From: Andrea Asperti Date: Tue, 5 Jun 2012 08:22:40 +0000 (+0000) Subject: Completed all proofs in if_machine X-Git-Tag: make_still_working~1659 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=2682e8a14cbd59e1dfd01e463d22aabd530e7ba3;p=helm.git Completed all proofs in if_machine --- diff --git a/matita/matita/lib/turing/if_machine.ma b/matita/matita/lib/turing/if_machine.ma index 5d52dea55..7279ed5cd 100644 --- a/matita/matita/lib/turing/if_machine.ma +++ b/matita/matita/lib/turing/if_machine.ma @@ -11,6 +11,8 @@ include "turing/mono.ma". +(**************************** single final machine ****************************) + definition single_finalTM ≝ λsig.λM:TM sig.seq ? M (nop ?). @@ -22,6 +24,20 @@ cases (sem_seq ????? HR (sem_nop …) intape) @(ex_intro ?? k) @(ex_intro ?? outc) % [ @Hloop | >Houtc // ] qed. +lemma single_final: ∀sig.∀M: TM sig.∀q1,q2. + halt ? (single_finalTM sig M) q1 = true + → halt ? (single_finalTM sig M) q2 = true → q1=q2. +#sig #M * + [#q1M #q2 whd in match (halt ???); #H destruct + |#q1nop * + [#q2M #_ whd in match (halt ???); #H destruct + |#q2nop #_ #_ @eq_f normalize @nop_single_state + ] + ] +qed. + +(******************************** if machine **********************************) + definition if_trans ≝ λsig. λM1,M2,M3 : TM sig. λq:states sig M1. λp. let 〈s,a〉 ≝ p in match s with @@ -51,9 +67,6 @@ definition ifTM ≝ λsig. λcondM,thenM,elseM : TM sig. | inr s' ⇒ match s' with [ inl s2 ⇒ halt sig thenM s2 | inr s3 ⇒ halt sig elseM s3 ]]). - -axiom daemon : ∀X:Prop.X. -axiom tdaemon : ∀X:Type[0].X. (****************************** lifting lemmas ********************************) lemma trans_if_liftM1 : ∀sig,M1,M2,M3,acc,s,a,news,move. @@ -137,7 +150,7 @@ lemma trans_if_M1true_notacc : ∀sig,M1,M2,M3,acc,s,a. #sig #M1 #M2 #M3 #acc #s #a #Hhalt #Hacc whd in ⊢ (??%?); >Hhalt >Hacc % qed. -(* semantics *) +(******************************** semantics ***********************************) lemma sem_if: ∀sig.∀M1,M2,M3:TM sig.∀Rtrue,Rfalse,R2,R3,acc. accRealize sig M1 acc Rtrue Rfalse → M2 ⊨ R2 → M3 ⊨ R3 → ifTM sig M1 M2 M3 acc ⊨ (Rtrue ∘ R2) ∪ (Rfalse ∘ R3). @@ -222,15 +235,93 @@ lemma sem_if_app: ∀sig,M1,M2,M3,Rtrue,Rfalse,R2,R3,R4,acc. |* #t3 * #Hleft #Hright @(Hsub … t3) %2 /2/ ] qed. -(* e ancora usato ??? *) -axiom acc_sem_if: ∀sig,M1,M2,M3,Rtrue,Rfalse,R2,R3,acc. +(* we can probably use acc_sem_if to prove sem_if *) +lemma acc_sem_if: ∀sig,M1,M2,M3,Rtrue,Rfalse,R2,R3,acc. accRealize sig M1 acc Rtrue Rfalse → M2 ⊨ R2 → M3 ⊨ R3 → accRealize sig (ifTM sig M1 (single_finalTM … M2) M3 acc) (inr … (inl … (inr … start_nop))) (Rtrue ∘ R2) (Rfalse ∘ R3). - +#sig #M1 #M2 #M3 #Rtrue #Rfalse #R2 #R3 #acc #HaccR #HR2 #HR3 #t +cases (HaccR t) #k1 * #outc1 * * #Hloop1 #HMtrue #HMfalse +cases (true_or_false (cstate ?? outc1 == acc)) #Hacc + [lapply (sem_single_final … HR2) -HR2 #HR2 + cases (HR2 (ctape sig ? outc1)) #k2 * #outc2 * #Hloop2 #HM2 + @(ex_intro … (k1+k2)) + @(ex_intro … (lift_confR … (lift_confL … outc2))) % + [% + [@(loop_merge ????????? + (mk_config ? (states sig (ifTM sig M1 (single_finalTM … M2) M3 acc)) + (inr (states sig M1) ? (inl ? (states sig M3) (start sig (single_finalTM sig M2)))) (ctape ?? outc1) ) + ? + (loop_lift ??? + (lift_confL sig (states ? M1) (FinSum (states ? (single_finalTM … M2)) (states ? M3))) + (step sig M1) (step sig (ifTM sig M1 (single_finalTM ? M2) M3 acc)) + (λc.halt sig M1 (cstate … c)) + (λc.halt_liftL ?? (halt sig M1) (cstate … c)) + … Hloop1)) + [* * + [ #sl #tl whd in ⊢ (??%? → ?); #Hl % + | #sr #tr whd in ⊢ (??%? → ?); #Hr destruct (Hr) ] + |#c0 #Hhalt >(step_if_liftM1 … Hhalt) // + |#x (config_expand ?? outc1); + whd in match (lift_confL ????); + >(trans_if_M1true_acc … Hacc) + [% | @(loop_Some ?????? Hloop1)] + |cases outc1 #s1 #t1 % + |@(loop_lift ??? + (λc.(lift_confR … (lift_confL sig (states ? (single_finalTM ? M2)) (states ? M3) c))) + … Hloop2) + [ * #s2 #t2 % + | #c0 #Hhalt >(step_if_liftM2 … Hhalt) // ] + ] + |#_ @(ex_intro … (ctape ?? outc1)) % + [@HMtrue @(\P Hacc) | >(config_expand ?? outc2) @HM2 ] + ] + |>(config_expand ?? outc2) whd in match (lift_confR ????); + * #H @False_ind @H @eq_f @eq_f >(config_expand ?? outc2) + @single_final // @(loop_Some ?????? Hloop2) + ] + |cases (HR3 (ctape sig ? outc1)) #k2 * #outc2 * #Hloop2 #HM3 + @(ex_intro … (k1+k2)) @(ex_intro … (lift_confR … (lift_confR … outc2))) % + [% + [@(loop_merge ????????? + (mk_config ? (states sig (ifTM sig M1 (single_finalTM … M2) M3 acc)) + (inr (states sig M1) ? (inr (states sig (single_finalTM ? M2)) ? (start sig M3))) (ctape ?? outc1) ) + ? + (loop_lift ??? + (lift_confL sig (states ? M1) (FinSum (states ? (single_finalTM … M2)) (states ? M3))) + (step sig M1) (step sig (ifTM sig M1 (single_finalTM ? M2) M3 acc)) + (λc.halt sig M1 (cstate … c)) + (λc.halt_liftL ?? (halt sig M1) (cstate … c)) + … Hloop1)) + [* * + [ #sl #tl whd in ⊢ (??%? → ?); #Hl % + | #sr #tr whd in ⊢ (??%? → ?); #Hr destruct (Hr) ] + |#c0 #Hhalt >(step_if_liftM1 … Hhalt) // + |#x (config_expand ?? outc1); + whd in match (lift_confL ????); + >(trans_if_M1true_notacc … Hacc) + [% | @(loop_Some ?????? Hloop1)] + |cases outc1 #s1 #t1 % + |@(loop_lift ??? + (λc.(lift_confR … (lift_confR sig (states ? (single_finalTM ? M2)) (states ? M3) c))) + … Hloop2) + [ * #s2 #t2 % + | #c0 #Hhalt >(step_if_liftM3 … Hhalt) // ] + ] + |>(config_expand ?? outc2) whd in match (lift_confR ????); + #H destruct (H) + ] + |#_ @(ex_intro … (ctape ?? outc1)) % + [@HMfalse @(\Pf Hacc) | >(config_expand ?? outc2) @HM3 ] + ] + ] +qed. + lemma acc_sem_if_app: ∀sig,M1,M2,M3,Rtrue,Rfalse,R2,R3,R4,R5,acc. accRealize sig M1 acc Rtrue Rfalse → Realize sig M2 R2 → Realize sig M3 R3 → (∀t1,t2,t3. Rtrue t1 t3 → R2 t3 t2 → R4 t1 t2) → diff --git a/matita/matita/lib/turing/mono.ma b/matita/matita/lib/turing/mono.ma index a192f608e..80e3d4aaa 100644 --- a/matita/matita/lib/turing/mono.ma +++ b/matita/matita/lib/turing/mono.ma @@ -270,6 +270,12 @@ lemma sem_nop : @(ex_intro … (mk_config ?? start_nop intape)) % % qed. +lemma nop_single_state: ∀sig.∀q1,q2:states ? (nop sig). q1 = q2. +normalize #sig * #n #ltn1 * #m #ltm1 +generalize in match ltn1; generalize in match ltm1; +<(le_n_O_to_eq … (le_S_S_to_le … ltn1)) <(le_n_O_to_eq … (le_S_S_to_le … ltm1)) +// qed. + (************************** Sequential Composition ****************************) definition seq_trans ≝ λsig. λM1,M2 : TM sig.