -L -U1 #G0 #L0 #U0 #IH #G #L * * diff --git a/matita/matita/contribs/lambdadelta/basic_2/rt_transition/lpr_lpr.ma b/matita/matita/contribs/lambdadelta/basic_2/rt_transition/lpr_lpr.ma index 58f5d5843..2b92825d3 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/rt_transition/lpr_lpr.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/rt_transition/lpr_lpr.ma @@ -35,8 +35,8 @@ fact cpr_conf_lpr_atom_delta (h): ∀G0,L0,i. ( ∀G,L,T. ❪G0,L0,#i❫ ⬂+ ❪G,L,T❫ → IH_cpr_conf_lpr h G L T ) → - ∀K0,V0. ⇩*[i] L0 ≘ K0.ⓓV0 → - ∀V2. ❪G0,K0❫ ⊢ V0 ➡[h] V2 → ∀T2. ⇧*[↑i] V2 ≘ T2 → + ∀K0,V0. ⇩[i] L0 ≘ K0.ⓓV0 → + ∀V2. ❪G0,K0❫ ⊢ V0 ➡[h] V2 → ∀T2. ⇧[↑i] V2 ≘ T2 → ∀L1. ❪G0,L0❫ ⊢ ➡[h] L1 → ∀L2. ❪G0,L0❫ ⊢ ➡[h] L2 → ∃∃T. ❪G0,L1❫ ⊢ #i ➡[h] T & ❪G0,L2❫ ⊢ T2 ➡[h] T. #h #G0 #L0 #i #IH #K0 #V0 #HLK0 #V2 #HV02 #T2 #HVT2 #L1 #HL01 #L2 #HL02 @@ -56,10 +56,10 @@ fact cpr_conf_lpr_delta_delta (h): ∀G0,L0,i. ( ∀G,L,T. ❪G0,L0,#i❫ ⬂+ ❪G,L,T❫ → IH_cpr_conf_lpr h G L T ) → - ∀K0,V0. ⇩*[i] L0 ≘ K0.ⓓV0 → - ∀V1. ❪G0,K0❫ ⊢ V0 ➡[h] V1 → ∀T1. ⇧*[↑i] V1 ≘ T1 → - ∀KX,VX. ⇩*[i] L0 ≘ KX.ⓓVX → - ∀V2. ❪G0,KX❫ ⊢ VX ➡[h] V2 → ∀T2. ⇧*[↑i] V2 ≘ T2 → + ∀K0,V0. ⇩[i] L0 ≘ K0.ⓓV0 → + ∀V1. ❪G0,K0❫ ⊢ V0 ➡[h] V1 → ∀T1. ⇧[↑i] V1 ≘ T1 → + ∀KX,VX. ⇩[i] L0 ≘ KX.ⓓVX → + ∀V2. ❪G0,KX❫ ⊢ VX ➡[h] V2 → ∀T2. ⇧[↑i] V2 ≘ T2 → ∀L1. ❪G0,L0❫ ⊢ ➡[h] L1 → ∀L2. ❪G0,L0❫ ⊢ ➡[h] L2 → ∃∃T. ❪G0,L1❫ ⊢ T1 ➡[h] T & ❪G0,L2❫ ⊢ T2 ➡[h] T. #h #G0 #L0 #i #IH #K0 #V0 #HLK0 #V1 #HV01 #T1 #HVT1 @@ -97,7 +97,7 @@ fact cpr_conf_lpr_bind_zeta (h): ∀G,L,T. ❪G0,L0,+ⓓV0.T0❫ ⬂+ ❪G,L,T❫ → IH_cpr_conf_lpr h G L T ) → ∀V1. ❪G0,L0❫ ⊢ V0 ➡[h] V1 → ∀T1. ❪G0,L0.ⓓV0❫ ⊢ T0 ➡[h] T1 → - ∀T2. ⇧*[1]T2 ≘ T0 → ∀X2. ❪G0,L0❫ ⊢ T2 ➡[h] X2 → + ∀T2. ⇧[1]T2 ≘ T0 → ∀X2. ❪G0,L0❫ ⊢ T2 ➡[h] X2 → ∀L1. ❪G0,L0❫ ⊢ ➡[h] L1 → ∀L2. ❪G0,L0❫ ⊢ ➡[h] L2 → ∃∃T. ❪G0,L1❫ ⊢ +ⓓV1.T1 ➡[h] T & ❪G0,L2❫ ⊢ X2 ➡[h] T. #h #G0 #L0 #V0 #T0 #IH #V1 #HV01 #T1 #HT01 @@ -111,8 +111,8 @@ fact cpr_conf_lpr_zeta_zeta (h): ∀G0,L0,V0,T0. ( ∀G,L,T. ❪G0,L0,+ⓓV0.T0❫ ⬂+ ❪G,L,T❫ → IH_cpr_conf_lpr h G L T ) → - ∀T1. ⇧*[1] T1 ≘ T0 → ∀X1. ❪G0,L0❫ ⊢ T1 ➡[h] X1 → - ∀T2. ⇧*[1] T2 ≘ T0 → ∀X2. ❪G0,L0❫ ⊢ T2 ➡[h] X2 → + ∀T1. ⇧[1] T1 ≘ T0 → ∀X1. ❪G0,L0❫ ⊢ T1 ➡[h] X1 → + ∀T2. ⇧[1] T2 ≘ T0 → ∀X2. ❪G0,L0❫ ⊢ T2 ➡[h] X2 → ∀L1. ❪G0,L0❫ ⊢ ➡[h] L1 → ∀L2. ❪G0,L0❫ ⊢ ➡[h] L2 → ∃∃T. ❪G0,L1❫ ⊢ X1 ➡[h] T & ❪G0,L2❫ ⊢ X2 ➡[h] T. #h #G0 #L0 #V0 #T0 #IH #T1 #HT10 #X1 #HTX1 @@ -190,7 +190,7 @@ fact cpr_conf_lpr_flat_theta (h): ∀G,L,T. ❪G0,L0,ⓐV0.ⓓ[p]W0.T0❫ ⬂+ ❪G,L,T❫ → IH_cpr_conf_lpr h G L T ) → ∀V1. ❪G0,L0❫ ⊢ V0 ➡[h] V1 → ∀T1. ❪G0,L0❫ ⊢ ⓓ[p]W0.T0 ➡[h] T1 → - ∀V2. ❪G0,L0❫ ⊢ V0 ➡[h] V2 → ∀U2. ⇧*[1] V2 ≘ U2 → + ∀V2. ❪G0,L0❫ ⊢ V0 ➡[h] V2 → ∀U2. ⇧[1] V2 ≘ U2 → ∀W2. ❪G0,L0❫ ⊢ W0 ➡[h] W2 → ∀T2. ❪G0,L0.ⓓW0❫ ⊢ T0 ➡[h] T2 → ∀L1. ❪G0,L0❫ ⊢ ➡[h] L1 → ∀L2. ❪G0,L0❫ ⊢ ➡[h] L2 → ∃∃T. ❪G0,L1❫ ⊢ ⓐV1.T1 ➡[h] T & ❪G0,L2❫ ⊢ ⓓ[p]W2.ⓐU2.T2 ➡[h] T. @@ -233,9 +233,9 @@ fact cpr_conf_lpr_theta_theta (h): ∀p,G0,L0,V0,W0,T0. ( ∀G,L,T. ❪G0,L0,ⓐV0.ⓓ[p]W0.T0❫ ⬂+ ❪G,L,T❫ → IH_cpr_conf_lpr h G L T ) → - ∀V1. ❪G0,L0❫ ⊢ V0 ➡[h] V1 → ∀U1. ⇧*[1] V1 ≘ U1 → + ∀V1. ❪G0,L0❫ ⊢ V0 ➡[h] V1 → ∀U1. ⇧[1] V1 ≘ U1 → ∀W1. ❪G0,L0❫ ⊢ W0 ➡[h] W1 → ∀T1. ❪G0,L0.ⓓW0❫ ⊢ T0 ➡[h] T1 → - ∀V2. ❪G0,L0❫ ⊢ V0 ➡[h] V2 → ∀U2. ⇧*[1] V2 ≘ U2 → + ∀V2. ❪G0,L0❫ ⊢ V0 ➡[h] V2 → ∀U2. ⇧[1] V2 ≘ U2 → ∀W2. ❪G0,L0❫ ⊢ W0 ➡[h] W2 → ∀T2. ❪G0,L0.ⓓW0❫ ⊢ T0 ➡[h] T2 → ∀L1. ❪G0,L0❫ ⊢ ➡[h] L1 → ∀L2. ❪G0,L0❫ ⊢ ➡[h] L2 → ∃∃T. ❪G0,L1❫ ⊢ ⓓ[p]W1.ⓐU1.T1 ➡[h] T & ❪G0,L2❫ ⊢ ⓓ[p]W2.ⓐU2.T2 ➡[h] T. diff --git a/matita/matita/contribs/lambdadelta/basic_2/rt_transition/rpx_fsle.ma b/matita/matita/contribs/lambdadelta/basic_2/rt_transition/rpx_fsle.ma index 29c6a5cd3..3bce5e5cc 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/rt_transition/rpx_fsle.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/rt_transition/rpx_fsle.ma @@ -23,7 +23,7 @@ include "basic_2/rt_transition/rpx_fqup.ma". (* Forward lemmas with free variables inclusion for restricted closures *****) (* Note: "❪L2, T1❫ ⊆ ❪L2, T0❫" does not hold *) -(* Note: Take L0 = K0.ⓓ(ⓝW.V), L2 = K0.ⓓW, T0 = #0, T1 = ⇧*[1]V *) +(* Note: Take L0 = K0.ⓓ(ⓝW.V), L2 = K0.ⓓW, T0 = #0, T1 = ⇧[1]V *) (* Note: This invalidates rpxs_cpx_conf: "∀h, G. s_r_confluent1 … (cpx h G) (rpxs h G)" *) lemma rpx_cpx_conf_fsge (h) (G): ∀L0,T0,T1. ❪G,L0❫ ⊢ T0 ⬈[h] T1 → ∀L2. ❪G,L0❫ ⊢⬈[h,T0] L2 → ❪L2,T1❫ ⊆ ❪L0,T0❫. diff --git a/matita/matita/contribs/lambdadelta/ground_2/steps/rtc_isrt.ma b/matita/matita/contribs/lambdadelta/ground_2/steps/rtc_isrt.ma index 1b6c7d368..42a0ff52e 100644 --- a/matita/matita/contribs/lambdadelta/ground_2/steps/rtc_isrt.ma +++ b/matita/matita/contribs/lambdadelta/ground_2/steps/rtc_isrt.ma @@ -25,10 +25,10 @@ interpretation "test for costrained rt-transition counter (rtc)" (* Basic properties *********************************************************) -lemma isr_00: 𝐑𝐓❪0,𝟘𝟘❫. +lemma isrt_00: 𝐑𝐓❪0,𝟘𝟘❫. /2 width=3 by ex1_2_intro/ qed. -lemma isr_10: 𝐑𝐓❪0,𝟙𝟘❫. +lemma isrt_10: 𝐑𝐓❪0,𝟙𝟘❫. /2 width=3 by ex1_2_intro/ qed. lemma isrt_01: 𝐑𝐓❪1,𝟘𝟙❫. diff --git a/matita/matita/contribs/lambdadelta/ground_2/steps/rtc_isrt_max.ma b/matita/matita/contribs/lambdadelta/ground_2/steps/rtc_isrt_max.ma new file mode 100644 index 000000000..750b13858 --- /dev/null +++ b/matita/matita/contribs/lambdadelta/ground_2/steps/rtc_isrt_max.ma @@ -0,0 +1,68 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + +include "ground_2/xoa/ex_3_2.ma". +include "ground_2/steps/rtc_max.ma". +include "ground_2/steps/rtc_isrt.ma". + +(* RT-TRANSITION COUNTER ****************************************************) + +(* Properties with test for constrained rt-transition counter ***************) + +lemma isrt_max: ∀n1,n2,c1,c2. 𝐑𝐓❪n1,c1❫ → 𝐑𝐓❪n2,c2❫ → 𝐑𝐓❪n1∨n2,c1∨c2❫. +#n1 #n2 #c1 #c2 * #ri1 #rs1 #H1 * #ri2 #rs2 #H2 destruct +/2 width=3 by ex1_2_intro/ +qed. + +lemma isrt_max_O1: ∀n,c1,c2. 𝐑𝐓❪0,c1❫ → 𝐑𝐓❪n,c2❫ → 𝐑𝐓❪n,c1∨c2❫. +/2 width=1 by isrt_max/ qed. + +lemma isrt_max_O2: ∀n,c1,c2. 𝐑𝐓❪n,c1❫ → 𝐑𝐓❪0,c2❫ → 𝐑𝐓❪n,c1∨c2❫. +#n #c1 #c2 #H1 #H2 >(max_O2 n) /2 width=1 by isrt_max/ +qed. + +lemma isrt_max_idem1: ∀n,c1,c2. 𝐑𝐓❪n,c1❫ → 𝐑𝐓❪n,c2❫ → 𝐑𝐓❪n,c1∨c2❫. +#n #c1 #c2 #H1 #H2 >(idempotent_max n) /2 width=1 by isrt_max/ +qed. + +(* Inversion properties with test for constrained rt-transition counter *****) + +lemma isrt_inv_max: ∀n,c1,c2. 𝐑𝐓❪n,c1 ∨ c2❫ → + ∃∃n1,n2. 𝐑𝐓❪n1,c1❫ & 𝐑𝐓❪n2,c2❫ & (n1 ∨ n2) = n. +#n #c1 #c2 * #ri #rs #H +elim (max_inv_dx … H) -H #ri1 #rs1 #ti1 #ts1 #ri2 #rs2 #ti2 #ts2 #_ #_ #H1 #H2 #H3 #H4 +elim (max_inv_O3 … H1) -H1 /3 width=5 by ex3_2_intro, ex1_2_intro/ +qed-. + +lemma isrt_O_inv_max: ∀c1,c2. 𝐑𝐓❪0,c1 ∨ c2❫ → ∧∧ 𝐑𝐓❪0,c1❫ & 𝐑𝐓❪0,c2❫. +#c1 #c2 #H +elim (isrt_inv_max … H) -H #n1 #n2 #Hn1 #Hn2 #H +elim (max_inv_O3 … H) -H #H1 #H2 destruct +/2 width=1 by conj/ +qed-. + +lemma isrt_inv_max_O_dx: ∀n,c1,c2. 𝐑𝐓❪n,c1 ∨ c2❫ → 𝐑𝐓❪0,c2❫ → 𝐑𝐓❪n,c1❫. +#n #c1 #c2 #H #H2 +elim (isrt_inv_max … H) -H #n1 #n2 #Hn1 #Hn2 #H destruct +lapply (isrt_inj … Hn2 H2) -c2 #H destruct // +qed-. + +lemma isrt_inv_max_eq_t: ∀n,c1,c2. 𝐑𝐓❪n,c1 ∨ c2❫ → eq_t c1 c2 → + ∧∧ 𝐑𝐓❪n,c1❫ & 𝐑𝐓❪n,c2❫. +#n #c1 #c2 #H #Hc12 +elim (isrt_inv_max … H) -H #n1 #n2 #Hc1 #Hc2 #H destruct +lapply (isrt_eq_t_trans … Hc1 … Hc12) -Hc12 #H +<(isrt_inj … H … Hc2) -Hc2 +(plus_n_O n) /2 width=1 by isrt_plus/ +qed. + +lemma isrt_succ: ∀n,c. 𝐑𝐓❪n,c❫ → 𝐑𝐓❪↑n,c+𝟘𝟙❫. +/2 width=1 by isrt_plus/ qed. + +(* Inversion properties with test for constrained rt-transition counter *****) + +lemma isrt_inv_plus: ∀n,c1,c2. 𝐑𝐓❪n,c1 + c2❫ → + ∃∃n1,n2. 𝐑𝐓❪n1,c1❫ & 𝐑𝐓❪n2,c2❫ & n1 + n2 = n. +#n #c1 #c2 * #ri #rs #H +elim (plus_inv_dx … H) -H #ri1 #rs1 #ti1 #ts1 #ri2 #rs2 #ti2 #ts2 #_ #_ #H1 #H2 #H3 #H4 +elim (plus_inv_O3 … H1) -H1 /3 width=5 by ex3_2_intro, ex1_2_intro/ +qed-. + +lemma isrt_inv_plus_O_dx: ∀n,c1,c2. 𝐑𝐓❪n,c1 + c2❫ → 𝐑𝐓❪0,c2❫ → 𝐑𝐓❪n,c1❫. +#n #c1 #c2 #H #H2 +elim (isrt_inv_plus … H) -H #n1 #n2 #Hn1 #Hn2 #H destruct +lapply (isrt_inj … Hn2 H2) -c2 #H destruct // +qed-. + +lemma isrt_inv_plus_SO_dx: ∀n,c1,c2. 𝐑𝐓❪n,c1 + c2❫ → 𝐑𝐓❪1,c2❫ → + ∃∃m. 𝐑𝐓❪m,c1❫ & n = ↑m. +#n #c1 #c2 #H #H2 +elim (isrt_inv_plus … H) -H #n1 #n2 #Hn1 #Hn2 #H destruct +lapply (isrt_inj … Hn2 H2) -c2 #H destruct +/2 width=3 by ex2_intro/ +qed-. diff --git a/matita/matita/contribs/lambdadelta/ground_2/steps/rtc_isrt_shift.ma b/matita/matita/contribs/lambdadelta/ground_2/steps/rtc_isrt_shift.ma new file mode 100644 index 000000000..7f1905163 --- /dev/null +++ b/matita/matita/contribs/lambdadelta/ground_2/steps/rtc_isrt_shift.ma @@ -0,0 +1,36 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + +include "ground_2/steps/rtc_shift.ma". +include "ground_2/steps/rtc_isrt.ma". + +(* RT-TRANSITION COUNTER ****************************************************) + +(* Properties with test for costrained rt-transition counter ****************) + +lemma isr_shift: ∀c. 𝐑𝐓❪0,c❫ → 𝐑𝐓❪0,↕*c❫. +#c * #ri #rs #H destruct /2 width=3 by ex1_2_intro/ +qed. + +(* Inversion properties with test for costrained rt-counter *****************) + +lemma isrt_inv_shift: ∀n,c. 𝐑𝐓❪n,↕*c❫ → 𝐑𝐓❪0,c❫ ∧ 0 = n. +#n #c * #ri #rs #H +elim (shift_inv_dx … H) -H #rt0 #rs0 #ti0 #ts0 #_ #_ #H1 #H2 #H3 +elim (max_inv_O3 … H1) -H1 /3 width=3 by ex1_2_intro, conj/ +qed-. + +lemma isr_inv_shift: ∀c. 𝐑𝐓❪0,↕*c❫ → 𝐑𝐓❪0,c❫. +#c #H elim (isrt_inv_shift … H) -H // +qed-. diff --git a/matita/matita/contribs/lambdadelta/ground_2/steps/rtc_ist.ma b/matita/matita/contribs/lambdadelta/ground_2/steps/rtc_ist.ma index 3f6f70dae..81c584343 100644 --- a/matita/matita/contribs/lambdadelta/ground_2/steps/rtc_ist.ma +++ b/matita/matita/contribs/lambdadelta/ground_2/steps/rtc_ist.ma @@ -25,7 +25,7 @@ interpretation "test for t-transition counter (rtc)" (* Basic properties *********************************************************) -lemma isr_00: 𝐓❪0,𝟘𝟘❫. +lemma ist_00: 𝐓❪0,𝟘𝟘❫. // qed. lemma ist_01: 𝐓❪1,𝟘𝟙❫. diff --git a/matita/matita/contribs/lambdadelta/ground_2/steps/rtc_ist_max.ma b/matita/matita/contribs/lambdadelta/ground_2/steps/rtc_ist_max.ma index 6c161f653..e0b1aa661 100644 --- a/matita/matita/contribs/lambdadelta/ground_2/steps/rtc_ist_max.ma +++ b/matita/matita/contribs/lambdadelta/ground_2/steps/rtc_ist_max.ma @@ -12,6 +12,7 @@ (* *) (**************************************************************************) +include "ground_2/xoa/ex_3_2.ma". include "ground_2/steps/rtc_max.ma". include "ground_2/steps/rtc_ist.ma". diff --git a/matita/matita/contribs/lambdadelta/ground_2/steps/rtc_ist_plus.ma b/matita/matita/contribs/lambdadelta/ground_2/steps/rtc_ist_plus.ma index 7e154d6b9..4380420c3 100644 --- a/matita/matita/contribs/lambdadelta/ground_2/steps/rtc_ist_plus.ma +++ b/matita/matita/contribs/lambdadelta/ground_2/steps/rtc_ist_plus.ma @@ -12,6 +12,7 @@ (* *) (**************************************************************************) +include "ground_2/xoa/ex_3_2.ma". include "ground_2/steps/rtc_plus.ma". include "ground_2/steps/rtc_ist.ma". diff --git a/matita/matita/contribs/lambdadelta/ground_2/steps/rtc_max.ma b/matita/matita/contribs/lambdadelta/ground_2/steps/rtc_max.ma index e35ae558a..a6e0efa87 100644 --- a/matita/matita/contribs/lambdadelta/ground_2/steps/rtc_max.ma +++ b/matita/matita/contribs/lambdadelta/ground_2/steps/rtc_max.ma @@ -12,9 +12,8 @@ (* *) (**************************************************************************) -include "ground_2/xoa/ex_3_2.ma". include "ground_2/xoa/ex_6_8.ma". -include "ground_2/steps/rtc_shift.ma". +include "ground_2/steps/rtc.ma". (* RT-TRANSITION COUNTER ****************************************************) @@ -58,69 +57,3 @@ theorem max_assoc: associative … max. * #ri1 #rs1 #ti1 #ts1 * #ri2 #rs2 #ti2 #ts2 * #ri3 #rs3 #ti3 #ts3 (max_O2 n) /2 width=1 by isrt_max/ -qed. - -lemma isrt_max_idem1: ∀n,c1,c2. 𝐑𝐓❪n,c1❫ → 𝐑𝐓❪n,c2❫ → 𝐑𝐓❪n,c1∨c2❫. -#n #c1 #c2 #H1 #H2 >(idempotent_max n) /2 width=1 by isrt_max/ -qed. - -(* Inversion properties with test for constrained rt-transition counter *****) - -lemma isrt_inv_max: ∀n,c1,c2. 𝐑𝐓❪n,c1 ∨ c2❫ → - ∃∃n1,n2. 𝐑𝐓❪n1,c1❫ & 𝐑𝐓❪n2,c2❫ & (n1 ∨ n2) = n. -#n #c1 #c2 * #ri #rs #H -elim (max_inv_dx … H) -H #ri1 #rs1 #ti1 #ts1 #ri2 #rs2 #ti2 #ts2 #_ #_ #H1 #H2 #H3 #H4 -elim (max_inv_O3 … H1) -H1 /3 width=5 by ex3_2_intro, ex1_2_intro/ -qed-. - -lemma isrt_O_inv_max: ∀c1,c2. 𝐑𝐓❪0,c1 ∨ c2❫ → ∧∧ 𝐑𝐓❪0,c1❫ & 𝐑𝐓❪0,c2❫. -#c1 #c2 #H -elim (isrt_inv_max … H) -H #n1 #n2 #Hn1 #Hn2 #H -elim (max_inv_O3 … H) -H #H1 #H2 destruct -/2 width=1 by conj/ -qed-. - -lemma isrt_inv_max_O_dx: ∀n,c1,c2. 𝐑𝐓❪n,c1 ∨ c2❫ → 𝐑𝐓❪0,c2❫ → 𝐑𝐓❪n,c1❫. -#n #c1 #c2 #H #H2 -elim (isrt_inv_max … H) -H #n1 #n2 #Hn1 #Hn2 #H destruct -lapply (isrt_inj … Hn2 H2) -c2 #H destruct // -qed-. - -lemma isrt_inv_max_eq_t: ∀n,c1,c2. 𝐑𝐓❪n,c1 ∨ c2❫ → eq_t c1 c2 → - ∧∧ 𝐑𝐓❪n,c1❫ & 𝐑𝐓❪n,c2❫. -#n #c1 #c2 #H #Hc12 -elim (isrt_inv_max … H) -H #n1 #n2 #Hc1 #Hc2 #H destruct -lapply (isrt_eq_t_trans … Hc1 … Hc12) -Hc12 #H -<(isrt_inj … H … Hc2) -Hc2 -(plus_n_O n) /2 width=1 by isrt_plus/ -qed. - -lemma isrt_succ: ∀n,c. 𝐑𝐓❪n,c❫ → 𝐑𝐓❪↑n,c+𝟘𝟙❫. -/2 width=1 by isrt_plus/ qed. - -(* Inversion properties with test for constrained rt-transition counter *****) - -lemma isrt_inv_plus: ∀n,c1,c2. 𝐑𝐓❪n,c1 + c2❫ → - ∃∃n1,n2. 𝐑𝐓❪n1,c1❫ & 𝐑𝐓❪n2,c2❫ & n1 + n2 = n. -#n #c1 #c2 * #ri #rs #H -elim (plus_inv_dx … H) -H #ri1 #rs1 #ti1 #ts1 #ri2 #rs2 #ti2 #ts2 #_ #_ #H1 #H2 #H3 #H4 -elim (plus_inv_O3 … H1) -H1 /3 width=5 by ex3_2_intro, ex1_2_intro/ -qed-. - -lemma isrt_inv_plus_O_dx: ∀n,c1,c2. 𝐑𝐓❪n,c1 + c2❫ → 𝐑𝐓❪0,c2❫ → 𝐑𝐓❪n,c1❫. -#n #c1 #c2 #H #H2 -elim (isrt_inv_plus … H) -H #n1 #n2 #Hn1 #Hn2 #H destruct -lapply (isrt_inj … Hn2 H2) -c2 #H destruct // -qed-. - -lemma isrt_inv_plus_SO_dx: ∀n,c1,c2. 𝐑𝐓❪n,c1 + c2❫ → 𝐑𝐓❪1,c2❫ → - ∃∃m. 𝐑𝐓❪m,c1❫ & n = ↑m. -#n #c1 #c2 #H #H2 -elim (isrt_inv_plus … H) -H #n1 #n2 #Hn1 #Hn2 #H destruct -lapply (isrt_inj … Hn2 H2) -c2 #H destruct -/2 width=3 by ex2_intro/ -qed-. diff --git a/matita/matita/contribs/lambdadelta/ground_2/steps/rtc_shift.ma b/matita/matita/contribs/lambdadelta/ground_2/steps/rtc_shift.ma index 9601be038..f5c00d822 100644 --- a/matita/matita/contribs/lambdadelta/ground_2/steps/rtc_shift.ma +++ b/matita/matita/contribs/lambdadelta/ground_2/steps/rtc_shift.ma @@ -14,7 +14,7 @@ include "ground_2/xoa/ex_5_4.ma". include "ground_2/notation/functions/updownarrowstar_1.ma". -include "ground_2/steps/rtc_isrt.ma". +include "ground_2/steps/rtc.ma". (* RT-TRANSITION COUNTER ****************************************************) @@ -41,21 +41,3 @@ lemma shift_inv_dx: ∀ri,rs,ti,ts,c. 〈ri,rs,ti,ts〉 = ↕*c → #ri #rs #ti #ts * #ri0 #rs0 #ti0 #ts0 + + + Centralized xoa infrastructure removed. + + + Decentralized xoa infrastructure. + Generic rt-transition counter (rtc). diff --git a/matita/matita/contribs/lambdadelta/ground_2/web/ground_2_src.tbl b/matita/matita/contribs/lambdadelta/ground_2/web/ground_2_src.tbl index 15bd8bfc2..629e8999d 100644 --- a/matita/matita/contribs/lambdadelta/ground_2/web/ground_2_src.tbl +++ b/matita/matita/contribs/lambdadelta/ground_2/web/ground_2_src.tbl @@ -13,7 +13,8 @@ table { [ { "generic rt-transition counter" * } { [ { "" * } { [ "rtc_ist ( 𝐓❪?,?❫ )" "rtc_ist_shift" "rtc_ist_plus" "rtc_ist_max" * ] - [ "rtc ( 〈?,?,?,?〉 ) ( 𝟘𝟘 ) ( 𝟙𝟘 ) ( 𝟘𝟙 )" "rtc_isrc ( 𝐑𝐓❪?,?❫ )" "rtc_shift ( ↕*? )" "rtc_max ( ? ∨ ? )" "rtc_plus ( ? + ? )" * ] + [ "rtc_isrc ( 𝐑𝐓❪?,?❫ )" "rtc_isrt_shift" "rtc_isrt_plus" "rtc_isrt_max" "rtc_isrt_max_shift" * ] + [ "rtc ( 〈?,?,?,?〉 ) ( 𝟘𝟘 ) ( 𝟙𝟘 ) ( 𝟘𝟙 )" "rtc_shift ( ↕*? )" "rtc_plus ( ? + ? )" "rtc_max ( ? ∨ ? )" "rtc_max_shift" * ] } ] } diff --git a/matita/matita/contribs/lambdadelta/static_2/notation/relations/rdrop_3.ma b/matita/matita/contribs/lambdadelta/static_2/notation/relations/rdrop_3.ma new file mode 100644 index 000000000..9a8ad4f75 --- /dev/null +++ b/matita/matita/contribs/lambdadelta/static_2/notation/relations/rdrop_3.ma @@ -0,0 +1,19 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + +(* NOTATION FOR THE FORMAL SYSTEM λδ ****************************************) + +notation "hvbox( ⇩[ term 46 i ] break term 46 L1 ≘ break term 46 L2 )" + non associative with precedence 45 + for @{ 'RDrop $i $L1 $L2 }. diff --git a/matita/matita/contribs/lambdadelta/static_2/notation/relations/rdropstar_3.ma b/matita/matita/contribs/lambdadelta/static_2/notation/relations/rdropstar_3.ma deleted file mode 100644 index 13d53d684..000000000 --- a/matita/matita/contribs/lambdadelta/static_2/notation/relations/rdropstar_3.ma +++ /dev/null @@ -1,19 +0,0 @@ -(**************************************************************************) -(* ___ *) -(* ||M|| *) -(* ||A|| A project by Andrea Asperti *) -(* ||T|| *) -(* ||I|| Developers: *) -(* ||T|| The HELM team. *) -(* ||A|| http://helm.cs.unibo.it *) -(* \ / *) -(* \ / This file is distributed under the terms of the *) -(* v GNU General Public License Version 2 *) -(* *) -(**************************************************************************) - -(* NOTATION FOR THE FORMAL SYSTEM λδ ****************************************) - -notation "hvbox( ⇩*[ term 46 i ] break term 46 L1 ≘ break term 46 L2 )" - non associative with precedence 45 - for @{ 'RDropStar $i $L1 $L2 }. diff --git a/matita/matita/contribs/lambdadelta/static_2/notation/relations/rlift_3.ma b/matita/matita/contribs/lambdadelta/static_2/notation/relations/rlift_3.ma new file mode 100644 index 000000000..14719b5d0 --- /dev/null +++ b/matita/matita/contribs/lambdadelta/static_2/notation/relations/rlift_3.ma @@ -0,0 +1,19 @@ +(**************************************************************************) +(* ___ *) +(* ||M|| *) +(* ||A|| A project by Andrea Asperti *) +(* ||T|| *) +(* ||I|| Developers: *) +(* ||T|| The HELM team. *) +(* ||A|| http://helm.cs.unibo.it *) +(* \ / *) +(* \ / This file is distributed under the terms of the *) +(* v GNU General Public License Version 2 *) +(* *) +(**************************************************************************) + +(* NOTATION FOR THE FORMAL SYSTEM λδ ****************************************) + +notation "hvbox( ⇧[ term 46 i ] break term 46 T1 ≘ break term 46 T2 )" + non associative with precedence 45 + for @{ 'RLift $i $T1 $T2 }. diff --git a/matita/matita/contribs/lambdadelta/static_2/relocation/drops.ma b/matita/matita/contribs/lambdadelta/static_2/relocation/drops.ma index 7b29dd1a3..a0ec3349b 100644 --- a/matita/matita/contribs/lambdadelta/static_2/relocation/drops.ma +++ b/matita/matita/contribs/lambdadelta/static_2/relocation/drops.ma @@ -15,8 +15,8 @@ include "ground_2/xoa/ex_1_2.ma". include "ground_2/xoa/ex_4_3.ma". include "ground_2/relocation/rtmap_coafter.ma". -include "static_2/notation/relations/rdropstar_3.ma". include "static_2/notation/relations/rdropstar_4.ma". +include "static_2/notation/relations/rdrop_3.ma". include "static_2/relocation/seq.ma". include "static_2/relocation/lifts_bind.ma". @@ -34,12 +34,12 @@ inductive drops (b:bool): rtmap → relation lenv ≝ drops b (⫯f) (L1.ⓘ[I1]) (L2.ⓘ[I2]) . -interpretation "uniform slicing (local environment)" - 'RDropStar i L1 L2 = (drops true (uni i) L1 L2). - interpretation "generic slicing (local environment)" 'RDropStar b f L1 L2 = (drops b f L1 L2). +interpretation "uniform slicing (local environment)" + 'RDrop i L1 L2 = (drops true (uni i) L1 L2). + definition d_liftable1: predicate (relation2 lenv term) ≝ λR. ∀K,T. R K T → ∀b,f,L. ⇩*[b,f] L ≘ K → ∀U. ⇧*[f] T ≘ U → R L U. @@ -56,42 +56,42 @@ definition d_deliftable1_isuni: predicate (relation2 lenv term) ≝ λR. ∀L,U. R L U → ∀b,f,K. ⇩*[b,f] L ≘ K → 𝐔❪f❫ → ∀T. ⇧*[f] T ≘ U → R K T. -definition d_liftable2_sn: ∀C:Type[0]. ∀S:rtmap → relation C. - predicate (lenv → relation C) ≝ +definition d_liftable2_sn: ∀C:Type[0]. ∀S:?→relation C. + predicate (lenv→relation C) ≝ λC,S,R. ∀K,T1,T2. R K T1 T2 → ∀b,f,L. ⇩*[b,f] L ≘ K → ∀U1. S f T1 U1 → ∃∃U2. S f T2 U2 & R L U1 U2. -definition d_deliftable2_sn: ∀C:Type[0]. ∀S:rtmap → relation C. - predicate (lenv → relation C) ≝ +definition d_deliftable2_sn: ∀C:Type[0]. ∀S:?→relation C. + predicate (lenv→relation C) ≝ λC,S,R. ∀L,U1,U2. R L U1 U2 → ∀b,f,K. ⇩*[b,f] L ≘ K → ∀T1. S f T1 U1 → ∃∃T2. S f T2 U2 & R K T1 T2. -definition d_liftable2_bi: ∀C:Type[0]. ∀S:rtmap → relation C. - predicate (lenv → relation C) ≝ +definition d_liftable2_bi: ∀C:Type[0]. ∀S:?→relation C. + predicate (lenv→relation C) ≝ λC,S,R. ∀K,T1,T2. R K T1 T2 → ∀b,f,L. ⇩*[b,f] L ≘ K → ∀U1. S f T1 U1 → ∀U2. S f T2 U2 → R L U1 U2. -definition d_deliftable2_bi: ∀C:Type[0]. ∀S:rtmap → relation C. - predicate (lenv → relation C) ≝ +definition d_deliftable2_bi: ∀C:Type[0]. ∀S:?→relation C. + predicate (lenv→relation C) ≝ λC,S,R. ∀L,U1,U2. R L U1 U2 → ∀b,f,K. ⇩*[b,f] L ≘ K → ∀T1. S f T1 U1 → ∀T2. S f T2 U2 → R K T1 T2. -definition co_dropable_sn: predicate (rtmap → relation lenv) ≝ +definition co_dropable_sn: predicate (?→relation lenv) ≝ λR. ∀b,f,L1,K1. ⇩*[b,f] L1 ≘ K1 → 𝐔❪f❫ → ∀f2,L2. R f2 L1 L2 → ∀f1. f ~⊚ f1 ≘ f2 → ∃∃K2. R f1 K1 K2 & ⇩*[b,f] L2 ≘ K2. -definition co_dropable_dx: predicate (rtmap → relation lenv) ≝ +definition co_dropable_dx: predicate (?→relation lenv) ≝ λR. ∀f2,L1,L2. R f2 L1 L2 → ∀b,f,K2. ⇩*[b,f] L2 ≘ K2 → 𝐔❪f❫ → ∀f1. f ~⊚ f1 ≘ f2 → ∃∃K1. ⇩*[b,f] L1 ≘ K1 & R f1 K1 K2. -definition co_dedropable_sn: predicate (rtmap → relation lenv) ≝ +definition co_dedropable_sn: predicate (?→relation lenv) ≝ λR. ∀b,f,L1,K1. ⇩*[b,f] L1 ≘ K1 → ∀f1,K2. R f1 K1 K2 → ∀f2. f ~⊚ f1 ≘ f2 → ∃∃L2. R f2 L1 L2 & ⇩*[b,f] L2 ≘ K2 & L1 ≡[f] L2. @@ -360,8 +360,8 @@ lemma drops_inv_atom2: ∀b,L,f. ⇩*[b,f] L ≘ ⋆ → ] qed-. -lemma drops_inv_succ: ∀L1,L2,i. ⇩*[↑i] L1 ≘ L2 → - ∃∃I,K. ⇩*[i] K ≘ L2 & L1 = K.ⓘ[I]. +lemma drops_inv_succ: ∀L1,L2,i. ⇩[↑i] L1 ≘ L2 → + ∃∃I,K. ⇩[i] K ≘ L2 & L1 = K.ⓘ[I]. #L1 #L2 #i #H elim (drops_inv_isuni … H) -H // * [ #H elim (isid_inv_next … H) -H // | /2 width=4 by ex2_2_intro/ @@ -370,7 +370,7 @@ qed-. (* Properties with uniform relocations **************************************) -lemma drops_F_uni: ∀L,i. ⇩*[Ⓕ,𝐔❨i❩] L ≘ ⋆ ∨ ∃∃I,K. ⇩*[i] L ≘ K.ⓘ[I]. +lemma drops_F_uni: ∀L,i. ⇩*[Ⓕ,𝐔❨i❩] L ≘ ⋆ ∨ ∃∃I,K. ⇩[i] L ≘ K.ⓘ[I]. #L elim L -L /2 width=1 by or_introl/ #L #I #IH * /4 width=3 by drops_refl, ex1_2_intro, or_intror/ #i elim (IH i) -IH /3 width=1 by drops_drop, or_introl/ @@ -424,7 +424,7 @@ lemma drops_tls_at: ∀f,i1,i2. @❪i1,f❫ ≘ i2 → /3 width=3 by drops_eq_repl_fwd, at_inv_tls/ qed-. lemma drops_split_trans_bind2: ∀b,f,I,L,K0. ⇩*[b,f] L ≘ K0.ⓘ[I] → ∀i. @❪O,f❫ ≘ i → - ∃∃J,K. ⇩*[i]L ≘ K.ⓘ[J] & ⇩*[b,⫱*[↑i]f] K ≘ K0 & ⇧*[⫱*[↑i]f] I ≘ J. + ∃∃J,K. ⇩[i]L ≘ K.ⓘ[J] & ⇩*[b,⫱*[↑i]f] K ≘ K0 & ⇧*[⫱*[↑i]f] I ≘ J. #b #f #I #L #K0 #H #i #Hf elim (drops_split_trans … H) -H [ |5: @(after_uni_dx … Hf) |2,3: skip ] /2 width=1 by after_isid_dx/ #Y #HLY #H lapply (drops_tls_at … Hf … H) -H #H diff --git a/matita/matita/contribs/lambdadelta/static_2/relocation/drops_drops.ma b/matita/matita/contribs/lambdadelta/static_2/relocation/drops_drops.ma index b90bf07df..ee9394a5b 100644 --- a/matita/matita/contribs/lambdadelta/static_2/relocation/drops_drops.ma +++ b/matita/matita/contribs/lambdadelta/static_2/relocation/drops_drops.ma @@ -91,13 +91,13 @@ lemma drops_mono: ∀b1,f,L,L1. ⇩*[b1,f] L ≘ L1 → /3 width=8 by drops_conf, drops_fwd_isid/ qed-. -lemma drops_inv_uni: ∀L,i. ⇩*[Ⓕ,𝐔❨i❩] L ≘ ⋆ → ∀I,K. ⇩*[i] L ≘ K.ⓘ[I] → ⊥. +lemma drops_inv_uni: ∀L,i. ⇩*[Ⓕ,𝐔❨i❩] L ≘ ⋆ → ∀I,K. ⇩[i] L ≘ K.ⓘ[I] → ⊥. #L #i #H1 #I #K #H2 lapply (drops_F … H2) -H2 #H2 lapply (drops_mono … H2 … H1) -L -i #H destruct qed-. -lemma drops_ldec_dec: ∀L,i. Decidable (∃∃K,W. ⇩*[i] L ≘ K.ⓛW). +lemma drops_ldec_dec: ∀L,i. Decidable (∃∃K,W. ⇩[i] L ≘ K.ⓛW). #L #i elim (drops_F_uni L i) [| * * [ #I #K1 | * #W1 #K1 ] ] [4: /3 width=3 by ex1_2_intro, or_introl/ |*: #H1L @or_intror * #K2 #W2 #H2L diff --git a/matita/matita/contribs/lambdadelta/static_2/relocation/lifts.ma b/matita/matita/contribs/lambdadelta/static_2/relocation/lifts.ma index 6bdf97c00..2a50e45de 100644 --- a/matita/matita/contribs/lambdadelta/static_2/relocation/lifts.ma +++ b/matita/matita/contribs/lambdadelta/static_2/relocation/lifts.ma @@ -14,6 +14,7 @@ include "ground_2/relocation/nstream_after.ma". include "static_2/notation/relations/rliftstar_3.ma". +include "static_2/notation/relations/rlift_3.ma". include "static_2/syntax/term.ma". (* GENERIC RELOCATION FOR TERMS *********************************************) @@ -34,12 +35,12 @@ inductive lifts: rtmap → relation term ≝ lifts f (ⓕ[I]V1.T1) (ⓕ[I]V2.T2) . -interpretation "uniform relocation (term)" - 'RLiftStar i T1 T2 = (lifts (uni i) T1 T2). - interpretation "generic relocation (term)" 'RLiftStar f T1 T2 = (lifts f T1 T2). +interpretation "uniform relocation (term)" + 'RLift i T1 T2 = (lifts (uni i) T1 T2). + definition liftable2_sn: predicate (relation term) ≝ λR. ∀T1,T2. R T1 T2 → ∀f,U1. ⇧*[f] T1 ≘ U1 → ∃∃U2. ⇧*[f] T2 ≘ U2 & R U1 U2. @@ -128,7 +129,7 @@ lemma lifts_inv_bind1: ∀f,p,I,V1,T1,Y. ⇧*[f] ⓑ[p,I]V1.T1 ≘ Y → Y = ⓑ[p,I]V2.T2. /2 width=3 by lifts_inv_bind1_aux/ qed-. -fact lifts_inv_flat1_aux: ∀f:rtmap. ∀X,Y. ⇧*[f] X ≘ Y → +fact lifts_inv_flat1_aux: ∀f,X,Y. ⇧*[f] X ≘ Y → ∀I,V1,T1. X = ⓕ[I]V1.T1 → ∃∃V2,T2. ⇧*[f] V1 ≘ V2 & ⇧*[f] T1 ≘ T2 & Y = ⓕ[I]V2.T2. @@ -143,7 +144,7 @@ qed-. (* Basic_1: was: lift1_flat *) (* Basic_2A1: includes: lift_inv_flat1 *) -lemma lifts_inv_flat1: ∀f:rtmap. ∀I,V1,T1,Y. ⇧*[f] ⓕ[I]V1.T1 ≘ Y → +lemma lifts_inv_flat1: ∀f,I,V1,T1,Y. ⇧*[f] ⓕ[I]V1.T1 ≘ Y → ∃∃V2,T2. ⇧*[f] V1 ≘ V2 & ⇧*[f] T1 ≘ T2 & Y = ⓕ[I]V2.T2. /2 width=3 by lifts_inv_flat1_aux/ qed-. @@ -210,7 +211,7 @@ lemma lifts_inv_bind2: ∀f,p,I,V2,T2,X. ⇧*[f] X ≘ ⓑ[p,I]V2.T2 → X = ⓑ[p,I]V1.T1. /2 width=3 by lifts_inv_bind2_aux/ qed-. -fact lifts_inv_flat2_aux: ∀f:rtmap. ∀X,Y. ⇧*[f] X ≘ Y → +fact lifts_inv_flat2_aux: ∀f,X,Y. ⇧*[f] X ≘ Y → ∀I,V2,T2. Y = ⓕ[I]V2.T2 → ∃∃V1,T1. ⇧*[f] V1 ≘ V2 & ⇧*[f] T1 ≘ T2 & X = ⓕ[I]V1.T1. @@ -225,7 +226,7 @@ qed-. (* Basic_1: includes: lift_gen_flat *) (* Basic_2A1: includes: lift_inv_flat2 *) -lemma lifts_inv_flat2: ∀f:rtmap. ∀I,V2,T2,X. ⇧*[f] X ≘ ⓕ[I]V2.T2 → +lemma lifts_inv_flat2: ∀f,I,V2,T2,X. ⇧*[f] X ≘ ⓕ[I]V2.T2 → ∃∃V1,T1. ⇧*[f] V1 ≘ V2 & ⇧*[f] T1 ≘ T2 & X = ⓕ[I]V1.T1. /2 width=3 by lifts_inv_flat2_aux/ qed-. @@ -305,22 +306,22 @@ qed-. (* Inversion lemmas with uniform relocations ********************************) -lemma lifts_inv_lref1_uni: ∀l,Y,i. ⇧*[l] #i ≘ Y → Y = #(l+i). +lemma lifts_inv_lref1_uni: ∀l,Y,i. ⇧[l] #i ≘ Y → Y = #(l+i). #l #Y #i1 #H elim (lifts_inv_lref1 … H) -H /4 width=4 by at_mono, eq_f/ qed-. -lemma lifts_inv_lref2_uni: ∀l,X,i2. ⇧*[l] X ≘ #i2 → +lemma lifts_inv_lref2_uni: ∀l,X,i2. ⇧[l] X ≘ #i2 → ∃∃i1. X = #i1 & i2 = l + i1. #l #X #i2 #H elim (lifts_inv_lref2 … H) -H /3 width=3 by at_inv_uni, ex2_intro/ qed-. -lemma lifts_inv_lref2_uni_ge: ∀l,X,i. ⇧*[l] X ≘ #(l + i) → X = #i. +lemma lifts_inv_lref2_uni_ge: ∀l,X,i. ⇧[l] X ≘ #(l + i) → X = #i. #l #X #i2 #H elim (lifts_inv_lref2_uni … H) -H #i1 #H1 #H2 destruct /4 width=2 by injective_plus_r, eq_f, sym_eq/ qed-. -lemma lifts_inv_lref2_uni_lt: ∀l,X,i. ⇧*[l] X ≘ #i → i < l → ⊥. +lemma lifts_inv_lref2_uni_lt: ∀l,X,i. ⇧[l] X ≘ #i → i < l → ⊥. #l #X #i2 #H elim (lifts_inv_lref2_uni … H) -H #i1 #_ #H1 #H2 destruct /2 width=4 by lt_le_false/ qed-. @@ -334,7 +335,7 @@ lemma lifts_fwd_isid: ∀f,T1,T2. ⇧*[f] T1 ≘ T2 → 𝐈❪f❫ → T1 = T2. qed-. (* Basic_2A1: includes: lift_fwd_pair1 *) -lemma lifts_fwd_pair1: ∀f:rtmap. ∀I,V1,T1,Y. ⇧*[f] ②[I]V1.T1 ≘ Y → +lemma lifts_fwd_pair1: ∀f,I,V1,T1,Y. ⇧*[f] ②[I]V1.T1 ≘ Y → ∃∃V2,T2. ⇧*[f] V1 ≘ V2 & Y = ②[I]V2.T2. #f * [ #p ] #I #V1 #T1 #Y #H [ elim (lifts_inv_bind1 … H) -H /2 width=4 by ex2_2_intro/ @@ -343,7 +344,7 @@ lemma lifts_fwd_pair1: ∀f:rtmap. ∀I,V1,T1,Y. ⇧*[f] ②[I]V1.T1 ≘ Y → qed-. (* Basic_2A1: includes: lift_fwd_pair2 *) -lemma lifts_fwd_pair2: ∀f:rtmap. ∀I,V2,T2,X. ⇧*[f] X ≘ ②[I]V2.T2 → +lemma lifts_fwd_pair2: ∀f,I,V2,T2,X. ⇧*[f] X ≘ ②[I]V2.T2 → ∃∃V1,T1. ⇧*[f] V1 ≘ V2 & X = ②[I]V1.T1. #f * [ #p ] #I #V2 #T2 #X #H [ elim (lifts_inv_bind2 … H) -H /2 width=4 by ex2_2_intro/ @@ -399,7 +400,7 @@ elim (lifts_inv_lref1 … H) -H #j #Hij #H destruct /3 width=7 by lifts_lref, at_push/ qed. -lemma lifts_lref_uni: ∀l,i. ⇧*[l] #i ≘ #(l+i). +lemma lifts_lref_uni: ∀l,i. ⇧[l] #i ≘ #(l+i). #l elim l -l /2 width=1 by lifts_lref/ qed. @@ -476,7 +477,7 @@ qed-. (* Properties with uniform relocation ***************************************) -lemma lifts_uni: ∀n1,n2,T,U. ⇧*[𝐔❨n1❩∘𝐔❨n2❩] T ≘ U → ⇧*[n1+n2] T ≘ U. +lemma lifts_uni: ∀n1,n2,T,U. ⇧*[𝐔❨n1❩∘𝐔❨n2❩] T ≘ U → ⇧[n1+n2] T ≘ U. /3 width=4 by lifts_eq_repl_back, after_inv_total/ qed. (* Basic_2A1: removed theorems 14: diff --git a/matita/matita/contribs/lambdadelta/static_2/relocation/lifts_bind.ma b/matita/matita/contribs/lambdadelta/static_2/relocation/lifts_bind.ma index ec97e7a1b..925baceae 100644 --- a/matita/matita/contribs/lambdadelta/static_2/relocation/lifts_bind.ma +++ b/matita/matita/contribs/lambdadelta/static_2/relocation/lifts_bind.ma @@ -20,26 +20,30 @@ include "static_2/relocation/lifts.ma". definition liftsb: rtmap → relation bind ≝ λf. ext2 (lifts f). -interpretation "uniform relocation (binder for local environments)" - 'RLiftStar i I1 I2 = (liftsb (uni i) I1 I2). - interpretation "generic relocation (binder for local environments)" 'RLiftStar f I1 I2 = (liftsb f I1 I2). +interpretation "uniform relocation (binder for local environments)" + 'RLift i I1 I2 = (liftsb (uni i) I1 I2). + (* Basic_inversion lemmas **************************************************) -lemma liftsb_inv_unit_sn: ∀f,I,Z2. ⇧*[f] BUnit I ≘ Z2 → Z2 = BUnit I. +lemma liftsb_inv_unit_sn (f): + ∀I,Z2. ⇧*[f] BUnit I ≘ Z2 → Z2 = BUnit I. /2 width=2 by ext2_inv_unit_sn/ qed-. -lemma liftsb_inv_pair_sn: ∀f:rtmap. ∀Z2,I,V1. ⇧*[f] BPair I V1 ≘ Z2 → - ∃∃V2. ⇧*[f] V1 ≘ V2 & Z2 = BPair I V2. +lemma liftsb_inv_pair_sn (f): + ∀Z2,I,V1. ⇧*[f] BPair I V1 ≘ Z2 → + ∃∃V2. ⇧*[f] V1 ≘ V2 & Z2 = BPair I V2. /2 width=1 by ext2_inv_pair_sn/ qed-. -lemma liftsb_inv_unit_dx: ∀f,I,Z1. ⇧*[f] Z1 ≘ BUnit I → Z1 = BUnit I. +lemma liftsb_inv_unit_dx (f): + ∀I,Z1. ⇧*[f] Z1 ≘ BUnit I → Z1 = BUnit I. /2 width=2 by ext2_inv_unit_dx/ qed-. -lemma liftsb_inv_pair_dx: ∀f:rtmap. ∀Z1,I,V2. ⇧*[f] Z1 ≘ BPair I V2 → - ∃∃V1. ⇧*[f] V1 ≘ V2 & Z1 = BPair I V1. +lemma liftsb_inv_pair_dx (f): + ∀Z1,I,V2. ⇧*[f] Z1 ≘ BPair I V2 → + ∃∃V1. ⇧*[f] V1 ≘ V2 & Z1 = BPair I V1. /2 width=1 by ext2_inv_pair_dx/ qed-. (* Basic properties *********************************************************) @@ -48,7 +52,7 @@ lemma liftsb_eq_repl_back: ∀I1,I2. eq_repl_back … (λf. ⇧*[f] I1 ≘ I2). #I1 #I2 #f1 * -I1 -I2 /3 width=3 by lifts_eq_repl_back, ext2_pair/ qed-. -lemma liftsb_refl: ∀f. 𝐈❪f❫ → reflexive … (liftsb f). +lemma liftsb_refl (f): 𝐈❪f❫ → reflexive … (liftsb f). /3 width=1 by lifts_refl, ext2_refl/ qed. lemma liftsb_total: ∀I1,f. ∃I2. ⇧*[f] I1 ≘ I2. @@ -56,9 +60,9 @@ lemma liftsb_total: ∀I1,f. ∃I2. ⇧*[f] I1 ≘ I2. /3 width=2 by ext2_unit, ext2_pair, ex_intro/ qed-. -lemma liftsb_split_trans: ∀f,I1,I2. ⇧*[f] I1 ≘ I2 → - ∀f1,f2. f2 ⊚ f1 ≘ f → - ∃∃I. ⇧*[f1] I1 ≘ I & ⇧*[f2] I ≘ I2. +lemma liftsb_split_trans (f): + ∀I1,I2. ⇧*[f] I1 ≘ I2 → ∀f1,f2. f2 ⊚ f1 ≘ f → + ∃∃I. ⇧*[f1] I1 ≘ I & ⇧*[f2] I ≘ I2. #f #I1 #I2 * -I1 -I2 /2 width=3 by ext2_unit, ex2_intro/ #I #V1 #V2 #HV12 #f1 #f2 #Hf elim (lifts_split_trans … HV12 … Hf) -f /3 width=3 by ext2_pair, ex2_intro/ @@ -66,6 +70,7 @@ qed-. (* Basic forward lemmas *****************************************************) -lemma liftsb_fwd_isid: ∀f,I1,I2. ⇧*[f] I1 ≘ I2 → 𝐈❪f❫ → I1 = I2. +lemma liftsb_fwd_isid (f): + ∀I1,I2. ⇧*[f] I1 ≘ I2 → 𝐈❪f❫ → I1 = I2. #f #I1 #I2 * -I1 -I2 /3 width=3 by lifts_fwd_isid, eq_f2/ qed-. diff --git a/matita/matita/contribs/lambdadelta/static_2/relocation/lifts_lifts.ma b/matita/matita/contribs/lambdadelta/static_2/relocation/lifts_lifts.ma index 971d23ac9..3aef874bc 100644 --- a/matita/matita/contribs/lambdadelta/static_2/relocation/lifts_lifts.ma +++ b/matita/matita/contribs/lambdadelta/static_2/relocation/lifts_lifts.ma @@ -47,8 +47,8 @@ theorem lifts_div4: ∀f2,Tf,T. ⇧*[f2] Tf ≘ T → ∀g2,Tg. ⇧*[g2] Tg ≘ qed-. lemma lifts_div4_one: ∀f,Tf,T. ⇧*[⫯f] Tf ≘ T → - ∀T1. ⇧*[1] T1 ≘ T → - ∃∃T0. ⇧*[1] T0 ≘ Tf & ⇧*[f] T0 ≘ T1. + ∀T1. ⇧[1] T1 ≘ T → + ∃∃T0. ⇧[1] T0 ≘ Tf & ⇧*[f] T0 ≘ T1. /4 width=6 by lifts_div4, at_div_id_dx, at_div_pn/ qed-. theorem lifts_div3: ∀f2,T,T2. ⇧*[f2] T2 ≘ T → ∀f,T1. ⇧*[f] T1 ≘ T → @@ -87,8 +87,8 @@ theorem lifts_trans: ∀f1,T1,T. ⇧*[f1] T1 ≘ T → ∀f2,T2. ⇧*[f2] T ≘ qed-. lemma lifts_trans4_one (f) (T1) (T2): - ∀T. ⇧*[1]T1 ≘ T → ⇧*[⫯f]T ≘ T2 → - ∃∃T0. ⇧*[f]T1 ≘ T0 & ⇧*[1]T0 ≘ T2. + ∀T. ⇧[1]T1 ≘ T → ⇧*[⫯f]T ≘ T2 → + ∃∃T0. ⇧*[f]T1 ≘ T0 & ⇧[1]T0 ≘ T2. /4 width=6 by lifts_trans, lifts_split_trans, after_uni_one_dx/ qed-. (* Basic_2A1: includes: lift_conf_O1 lift_conf_be *) @@ -135,8 +135,8 @@ elim (HR … HU12 … HTU1) -HR -U1 #X #HUX #HTX qed-. lemma lifts_trans_uni (T): - ∀l1,T1. ⇧*[l1] T1 ≘ T → - ∀l2,T2. ⇧*[l2] T ≘ T2 → ⇧*[l1+l2] T1 ≘ T2. + ∀l1,T1. ⇧[l1] T1 ≘ T → + ∀l2,T2. ⇧[l2] T ≘ T2 → ⇧[l1+l2] T1 ≘ T2. #T #l1 #T1 #HT1 #l2 #T2 #HT2 @(lifts_trans … HT1 … HT2) // qed-. diff --git a/matita/matita/contribs/lambdadelta/static_2/relocation/lifts_teqx.ma b/matita/matita/contribs/lambdadelta/static_2/relocation/lifts_teqx.ma index 2eef832e5..789e4c4eb 100644 --- a/matita/matita/contribs/lambdadelta/static_2/relocation/lifts_teqx.ma +++ b/matita/matita/contribs/lambdadelta/static_2/relocation/lifts_teqx.ma @@ -71,8 +71,8 @@ lemma teqx_inv_lifts_dx: deliftable2_dx teqx. lemma teqx_inv_lifts_bi: deliftable2_bi teqx. /3 width=6 by teqx_inv_lifts_sn, deliftable2_sn_bi/ qed-. -lemma teqx_lifts_inv_pair_sn (I) (f:rtmap): - ∀X,T. ⇧*[f]X ≘ T → ∀V. ②[I]V.T ≛ X → ⊥. +lemma teqx_lifts_inv_pair_sn (I) (f): + ∀X,T. ⇧*[f]X ≘ T → ∀V. ②[I]V.T ≛ X → ⊥. #I #f #X #T #H elim H -f -X -T [ #f #s #V #H elim (teqx_inv_pair1 … H) -H #X1 #X2 #_ #_ #H destruct diff --git a/matita/matita/contribs/lambdadelta/static_2/relocation/lifts_tweq.ma b/matita/matita/contribs/lambdadelta/static_2/relocation/lifts_tweq.ma index 82f6e2a73..45f8a383f 100644 --- a/matita/matita/contribs/lambdadelta/static_2/relocation/lifts_tweq.ma +++ b/matita/matita/contribs/lambdadelta/static_2/relocation/lifts_tweq.ma @@ -96,7 +96,7 @@ lemma tweq_inv_lifts_bi: deliftable2_bi tweq. ] qed-. -lemma tweq_inv_abbr_pos_x_lifts_y_y (T) (f:rtmap): +lemma tweq_inv_abbr_pos_x_lifts_y_y (T) (f): ∀V,U. +ⓓV.U ≅ T → ⇧*[f]T ≘ U → ⊥. @(f_ind … tw) #n #IH #T #Hn #f #V #U #H1 #H2 destruct elim (tweq_inv_abbr_pos_sn … H1) -H1 #X1 #X2 #HX2 #H destruct -V diff --git a/matita/matita/contribs/lambdadelta/static_2/relocation/lifts_vector.ma b/matita/matita/contribs/lambdadelta/static_2/relocation/lifts_vector.ma index f424d38ea..a5310b63d 100644 --- a/matita/matita/contribs/lambdadelta/static_2/relocation/lifts_vector.ma +++ b/matita/matita/contribs/lambdadelta/static_2/relocation/lifts_vector.ma @@ -18,34 +18,35 @@ include "static_2/relocation/lifts.ma". (* GENERIC RELOCATION FOR TERM VECTORS *************************************) (* Basic_2A1: includes: liftv_nil liftv_cons *) -inductive liftsv (f:rtmap): relation (list term) ≝ +inductive liftsv (f): relation … ≝ | liftsv_nil : liftsv f (Ⓔ) (Ⓔ) | liftsv_cons: ∀T1s,T2s,T1,T2. ⇧*[f] T1 ≘ T2 → liftsv f T1s T2s → liftsv f (T1 ⨮ T1s) (T2 ⨮ T2s) . -interpretation "uniform relocation (term vector)" - 'RLiftStar i T1s T2s = (liftsv (uni i) T1s T2s). - interpretation "generic relocation (term vector)" 'RLiftStar f T1s T2s = (liftsv f T1s T2s). +interpretation "uniform relocation (term vector)" + 'RLift i T1s T2s = (liftsv (uni i) T1s T2s). + (* Basic inversion lemmas ***************************************************) -fact liftsv_inv_nil1_aux: ∀f,X,Y. ⇧*[f] X ≘ Y → X = Ⓔ → Y = Ⓔ. +fact liftsv_inv_nil1_aux (f): + ∀X,Y. ⇧*[f] X ≘ Y → X = Ⓔ → Y = Ⓔ. #f #X #Y * -X -Y // #T1s #T2s #T1 #T2 #_ #_ #H destruct qed-. (* Basic_2A1: includes: liftv_inv_nil1 *) -lemma liftsv_inv_nil1: ∀f,Y. ⇧*[f] Ⓔ ≘ Y → Y = Ⓔ. +lemma liftsv_inv_nil1 (f): + ∀Y. ⇧*[f] Ⓔ ≘ Y → Y = Ⓔ. /2 width=5 by liftsv_inv_nil1_aux/ qed-. -fact liftsv_inv_cons1_aux: ∀f:rtmap. ∀X,Y. ⇧*[f] X ≘ Y → - ∀T1,T1s. X = T1 ⨮ T1s → - ∃∃T2,T2s. ⇧*[f] T1 ≘ T2 & ⇧*[f] T1s ≘ T2s & - Y = T2 ⨮ T2s. +fact liftsv_inv_cons1_aux (f): + ∀X,Y. ⇧*[f] X ≘ Y → ∀T1,T1s. X = T1 ⨮ T1s → + ∃∃T2,T2s. ⇧*[f] T1 ≘ T2 & ⇧*[f] T1s ≘ T2s & Y = T2 ⨮ T2s. #f #X #Y * -X -Y [ #U1 #U1s #H destruct | #T1s #T2s #T1 #T2 #HT12 #HT12s #U1 #U1s #H destruct /2 width=5 by ex3_2_intro/ @@ -53,38 +54,39 @@ fact liftsv_inv_cons1_aux: ∀f:rtmap. ∀X,Y. ⇧*[f] X ≘ Y → qed-. (* Basic_2A1: includes: liftv_inv_cons1 *) -lemma liftsv_inv_cons1: ∀f:rtmap. ∀T1,T1s,Y. ⇧*[f] T1 ⨮ T1s ≘ Y → - ∃∃T2,T2s. ⇧*[f] T1 ≘ T2 & ⇧*[f] T1s ≘ T2s & - Y = T2 ⨮ T2s. +lemma liftsv_inv_cons1 (f): + ∀T1,T1s,Y. ⇧*[f] T1 ⨮ T1s ≘ Y → + ∃∃T2,T2s. ⇧*[f] T1 ≘ T2 & ⇧*[f] T1s ≘ T2s & Y = T2 ⨮ T2s. /2 width=3 by liftsv_inv_cons1_aux/ qed-. -fact liftsv_inv_nil2_aux: ∀f,X,Y. ⇧*[f] X ≘ Y → Y = Ⓔ → X = Ⓔ. +fact liftsv_inv_nil2_aux (f): + ∀X,Y. ⇧*[f] X ≘ Y → Y = Ⓔ → X = Ⓔ. #f #X #Y * -X -Y // #T1s #T2s #T1 #T2 #_ #_ #H destruct qed-. -lemma liftsv_inv_nil2: ∀f,X. ⇧*[f] X ≘ Ⓔ → X = Ⓔ. +lemma liftsv_inv_nil2 (f): + ∀X. ⇧*[f] X ≘ Ⓔ → X = Ⓔ. /2 width=5 by liftsv_inv_nil2_aux/ qed-. -fact liftsv_inv_cons2_aux: ∀f:rtmap. ∀X,Y. ⇧*[f] X ≘ Y → - ∀T2,T2s. Y = T2 ⨮ T2s → - ∃∃T1,T1s. ⇧*[f] T1 ≘ T2 & ⇧*[f] T1s ≘ T2s & - X = T1 ⨮ T1s. +fact liftsv_inv_cons2_aux (f): + ∀X,Y. ⇧*[f] X ≘ Y → ∀T2,T2s. Y = T2 ⨮ T2s → + ∃∃T1,T1s. ⇧*[f] T1 ≘ T2 & ⇧*[f] T1s ≘ T2s & X = T1 ⨮ T1s. #f #X #Y * -X -Y [ #U2 #U2s #H destruct | #T1s #T2s #T1 #T2 #HT12 #HT12s #U2 #U2s #H destruct /2 width=5 by ex3_2_intro/ ] qed-. -lemma liftsv_inv_cons2: ∀f:rtmap. ∀X,T2,T2s. ⇧*[f] X ≘ T2 ⨮ T2s → - ∃∃T1,T1s. ⇧*[f] T1 ≘ T2 & ⇧*[f] T1s ≘ T2s & - X = T1 ⨮ T1s. +lemma liftsv_inv_cons2 (f): + ∀X,T2,T2s. ⇧*[f] X ≘ T2 ⨮ T2s → + ∃∃T1,T1s. ⇧*[f] T1 ≘ T2 & ⇧*[f] T1s ≘ T2s & X = T1 ⨮ T1s. /2 width=3 by liftsv_inv_cons2_aux/ qed-. (* Basic_1: was: lifts1_flat (left to right) *) -lemma lifts_inv_applv1: ∀f:rtmap. ∀V1s,U1,T2. ⇧*[f] Ⓐ V1s.U1 ≘ T2 → - ∃∃V2s,U2. ⇧*[f] V1s ≘ V2s & ⇧*[f] U1 ≘ U2 & - T2 = Ⓐ V2s.U2. +lemma lifts_inv_applv1 (f): + ∀V1s,U1,T2. ⇧*[f] Ⓐ V1s.U1 ≘ T2 → + ∃∃V2s,U2. ⇧*[f] V1s ≘ V2s & ⇧*[f] U1 ≘ U2 & T2 = Ⓐ V2s.U2. #f #V1s elim V1s -V1s [ /3 width=5 by ex3_2_intro, liftsv_nil/ | #V1 #V1s #IHV1s #T1 #X #H elim (lifts_inv_flat1 … H) -H @@ -93,9 +95,9 @@ lemma lifts_inv_applv1: ∀f:rtmap. ∀V1s,U1,T2. ⇧*[f] Ⓐ V1s.U1 ≘ T2 → ] qed-. -lemma lifts_inv_applv2: ∀f:rtmap. ∀V2s,U2,T1. ⇧*[f] T1 ≘ Ⓐ V2s.U2 → - ∃∃V1s,U1. ⇧*[f] V1s ≘ V2s & ⇧*[f] U1 ≘ U2 & - T1 = Ⓐ V1s.U1. +lemma lifts_inv_applv2 (f): + ∀V2s,U2,T1. ⇧*[f] T1 ≘ Ⓐ V2s.U2 → + ∃∃V1s,U1. ⇧*[f] V1s ≘ V2s & ⇧*[f] U1 ≘ U2 & T1 = Ⓐ V1s.U1. #f #V2s elim V2s -V2s [ /3 width=5 by ex3_2_intro, liftsv_nil/ | #V2 #V2s #IHV2s #T2 #X #H elim (lifts_inv_flat2 … H) -H @@ -107,7 +109,8 @@ qed-. (* Basic properties *********************************************************) (* Basic_2A1: includes: liftv_total *) -lemma liftsv_total: ∀f. ∀T1s:list term. ∃T2s. ⇧*[f] T1s ≘ T2s. +lemma liftsv_total (f): + ∀T1s. ∃T2s. ⇧*[f] T1s ≘ T2s. #f #T1s elim T1s -T1s [ /2 width=2 by liftsv_nil, ex_intro/ | #T1 #T1s * #T2s #HT12s @@ -116,15 +119,15 @@ lemma liftsv_total: ∀f. ∀T1s:list term. ∃T2s. ⇧*[f] T1s ≘ T2s. qed-. (* Basic_1: was: lifts1_flat (right to left) *) -lemma lifts_applv: ∀f:rtmap. ∀V1s,V2s. ⇧*[f] V1s ≘ V2s → - ∀T1,T2. ⇧*[f] T1 ≘ T2 → - ⇧*[f] Ⓐ V1s.T1 ≘ Ⓐ V2s.T2. +lemma lifts_applv (f): + ∀V1s,V2s. ⇧*[f] V1s ≘ V2s → ∀T1,T2. ⇧*[f] T1 ≘ T2 → + ⇧*[f] Ⓐ V1s.T1 ≘ Ⓐ V2s.T2. #f #V1s #V2s #H elim H -V1s -V2s /3 width=1 by lifts_flat/ qed. -lemma liftsv_split_trans: ∀f,T1s,T2s. ⇧*[f] T1s ≘ T2s → - ∀f1,f2. f2 ⊚ f1 ≘ f → - ∃∃Ts. ⇧*[f1] T1s ≘ Ts & ⇧*[f2] Ts ≘ T2s. +lemma liftsv_split_trans (f): + ∀T1s,T2s. ⇧*[f] T1s ≘ T2s → ∀f1,f2. f2 ⊚ f1 ≘ f → + ∃∃Ts. ⇧*[f1] T1s ≘ Ts & ⇧*[f2] Ts ≘ T2s. #f #T1s #T2s #H elim H -T1s -T2s [ /2 width=3 by liftsv_nil, ex2_intro/ | #T1s #T2s #T1 #T2 #HT12 #_ #IH #f1 #f2 #Hf diff --git a/matita/matita/contribs/lambdadelta/static_2/relocation/sex_sex.ma b/matita/matita/contribs/lambdadelta/static_2/relocation/sex_sex.ma index e75771c23..cc71886a2 100644 --- a/matita/matita/contribs/lambdadelta/static_2/relocation/sex_sex.ma +++ b/matita/matita/contribs/lambdadelta/static_2/relocation/sex_sex.ma @@ -21,8 +21,8 @@ include "static_2/relocation/drops.ma". theorem sex_trans_gen (RN1) (RP1) (RN2) (RP2) (RN) (RP): ∀L1,f. - (∀g,I,K,n. ⇩*[n] L1 ≘ K.ⓘ[I] → ↑g = ⫱*[n] f → sex_transitive RN1 RN2 RN RN1 RP1 g K I) → - (∀g,I,K,n. ⇩*[n] L1 ≘ K.ⓘ[I] → ⫯g = ⫱*[n] f → sex_transitive RP1 RP2 RP RN1 RP1 g K I) → + (∀g,I,K,n. ⇩[n] L1 ≘ K.ⓘ[I] → ↑g = ⫱*[n] f → sex_transitive RN1 RN2 RN RN1 RP1 g K I) → + (∀g,I,K,n. ⇩[n] L1 ≘ K.ⓘ[I] → ⫯g = ⫱*[n] f → sex_transitive RP1 RP2 RP RN1 RP1 g K I) → ∀L0. L1 ⪤[RN1,RP1,f] L0 → ∀L2. L0 ⪤[RN2,RP2,f] L2 → L1 ⪤[RN,RP,f] L2. @@ -62,8 +62,8 @@ qed-. theorem sex_conf (RN1) (RP1) (RN2) (RP2): ∀L,f. - (∀g,I,K,n. ⇩*[n] L ≘ K.ⓘ[I] → ↑g = ⫱*[n] f → R_pw_confluent2_sex RN1 RN2 RN1 RP1 RN2 RP2 g K I) → - (∀g,I,K,n. ⇩*[n] L ≘ K.ⓘ[I] → ⫯g = ⫱*[n] f → R_pw_confluent2_sex RP1 RP2 RN1 RP1 RN2 RP2 g K I) → + (∀g,I,K,n. ⇩[n] L ≘ K.ⓘ[I] → ↑g = ⫱*[n] f → R_pw_confluent2_sex RN1 RN2 RN1 RP1 RN2 RP2 g K I) → + (∀g,I,K,n. ⇩[n] L ≘ K.ⓘ[I] → ⫯g = ⫱*[n] f → R_pw_confluent2_sex RP1 RP2 RN1 RP1 RN2 RP2 g K I) → pw_confluent2 … (sex RN1 RP1 f) (sex RN2 RP2 f) L. #RN1 #RP1 #RN2 #RP2 #L elim L -L [ #f #_ #_ #L1 #H1 #L2 #H2 >(sex_inv_atom1 … H1) >(sex_inv_atom1 … H2) -H2 -H1 diff --git a/matita/matita/contribs/lambdadelta/static_2/s_computation/fqup.ma b/matita/matita/contribs/lambdadelta/static_2/s_computation/fqup.ma index 91a2ab2a9..ed7315b8c 100644 --- a/matita/matita/contribs/lambdadelta/static_2/s_computation/fqup.ma +++ b/matita/matita/contribs/lambdadelta/static_2/s_computation/fqup.ma @@ -86,7 +86,7 @@ qed-. (* Advanced properties ******************************************************) lemma fqup_zeta (b) (p) (I) (G) (K) (V): - ∀T1,T2. ⇧*[1]T2 ≘ T1 → ❪G,K,ⓑ[p,I]V.T1❫ ⬂+[b] ❪G,K,T2❫. + ∀T1,T2. ⇧[1]T2 ≘ T1 → ❪G,K,ⓑ[p,I]V.T1❫ ⬂+[b] ❪G,K,T2❫. * /4 width=5 by fqup_strap2, fqu_fqup, fqu_drop, fqu_clear, fqu_bind_dx/ qed. (* Basic_2A1: removed theorems 1: fqup_drop *) diff --git a/matita/matita/contribs/lambdadelta/static_2/s_computation/fqup_drops.ma b/matita/matita/contribs/lambdadelta/static_2/s_computation/fqup_drops.ma index 2a81feacf..2b5173d75 100644 --- a/matita/matita/contribs/lambdadelta/static_2/s_computation/fqup_drops.ma +++ b/matita/matita/contribs/lambdadelta/static_2/s_computation/fqup_drops.ma @@ -19,7 +19,7 @@ include "static_2/s_computation/fqup.ma". (* Properties with generic slicing for local environments *******************) -lemma fqup_drops_succ: ∀b,G,K,T,i,L,U. ⇩*[↑i] L ≘ K → ⇧*[↑i] T ≘ U → +lemma fqup_drops_succ: ∀b,G,K,T,i,L,U. ⇩[↑i] L ≘ K → ⇧[↑i] T ≘ U → ❪G,L,U❫ ⬂+[b] ❪G,K,T❫. #b #G #K #T #i elim i -i [ #L #U #HLK #HTU elim (drops_inv_succ … HLK) -HLK @@ -32,7 +32,7 @@ lemma fqup_drops_succ: ∀b,G,K,T,i,L,U. ⇩*[↑i] L ≘ K → ⇧*[↑i] T ≘ ] qed. -lemma fqup_drops_strap1: ∀b,G1,G2,L1,K1,K2,T1,T2,U1,i. ⇩*[i] L1 ≘ K1 → ⇧*[i] T1 ≘ U1 → +lemma fqup_drops_strap1: ∀b,G1,G2,L1,K1,K2,T1,T2,U1,i. ⇩[i] L1 ≘ K1 → ⇧[i] T1 ≘ U1 → ❪G1,K1,T1❫ ⬂[b] ❪G2,K2,T2❫ → ❪G1,L1,U1❫ ⬂+[b] ❪G2,K2,T2❫. #b #G1 #G2 #L1 #K1 #K2 #T1 #T2 #U1 * [ #HLK1 #HTU1 #HT12 @@ -42,5 +42,5 @@ lemma fqup_drops_strap1: ∀b,G1,G2,L1,K1,K2,T1,T2,U1,i. ⇩*[i] L1 ≘ K1 → ] qed-. -lemma fqup_lref: ∀b,I,G,L,K,V,i. ⇩*[i] L ≘ K.ⓑ[I]V → ❪G,L,#i❫ ⬂+[b] ❪G,K,V❫. +lemma fqup_lref: ∀b,I,G,L,K,V,i. ⇩[i] L ≘ K.ⓑ[I]V → ❪G,L,#i❫ ⬂+[b] ❪G,K,V❫. /2 width=6 by fqup_drops_strap1/ qed. diff --git a/matita/matita/contribs/lambdadelta/static_2/s_computation/fqus.ma b/matita/matita/contribs/lambdadelta/static_2/s_computation/fqus.ma index 2d8676959..61d3da9a1 100644 --- a/matita/matita/contribs/lambdadelta/static_2/s_computation/fqus.ma +++ b/matita/matita/contribs/lambdadelta/static_2/s_computation/fqus.ma @@ -101,7 +101,7 @@ lemma fqus_inv_bind1: ∀b,p,I,G1,G2,L1,L2,V1,T1,T2. ❪G1,L1,ⓑ[p,I]V1.T1❫ | ❪G1,L1,V1❫ ⬂*[b] ❪G2,L2,T2❫ | ∧∧ ❪G1,L1.ⓑ[I]V1,T1❫ ⬂*[b] ❪G2,L2,T2❫ & b = Ⓣ | ∧∧ ❪G1,L1.ⓧ,T1❫ ⬂*[b] ❪G2,L2,T2❫ & b = Ⓕ - | ∃∃J,L,T. ❪G1,L,T❫ ⬂*[b] ❪G2,L2,T2❫ & ⇧*[1] T ≘ ⓑ[p,I]V1.T1 & L1 = L.ⓘ[J]. + | ∃∃J,L,T. ❪G1,L,T❫ ⬂*[b] ❪G2,L2,T2❫ & ⇧[1] T ≘ ⓑ[p,I]V1.T1 & L1 = L.ⓘ[J]. #b #p #I #G1 #G2 #L1 #L2 #V1 #T1 #T2 #H elim (fqus_inv_fqu_sn … H) -H * /3 width=1 by and3_intro, or5_intro0/ #G #L #T #H elim (fqu_inv_bind1 … H) -H * [4: #J ] #H1 #H2 #H3 [3,4: #Hb ] #H destruct @@ -113,7 +113,7 @@ lemma fqus_inv_bind1_true: ∀p,I,G1,G2,L1,L2,V1,T1,T2. ❪G1,L1,ⓑ[p,I]V1.T1 ∨∨ ∧∧ G1 = G2 & L1 = L2 & ⓑ[p,I]V1.T1 = T2 | ❪G1,L1,V1❫ ⬂* ❪G2,L2,T2❫ | ❪G1,L1.ⓑ[I]V1,T1❫ ⬂* ❪G2,L2,T2❫ - | ∃∃J,L,T. ❪G1,L,T❫ ⬂* ❪G2,L2,T2❫ & ⇧*[1] T ≘ ⓑ[p,I]V1.T1 & L1 = L.ⓘ[J]. + | ∃∃J,L,T. ❪G1,L,T❫ ⬂* ❪G2,L2,T2❫ & ⇧[1] T ≘ ⓑ[p,I]V1.T1 & L1 = L.ⓘ[J]. #p #I #G1 #G2 #L1 #L2 #V1 #T1 #T2 #H elim (fqus_inv_bind1 … H) -H [1,3,4: * ] /3 width=1 by and3_intro, or4_intro0, or4_intro1, or4_intro2, or4_intro3/ #_ #H destruct @@ -123,7 +123,7 @@ lemma fqus_inv_flat1: ∀b,I,G1,G2,L1,L2,V1,T1,T2. ❪G1,L1,ⓕ[I]V1.T1❫ ⬂*[ ∨∨ ∧∧ G1 = G2 & L1 = L2 & ⓕ[I]V1.T1 = T2 | ❪G1,L1,V1❫ ⬂*[b] ❪G2,L2,T2❫ | ❪G1,L1,T1❫ ⬂*[b] ❪G2,L2,T2❫ - | ∃∃J,L,T. ❪G1,L,T❫ ⬂*[b] ❪G2,L2,T2❫ & ⇧*[1] T ≘ ⓕ[I]V1.T1 & L1 = L.ⓘ[J]. + | ∃∃J,L,T. ❪G1,L,T❫ ⬂*[b] ❪G2,L2,T2❫ & ⇧[1] T ≘ ⓕ[I]V1.T1 & L1 = L.ⓘ[J]. #b #I #G1 #G2 #L1 #L2 #V1 #T1 #T2 #H elim (fqus_inv_fqu_sn … H) -H * /3 width=1 by and3_intro, or4_intro0/ #G #L #T #H elim (fqu_inv_flat1 … H) -H * [3: #J ] #H1 #H2 #H3 #H destruct diff --git a/matita/matita/contribs/lambdadelta/static_2/s_computation/fqus_drops.ma b/matita/matita/contribs/lambdadelta/static_2/s_computation/fqus_drops.ma index 8216c86c0..21bd6a775 100644 --- a/matita/matita/contribs/lambdadelta/static_2/s_computation/fqus_drops.ma +++ b/matita/matita/contribs/lambdadelta/static_2/s_computation/fqus_drops.ma @@ -19,7 +19,7 @@ include "static_2/s_computation/fqus_fqup.ma". (* Properties with generic slicing for local environments *******************) -lemma fqus_drops: ∀b,G,L,K,T,U,i. ⇩*[i] L ≘ K → ⇧*[i] T ≘ U → +lemma fqus_drops: ∀b,G,L,K,T,U,i. ⇩[i] L ≘ K → ⇧[i] T ≘ U → ❪G,L,U❫ ⬂*[b] ❪G,K,T❫. #b #G #L #K #T #U * /3 width=3 by fqup_drops_succ, fqup_fqus/ #HLK #HTU <(lifts_fwd_isid … HTU) -U // <(drops_fwd_isid … HLK) -K // diff --git a/matita/matita/contribs/lambdadelta/static_2/s_transition/fqu.ma b/matita/matita/contribs/lambdadelta/static_2/s_transition/fqu.ma index 915028884..d26e1f997 100644 --- a/matita/matita/contribs/lambdadelta/static_2/s_transition/fqu.ma +++ b/matita/matita/contribs/lambdadelta/static_2/s_transition/fqu.ma @@ -34,7 +34,7 @@ inductive fqu (b:bool): tri_relation genv lenv term ≝ | fqu_bind_dx: ∀p,I,G,L,V,T. b = Ⓣ → fqu b G L (ⓑ[p,I]V.T) G (L.ⓑ[I]V) T | fqu_clear : ∀p,I,G,L,V,T. b = Ⓕ → fqu b G L (ⓑ[p,I]V.T) G (L.ⓧ) T | fqu_flat_dx: ∀I,G,L,V,T. fqu b G L (ⓕ[I]V.T) G L T -| fqu_drop : ∀I,G,L,T,U. ⇧*[1] T ≘ U → fqu b G (L.ⓘ[I]) U G L T +| fqu_drop : ∀I,G,L,T,U. ⇧[1] T ≘ U → fqu b G (L.ⓘ[I]) U G L T . interpretation @@ -119,7 +119,7 @@ fact fqu_inv_bind1_aux: ∀b,G1,G2,L1,L2,T1,T2. ❪G1,L1,T1❫ ⬂[b] ❪G2,L2,T ∨∨ ∧∧ G1 = G2 & L1 = L2 & V1 = T2 | ∧∧ G1 = G2 & L1.ⓑ[I]V1 = L2 & U1 = T2 & b = Ⓣ | ∧∧ G1 = G2 & L1.ⓧ = L2 & U1 = T2 & b = Ⓕ - | ∃∃J. G1 = G2 & L1 = L2.ⓘ[J] & ⇧*[1] T2 ≘ ⓑ[p,I]V1.U1. + | ∃∃J. G1 = G2 & L1 = L2.ⓘ[J] & ⇧[1] T2 ≘ ⓑ[p,I]V1.U1. #b #G1 #G2 #L1 #L2 #T1 #T2 * -G1 -G2 -L1 -L2 -T1 -T2 [ #I #G #L #T #q #J #V0 #U0 #H destruct | #I #G #L #V #T #q #J #V0 #U0 #H destruct /3 width=1 by and3_intro, or4_intro0/ @@ -134,13 +134,13 @@ lemma fqu_inv_bind1: ∀b,p,I,G1,G2,L1,L2,V1,U1,T2. ❪G1,L1,ⓑ[p,I]V1.U1❫ ∨∨ ∧∧ G1 = G2 & L1 = L2 & V1 = T2 | ∧∧ G1 = G2 & L1.ⓑ[I]V1 = L2 & U1 = T2 & b = Ⓣ | ∧∧ G1 = G2 & L1.ⓧ = L2 & U1 = T2 & b = Ⓕ - | ∃∃J. G1 = G2 & L1 = L2.ⓘ[J] & ⇧*[1] T2 ≘ ⓑ[p,I]V1.U1. + | ∃∃J. G1 = G2 & L1 = L2.ⓘ[J] & ⇧[1] T2 ≘ ⓑ[p,I]V1.U1. /2 width=4 by fqu_inv_bind1_aux/ qed-. lemma fqu_inv_bind1_true: ∀p,I,G1,G2,L1,L2,V1,U1,T2. ❪G1,L1,ⓑ[p,I]V1.U1❫ ⬂ ❪G2,L2,T2❫ → ∨∨ ∧∧ G1 = G2 & L1 = L2 & V1 = T2 | ∧∧ G1 = G2 & L1.ⓑ[I]V1 = L2 & U1 = T2 - | ∃∃J. G1 = G2 & L1 = L2.ⓘ[J] & ⇧*[1] T2 ≘ ⓑ[p,I]V1.U1. + | ∃∃J. G1 = G2 & L1 = L2.ⓘ[J] & ⇧[1] T2 ≘ ⓑ[p,I]V1.U1. #p #I #G1 #G2 #L1 #L2 #V1 #U1 #T2 #H elim (fqu_inv_bind1 … H) -H /3 width=1 by or3_intro0, or3_intro2/ * #HG #HL #HU #H destruct @@ -151,7 +151,7 @@ fact fqu_inv_flat1_aux: ∀b,G1,G2,L1,L2,T1,T2. ❪G1,L1,T1❫ ⬂[b] ❪G2,L2,T ∀I,V1,U1. T1 = ⓕ[I]V1.U1 → ∨∨ ∧∧ G1 = G2 & L1 = L2 & V1 = T2 | ∧∧ G1 = G2 & L1 = L2 & U1 = T2 - | ∃∃J. G1 = G2 & L1 = L2.ⓘ[J] & ⇧*[1] T2 ≘ ⓕ[I]V1.U1. + | ∃∃J. G1 = G2 & L1 = L2.ⓘ[J] & ⇧[1] T2 ≘ ⓕ[I]V1.U1. #b #G1 #G2 #L1 #L2 #T1 #T2 * -G1 -G2 -L1 -L2 -T1 -T2 [ #I #G #L #T #J #V0 #U0 #H destruct | #I #G #L #V #T #J #V0 #U0 #H destruct /3 width=1 by and3_intro, or3_intro0/ @@ -165,7 +165,7 @@ qed-. lemma fqu_inv_flat1: ∀b,I,G1,G2,L1,L2,V1,U1,T2. ❪G1,L1,ⓕ[I]V1.U1❫ ⬂[b] ❪G2,L2,T2❫ → ∨∨ ∧∧ G1 = G2 & L1 = L2 & V1 = T2 | ∧∧ G1 = G2 & L1 = L2 & U1 = T2 - | ∃∃J. G1 = G2 & L1 = L2.ⓘ[J] & ⇧*[1] T2 ≘ ⓕ[I]V1.U1. + | ∃∃J. G1 = G2 & L1 = L2.ⓘ[J] & ⇧[1] T2 ≘ ⓕ[I]V1.U1. /2 width=4 by fqu_inv_flat1_aux/ qed-. (* Advanced inversion lemmas ************************************************) diff --git a/matita/matita/contribs/lambdadelta/static_2/static/aaa_drops.ma b/matita/matita/contribs/lambdadelta/static_2/static/aaa_drops.ma index 866a0a528..bb54a3367 100644 --- a/matita/matita/contribs/lambdadelta/static_2/static/aaa_drops.ma +++ b/matita/matita/contribs/lambdadelta/static_2/static/aaa_drops.ma @@ -22,7 +22,7 @@ include "static_2/static/aaa.ma". (* Advanced properties ******************************************************) (* Basic_2A1: was: aaa_lref *) -lemma aaa_lref_drops: ∀I,G,K,V,B,i,L. ⇩*[i] L ≘ K.ⓑ[I]V → ❪G,K❫ ⊢ V ⁝ B → ❪G,L❫ ⊢ #i ⁝ B. +lemma aaa_lref_drops: ∀I,G,K,V,B,i,L. ⇩[i] L ≘ K.ⓑ[I]V → ❪G,K❫ ⊢ V ⁝ B → ❪G,L❫ ⊢ #i ⁝ B. #I #G #K #V #B #i elim i -i [ #L #H lapply (drops_fwd_isid … H ?) -H // #H destruct /2 width=1 by aaa_zero/ @@ -35,7 +35,7 @@ qed. (* Basic_2A1: was: aaa_inv_lref *) lemma aaa_inv_lref_drops: ∀G,A,i,L. ❪G,L❫ ⊢ #i ⁝ A → - ∃∃I,K,V. ⇩*[i] L ≘ K.ⓑ[I]V & ❪G,K❫ ⊢ V ⁝ A. + ∃∃I,K,V. ⇩[i] L ≘ K.ⓑ[I]V & ❪G,K❫ ⊢ V ⁝ A. #G #A #i elim i -i [ #L #H elim (aaa_inv_zero … H) -H /3 width=5 by drops_refl, ex2_3_intro/ | #i #IH #L #H elim (aaa_inv_lref … H) -H @@ -44,7 +44,7 @@ lemma aaa_inv_lref_drops: ∀G,A,i,L. ❪G,L❫ ⊢ #i ⁝ A → qed-. lemma aaa_pair_inv_lref (G) (L) (i): - ∀A. ❪G,L❫ ⊢ #i ⁝ A → ∀I,K,V. ⇩*[i] L ≘ K.ⓑ[I]V → ❪G,K❫ ⊢ V ⁝ A. + ∀A. ❪G,L❫ ⊢ #i ⁝ A → ∀I,K,V. ⇩[i] L ≘ K.ⓑ[I]V → ❪G,K❫ ⊢ V ⁝ A. #G #L #i #A #H #I #K #V #HLK elim (aaa_inv_lref_drops … H) -H #J #Y #X #HLY #HX lapply (drops_mono … HLY … HLK) -L -i #H destruct // diff --git a/matita/matita/contribs/lambdadelta/static_2/static/frees_drops.ma b/matita/matita/contribs/lambdadelta/static_2/static/frees_drops.ma index 37c629351..247179603 100644 --- a/matita/matita/contribs/lambdadelta/static_2/static/frees_drops.ma +++ b/matita/matita/contribs/lambdadelta/static_2/static/frees_drops.ma @@ -32,7 +32,7 @@ qed. lemma frees_pair_drops: ∀f,K,V. K ⊢ 𝐅+❪V❫ ≘ f → - ∀i,I,L. ⇩*[i] L ≘ K.ⓑ[I]V → L ⊢ 𝐅+❪#i❫ ≘ ⫯*[i] ↑f. + ∀i,I,L. ⇩[i] L ≘ K.ⓑ[I]V → L ⊢ 𝐅+❪#i❫ ≘ ⫯*[i] ↑f. #f #K #V #Hf #i elim i -i [ #I #L #H lapply (drops_fwd_isid … H ?) -H /2 width=1 by frees_pair/ | #i #IH #I #L #H elim (drops_inv_succ … H) -H /3 width=2 by frees_lref/ @@ -40,7 +40,7 @@ lemma frees_pair_drops: qed. lemma frees_unit_drops: - ∀f. 𝐈❪f❫ → ∀I,K,i,L. ⇩*[i] L ≘ K.ⓤ[I] → + ∀f. 𝐈❪f❫ → ∀I,K,i,L. ⇩[i] L ≘ K.ⓤ[I] → L ⊢ 𝐅+❪#i❫ ≘ ⫯*[i] ↑f. #f #Hf #I #K #i elim i -i [ #L #H lapply (drops_fwd_isid … H ?) -H /2 width=1 by frees_unit/ @@ -51,7 +51,7 @@ qed. lemma frees_lref_pushs: ∀f,K,j. K ⊢ 𝐅+❪#j❫ ≘ f → - ∀i,L. ⇩*[i] L ≘ K → L ⊢ 𝐅+❪#(i+j)❫ ≘ ⫯*[i] f. + ∀i,L. ⇩[i] L ≘ K → L ⊢ 𝐅+❪#(i+j)❫ ≘ ⫯*[i] f. #f #K #j #Hf #i elim i -i [ #L #H lapply (drops_fwd_isid … H ?) -H // | #i #IH #L #H elim (drops_inv_succ … H) -H @@ -64,8 +64,8 @@ qed. lemma frees_inv_lref_drops: ∀L,i,f. L ⊢ 𝐅+❪#i❫ ≘ f → ∨∨ ∃∃g. ⇩*[Ⓕ,𝐔❨i❩] L ≘ ⋆ & 𝐈❪g❫ & f = ⫯*[i] ↑g - | ∃∃g,I,K,V. K ⊢ 𝐅+❪V❫ ≘ g & ⇩*[i] L ≘ K.ⓑ[I]V & f = ⫯*[i] ↑g - | ∃∃g,I,K. ⇩*[i] L ≘ K.ⓤ[I] & 𝐈❪g❫ & f = ⫯*[i] ↑g. + | ∃∃g,I,K,V. K ⊢ 𝐅+❪V❫ ≘ g & ⇩[i] L ≘ K.ⓑ[I]V & f = ⫯*[i] ↑g + | ∃∃g,I,K. ⇩[i] L ≘ K.ⓤ[I] & 𝐈❪g❫ & f = ⫯*[i] ↑g. #L elim L -L [ #i #g | #L #I #IH * [ #g cases I -I [ #I | #I #V ] -IH | #i #g ] ] #H [ elim (frees_inv_atom … H) -H #f #Hf #H destruct @@ -144,7 +144,7 @@ lemma frees_lifts: qed-. lemma frees_lifts_SO: - ∀b,L,K. ⇩*[b,𝐔❨1❩] L ≘ K → ∀T,U. ⇧*[1] T ≘ U → + ∀b,L,K. ⇩*[b,𝐔❨1❩] L ≘ K → ∀T,U. ⇧[1] T ≘ U → ∀f. K ⊢ 𝐅+❪T❫ ≘ f → L ⊢ 𝐅+❪U❫ ≘ ⫯f. #b #L #K #HLK #T #U #HTU #f #Hf @(frees_lifts b … Hf … HTU) // (**) (* auto fails *) @@ -170,7 +170,7 @@ qed-. lemma frees_inv_lifts_SO: ∀b,f,L,U. L ⊢ 𝐅+❪U❫ ≘ f → - ∀K. ⇩*[b,𝐔❨1❩] L ≘ K → ∀T. ⇧*[1] T ≘ U → + ∀K. ⇩*[b,𝐔❨1❩] L ≘ K → ∀T. ⇧[1] T ≘ U → K ⊢ 𝐅+❪T❫ ≘ ⫱f. #b #f #L #U #H #K #HLK #T #HTU elim(frees_inv_lifts_ex … H … HLK … HTU) -b -L -U #f1 #Hf #Hf1 elim (coafter_inv_nxx … Hf) -Hf @@ -188,38 +188,38 @@ qed-. (* Note: this is used by rex_conf and might be modified *) lemma frees_inv_drops_next: ∀f1,L1,T1. L1 ⊢ 𝐅+❪T1❫ ≘ f1 → - ∀I2,L2,V2,n. ⇩*[n] L1 ≘ L2.ⓑ[I2]V2 → - ∀g1. ↑g1 = ⫱*[n] f1 → + ∀I2,L2,V2,i. ⇩[i] L1 ≘ L2.ⓑ[I2]V2 → + ∀g1. ↑g1 = ⫱*[i] f1 → ∃∃g2. L2 ⊢ 𝐅+❪V2❫ ≘ g2 & g2 ⊆ g1. #f1 #L1 #T1 #H elim H -f1 -L1 -T1 -[ #f1 #L1 #s #Hf1 #I2 #L2 #V2 #n #_ #g1 #H1 -I2 -L1 -s - lapply (isid_tls n … Hf1) -Hf1

(injective_next … Hgf1) -g1 /2 width=3 by ex2_intro/ - | -Hf1 #n #HL12 lapply (drops_inv_drop1 … HL12) -HL12 + | -Hf1 #j #HL12 lapply (drops_inv_drop1 … HL12) -HL12 #HL12 #g1 tls_xn #H2 elim (IHT1 … H2) -IHT1 -H2 /3 width=6 by drops_drop, sor_inv_sle_dx_trans, ex2_intro/ ] -| #fV1 #fT1 #f1 #I1 #L1 #V1 #T1 #_ #_ #Hf1 #IHV1 #IHT1 #I2 #L2 #V2 #n #HL12 #g1 #Hgf1 - lapply (sor_tls … Hf1 n) -Hf1