From: Wilmer Ricciotti Date: Wed, 9 May 2012 16:49:50 +0000 (+0000) Subject: Progress. X-Git-Tag: make_still_working~1764 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=28c261aad4d710c9f218fbbbaf1ed3b45c1caf72;p=helm.git Progress. --- diff --git a/matita/matita/lib/turing/if_machine.ma b/matita/matita/lib/turing/if_machine.ma index 7b73d006d..28983b11e 100644 --- a/matita/matita/lib/turing/if_machine.ma +++ b/matita/matita/lib/turing/if_machine.ma @@ -11,6 +11,17 @@ include "turing/mono.ma". +definition single_finalTM ≝ + λsig.λM:TM sig.seq ? M (nop ?). + +lemma sem_single_final : + ∀sig,M,R.Realize ? M R → Realize ? (single_finalTM sig M) R. +#sig #M #R #HR #intape +cases (sem_seq ????? HR (sem_nop …) intape) +#k * #outc * #Hloop * #ta * #Hta whd in ⊢ (%→?); #Houtc +@(ex_intro ?? k) @(ex_intro ?? outc) % [ @Hloop | >Houtc // ] +qed. + definition if_trans ≝ λsig. λM1,M2,M3 : TM sig. λq:states sig M1. λp. let 〈s,a〉 ≝ p in match s with @@ -41,18 +52,20 @@ definition ifTM ≝ λsig. λcondM,thenM,elseM : TM sig. [ inl s2 ⇒ halt sig thenM s2 | inr s3 ⇒ halt sig elseM s3 ]]). -axiom daemon : ∀X:Prop.X. +axiom daemon : ∀X:Prop.X. +axiom tdaemon : ∀X:Type[0].X. -theorem sem_if: ∀sig,M1,M2,M3,Rtrue,Rfalse,R2,R3,acc. +axiom sem_if: ∀sig,M1,M2,M3,Rtrue,Rfalse,R2,R3,acc. accRealize sig M1 acc Rtrue Rfalse → Realize sig M2 R2 → Realize sig M3 R3 → Realize sig (ifTM sig M1 M2 M3 acc) (λt1,t2. (Rtrue ∘ R2) t1 t2 ∨ (Rfalse ∘ R3) t1 t2). +(* #sig #M1 #M2 #M3 #Rtrue #Rfalse #R2 #R3 #acc #HaccR #HR2 #HR3 #t cases (HaccR t) #k1 * #outc1 * * #Hloop1 #HMtrue #HMfalse cases (true_or_false (cstate ?? outc1 == acc)) #Hacc [cases (HR2 (ctape sig ? outc1)) #k2 * #outc2 * #Hloop2 #HM2 @(ex_intro … (k1+k2)) @(ex_intro … (lift_confR … (lift_confL … outc2))) % - [@(loop_split ??????????? + [@(loop_merge ??????????? (loop_lift ??? (lift_confL sig (states ? M1) (FinSum (states ? M2) (states ? M3))) (step sig M1) (step sig (ifTM sig M1 M2 M3 acc)) @@ -72,9 +85,14 @@ cases (true_or_false (cstate ?? outc1 == acc)) #Hacc generalize in match Hloop1; cases outc1 #sc1 #tc1 #Hloop10 >(trans_liftL_true sig M1 M2 ??) [ whd in ⊢ (??%?); whd in ⊢ (???%); - @config_eq whd in ⊢ (???%); // - | @(loop_Some ?????? Hloop10) ] - ||4:cases outc1 #s1 #t1 % + @daemon +(* @config_eq whd in ⊢ (???%); // *) + | @(loop_Some ?????? Hloop10) + | @tdaemon + | skip ] + ] + | + |4:cases outc1 #s1 #t1 % |5: @(loop_liftR … Hloop2) @@ -89,359 +107,4 @@ cases (true_or_false (cstate ?? outc1 == acc)) #Hacc % // ] qed. -(* We do not distinuish an input tape *) - -record TM (sig:FinSet): Type[1] ≝ -{ states : FinSet; - trans : states × (option sig) → states × (option (sig × move)); - start: states; - halt : states → bool -}. - -record config (sig:FinSet) (M:TM sig): Type[0] ≝ -{ cstate : states sig M; - ctape: tape sig -}. - -definition option_hd ≝ λA.λl:list A. - match l with - [nil ⇒ None ? - |cons a _ ⇒ Some ? a - ]. - -definition tape_move ≝ λsig.λt: tape sig.λm:option (sig × move). - match m with - [ None ⇒ t - | Some m1 ⇒ - match \snd m1 with - [ R ⇒ mk_tape sig ((\fst m1)::(left ? t)) (tail ? (right ? t)) - | L ⇒ mk_tape sig (tail ? (left ? t)) ((\fst m1)::(right ? t)) - ] - ]. - -definition step ≝ λsig.λM:TM sig.λc:config sig M. - let current_char ≝ option_hd ? (right ? (ctape ?? c)) in - let 〈news,mv〉 ≝ trans sig M 〈cstate ?? c,current_char〉 in - mk_config ?? news (tape_move sig (ctape ?? c) mv). - -let rec loop (A:Type[0]) n (f:A→A) p a on n ≝ - match n with - [ O ⇒ None ? - | S m ⇒ if p a then (Some ? a) else loop A m f p (f a) - ]. - -lemma loop_incr : ∀A,f,p,k1,k2,a1,a2. - loop A k1 f p a1 = Some ? a2 → - loop A (k2+k1) f p a1 = Some ? a2. -#A #f #p #k1 #k2 #a1 #a2 generalize in match a1; elim k1 -[normalize #a0 #Hfalse destruct -|#k1' #IH #a0 Hpa0 whd in ⊢ (??%? → ??%?); // @IH -] -qed. - -lemma loop_split : ∀A,f,p,q.(∀b. p b = false → q b = false) → - ∀k1,k2,a1,a2,a3,a4. - loop A k1 f p a1 = Some ? a2 → - f a2 = a3 → q a2 = false → - loop A k2 f q a3 = Some ? a4 → - loop A (k1+k2) f q a1 = Some ? a4. -#Sig #f #p #q #Hpq #k1 elim k1 - [normalize #k2 #a1 #a2 #a3 #a4 #H destruct - |#k1' #Hind #k2 #a1 #a2 #a3 #a4 normalize in ⊢ (%→?); - cases (true_or_false (p a1)) #pa1 >pa1 normalize in ⊢ (%→?); - [#eqa1a2 destruct #eqa2a3 #Hqa2 #H - whd in ⊢ (??(??%???)?); >plus_n_Sm @loop_incr - whd in ⊢ (??%?); >Hqa2 >eqa2a3 @H - |normalize >(Hpq … pa1) normalize - #H1 #H2 #H3 @(Hind … H2) // - ] - ] -qed. - -(* -lemma loop_split : ∀A,f,p,q.(∀b. p b = false → q b = false) → - ∀k1,k2,a1,a2,a3. - loop A k1 f p a1 = Some ? a2 → - loop A k2 f q a2 = Some ? a3 → - loop A (k1+k2) f q a1 = Some ? a3. -#Sig #f #p #q #Hpq #k1 elim k1 - [normalize #k2 #a1 #a2 #a3 #H destruct - |#k1' #Hind #k2 #a1 #a2 #a3 normalize in ⊢ (%→?→?); - cases (true_or_false (p a1)) #pa1 >pa1 normalize in ⊢ (%→?); - [#eqa1a2 destruct #H @loop_incr // - |normalize >(Hpq … pa1) normalize - #H1 #H2 @(Hind … H2) // - ] - ] -qed. -*) - -definition initc ≝ λsig.λM:TM sig.λt. - mk_config sig M (start sig M) t. - -definition Realize ≝ λsig.λM:TM sig.λR:relation (tape sig). -∀t.∃i.∃outc. - loop ? i (step sig M) (λc.halt sig M (cstate ?? c)) (initc sig M t) = Some ? outc ∧ - R t (ctape ?? outc). - -(* Compositions *) - -definition seq_trans ≝ λsig. λM1,M2 : TM sig. -λp. let 〈s,a〉 ≝ p in - match s with - [ inl s1 ⇒ - if halt sig M1 s1 then 〈inr … (start sig M2), None ?〉 - else - let 〈news1,m〉 ≝ trans sig M1 〈s1,a〉 in - 〈inl … news1,m〉 - | inr s2 ⇒ - let 〈news2,m〉 ≝ trans sig M2 〈s2,a〉 in - 〈inr … news2,m〉 - ]. - -definition seq ≝ λsig. λM1,M2 : TM sig. - mk_TM sig - (FinSum (states sig M1) (states sig M2)) - (seq_trans sig M1 M2) - (inl … (start sig M1)) - (λs.match s with - [ inl _ ⇒ false | inr s2 ⇒ halt sig M2 s2]). - -definition Rcomp ≝ λA.λR1,R2:relation A.λa1,a2. - ∃am.R1 a1 am ∧ R2 am a2. - -(* -definition injectRl ≝ λsig.λM1.λM2.λR. - λc1,c2. ∃c11,c12. - inl … (cstate sig M1 c11) = cstate sig (seq sig M1 M2) c1 ∧ - inl … (cstate sig M1 c12) = cstate sig (seq sig M1 M2) c2 ∧ - ctape sig M1 c11 = ctape sig (seq sig M1 M2) c1 ∧ - ctape sig M1 c12 = ctape sig (seq sig M1 M2) c2 ∧ - R c11 c12. - -definition injectRr ≝ λsig.λM1.λM2.λR. - λc1,c2. ∃c21,c22. - inr … (cstate sig M2 c21) = cstate sig (seq sig M1 M2) c1 ∧ - inr … (cstate sig M2 c22) = cstate sig (seq sig M1 M2) c2 ∧ - ctape sig M2 c21 = ctape sig (seq sig M1 M2) c1 ∧ - ctape sig M2 c22 = ctape sig (seq sig M1 M2) c2 ∧ - R c21 c22. - -definition Rlink ≝ λsig.λM1,M2.λc1,c2. - ctape sig (seq sig M1 M2) c1 = ctape sig (seq sig M1 M2) c2 ∧ - cstate sig (seq sig M1 M2) c1 = inl … (halt sig M1) ∧ - cstate sig (seq sig M1 M2) c2 = inr … (start sig M2). *) - -interpretation "relation composition" 'compose R1 R2 = (Rcomp ? R1 R2). - -definition lift_confL ≝ - λsig,M1,M2,c.match c with - [ mk_config s t ⇒ mk_config ? (seq sig M1 M2) (inl … s) t ]. -definition lift_confR ≝ - λsig,M1,M2,c.match c with - [ mk_config s t ⇒ mk_config ? (seq sig M1 M2) (inr … s) t ]. - -definition halt_liftL ≝ - λsig.λM1,M2:TM sig.λs:FinSum (states ? M1) (states ? M2). - match s with - [ inl s1 ⇒ halt sig M1 s1 - | inr _ ⇒ true ]. (* should be vacuous in all cases we use halt_liftL *) - -definition halt_liftR ≝ - λsig.λM1,M2:TM sig.λs:FinSum (states ? M1) (states ? M2). - match s with - [ inl _ ⇒ false - | inr s2 ⇒ halt sig M2 s2 ]. - -lemma p_halt_liftL : ∀sig,M1,M2,c. - halt sig M1 (cstate … c) = - halt_liftL sig M1 M2 (cstate … (lift_confL … c)). -#sig #M1 #M2 #c cases c #s #t % -qed. - -lemma trans_liftL : ∀sig,M1,M2,s,a,news,move. - halt ? M1 s = false → - trans sig M1 〈s,a〉 = 〈news,move〉 → - trans sig (seq sig M1 M2) 〈inl … s,a〉 = 〈inl … news,move〉. -#sig (*#M1*) * #Q1 #T1 #init1 #halt1 #M2 #s #a #news #move -#Hhalt #Htrans whd in ⊢ (??%?); >Hhalt >Htrans % -qed. - -lemma config_eq : - ∀sig,M,c1,c2. - cstate sig M c1 = cstate sig M c2 → - ctape sig M c1 = ctape sig M c2 → c1 = c2. -#sig #M1 * #s1 #t1 * #s2 #t2 // -qed. - -lemma step_lift_confL : ∀sig,M1,M2,c0. - halt ? M1 (cstate ?? c0) = false → - step sig (seq sig M1 M2) (lift_confL sig M1 M2 c0) = - lift_confL sig M1 M2 (step sig M1 c0). -#sig #M1 (* * #Q1 #T1 #init1 #halt1 *) #M2 * #s * #lt -#rs #Hhalt -whd in ⊢ (???(????%));whd in ⊢ (???%); -lapply (refl ? (trans ?? 〈s,option_hd sig rs〉)) -cases (trans ?? 〈s,option_hd sig rs〉) in ⊢ (???% → %); -#s0 #m0 #Heq whd in ⊢ (???%); -whd in ⊢ (??(???%)?); whd in ⊢ (??%?); ->(trans_liftL … Heq) -[% | //] -qed. - -lemma loop_liftL : ∀sig,k,M1,M2,c1,c2. - loop ? k (step sig M1) (λc.halt sig M1 (cstate ?? c)) c1 = Some ? c2 → - loop ? k (step sig (seq sig M1 M2)) - (λc.halt_liftL sig M1 M2 (cstate ?? c)) (lift_confL … c1) = - Some ? (lift_confL … c2). -#sig #k #M1 #M2 #c1 #c2 generalize in match c1; -elim k -[#c0 normalize in ⊢ (??%? → ?); #Hfalse destruct (Hfalse) -|#k0 #IH #c0 whd in ⊢ (??%? → ??%?); - lapply (refl ? (halt ?? (cstate sig M1 c0))) - cases (halt ?? (cstate sig M1 c0)) in ⊢ (???% → ?); #Hc0 >Hc0 - [ >(?: halt_liftL ??? (cstate sig (seq ? M1 M2) (lift_confL … c0)) = true) - [ whd in ⊢ (??%? → ??%?); #Hc2 destruct (Hc2) % - | // ] - | >(?: halt_liftL ??? (cstate sig (seq ? M1 M2) (lift_confL … c0)) = false) - [whd in ⊢ (??%? → ??%?); #Hc2 <(IH ? Hc2) @eq_f - @step_lift_confL // - | // ] -qed. - -STOP! - -lemma loop_liftR : ∀sig,k,M1,M2,c1,c2. - loop ? k (step sig M2) (λc.halt sig M2 (cstate ?? c)) c1 = Some ? c2 → - loop ? k (step sig (seq sig M1 M2)) - (λc.halt sig (seq sig M1 M2) (cstate ?? c)) (lift_confR … c1) = - Some ? (lift_confR … c2). -#sig #k #M1 #M2 #c1 #c2 -elim k -[normalize in ⊢ (??%? → ?); #Hfalse destruct (Hfalse) -|#k0 #IH whd in ⊢ (??%? → ??%?); - lapply (refl ? (halt ?? (cstate sig M2 c1))) - cases (halt ?? (cstate sig M2 c1)) in ⊢ (???% → ?); #Hc0 >Hc0 - [ >(?: halt ?? (cstate sig (seq ? M1 M2) (lift_confR … c1)) = true) - [ whd in ⊢ (??%? → ??%?); #Hc2 destruct (Hc2) - | (* ... *) ] - | >(?: halt ?? (cstate sig (seq ? M1 M2) (lift_confR … c1)) = false) - [whd in ⊢ (??%? → ??%?); #Hc2 Hhalt % -qed. - -lemma eq_ctape_lift_conf_L : ∀sig,M1,M2,outc. - ctape sig (seq sig M1 M2) (lift_confL … outc) = ctape … outc. -#sig #M1 #M2 #outc cases outc #s #t % -qed. - -lemma eq_ctape_lift_conf_R : ∀sig,M1,M2,outc. - ctape sig (seq sig M1 M2) (lift_confR … outc) = ctape … outc. -#sig #M1 #M2 #outc cases outc #s #t % -qed. - -theorem sem_seq: ∀sig,M1,M2,R1,R2. - Realize sig M1 R1 → Realize sig M2 R2 → - Realize sig (seq sig M1 M2) (R1 ∘ R2). -#sig #M1 #M2 #R1 #R2 #HR1 #HR2 #t -cases (HR1 t) #k1 * #outc1 * #Hloop1 #HM1 -cases (HR2 (ctape sig M1 outc1)) #k2 * #outc2 * #Hloop2 #HM2 -@(ex_intro … (k1+k2)) @(ex_intro … (lift_confR … outc2)) -% -[@(loop_split ??????????? (loop_liftL … Hloop1)) - [* * - [ #sl #tl whd in ⊢ (??%? → ?); #Hl % - | #sr #tr whd in ⊢ (??%? → ?); #Hr destruct (Hr) ] - ||4:cases outc1 #s1 #t1 % - |5:@(loop_liftR … Hloop2) - |whd in ⊢ (??(???%)?);whd in ⊢ (??%?); - generalize in match Hloop1; cases outc1 #sc1 #tc1 #Hloop10 - >(trans_liftL_true sig M1 M2 ??) - [ whd in ⊢ (??%?); whd in ⊢ (???%); - @config_eq // - | @(loop_Some ?????? Hloop10) ] - ] -| @(ex_intro … (ctape ? (seq sig M1 M2) (lift_confL … outc1))) - % // -] -qed. - -(* boolean machines: machines with two distinguished halting states *) - - - -(* old stuff *) -definition empty_tapes ≝ λsig.λn. -mk_Vector ? n (make_list (tape sig) (mk_tape sig [] []) n) ?. -elim n // normalize // -qed. - -definition init ≝ λsig.λM:TM sig.λi:(list sig). - mk_config ?? - (start sig M) - (vec_cons ? (mk_tape sig [] i) ? (empty_tapes sig (tapes_no sig M))) - [ ]. - -definition stop ≝ λsig.λM:TM sig.λc:config sig M. - halt sig M (state sig M c). - -let rec loop (A:Type[0]) n (f:A→A) p a on n ≝ - match n with - [ O ⇒ None ? - | S m ⇒ if p a then (Some ? a) else loop A m f p (f a) - ]. - -(* Compute ? M f states that f is computed by M *) -definition Compute ≝ λsig.λM:TM sig.λf:(list sig) → (list sig). -∀l.∃i.∃c. - loop ? i (step sig M) (stop sig M) (init sig M l) = Some ? c ∧ - out ?? c = f l. - -(* for decision problems, we accept a string if on termination -output is not empty *) - -definition ComputeB ≝ λsig.λM:TM sig.λf:(list sig) → bool. -∀l.∃i.∃c. - loop ? i (step sig M) (stop sig M) (init sig M l) = Some ? c ∧ - (isnilb ? (out ?? c) = false). - -(* alternative approach. -We define the notion of computation. The notion must be constructive, -since we want to define functions over it, like lenght and size - -Perche' serve Type[2] se sposto a e b a destra? *) - -inductive cmove (A:Type[0]) (f:A→A) (p:A →bool) (a,b:A): Type[0] ≝ - mk_move: p a = false → b = f a → cmove A f p a b. - -inductive cstar (A:Type[0]) (M:A→A→Type[0]) : A →A → Type[0] ≝ -| empty : ∀a. cstar A M a a -| more : ∀a,b,c. M a b → cstar A M b c → cstar A M a c. - -definition computation ≝ λsig.λM:TM sig. - cstar ? (cmove ? (step sig M) (stop sig M)). - -definition Compute_expl ≝ λsig.λM:TM sig.λf:(list sig) → (list sig). - ∀l.∃c.computation sig M (init sig M l) c → - (stop sig M c = true) ∧ out ?? c = f l. - -definition ComputeB_expl ≝ λsig.λM:TM sig.λf:(list sig) → bool. - ∀l.∃c.computation sig M (init sig M l) c → - (stop sig M c = true) ∧ (isnilb ? (out ?? c) = false). +*) \ No newline at end of file diff --git a/matita/matita/lib/turing/mono.ma b/matita/matita/lib/turing/mono.ma index 5813606a1..e89d710c9 100644 --- a/matita/matita/lib/turing/mono.ma +++ b/matita/matita/lib/turing/mono.ma @@ -284,6 +284,25 @@ definition accRealize ≝ λsig.λM:TM sig.λacc:states sig M.λRtrue,Rfalse:rel (cstate ?? outc = acc → Rtrue t (ctape ?? outc)) ∧ (cstate ?? outc ≠ acc → Rfalse t (ctape ?? outc)). +(* NO OPERATION + + t1 = t2 + *) + +definition nop_states ≝ initN 1. + +definition nop ≝ + λalpha:FinSet.mk_TM alpha nop_states + (λp.let 〈q,a〉 ≝ p in 〈q,None ?〉) + O (λ_.true). + +definition R_nop ≝ λalpha.λt1,t2:tape alpha.t2 = t1. + +lemma sem_nop : + ∀alpha.Realize alpha (nop alpha) (R_nop alpha). +#alpha #intape @(ex_intro ?? 1) @ex_intro [| % normalize % ] +qed. + (* Compositions *) definition seq_trans ≝ λsig. λM1,M2 : TM sig. diff --git a/matita/matita/lib/turing/universal/marks.ma b/matita/matita/lib/turing/universal/marks.ma index 12a9f1635..d3ef41c8d 100644 --- a/matita/matita/lib/turing/universal/marks.ma +++ b/matita/matita/lib/turing/universal/marks.ma @@ -16,6 +16,7 @@ include "turing/while_machine.ma". include "turing/if_machine.ma". +include "turing/universal/tests.ma". (* ADVANCE TO MARK (right) @@ -580,27 +581,6 @@ qed. ^ *) -include "turing/universal/tests.ma". - -(* NO OPERATION - - t1 = t2 - *) - -definition nop_states ≝ initN 1. - -definition nop ≝ - λalpha:FinSet.mk_TM alpha nop_states - (λp.let 〈q,a〉 ≝ p in 〈q,None ?〉) - O (λ_.true). - -definition R_nop ≝ λalpha.λt1,t2:tape alpha.t2 = t1. - -lemma sem_nop : - ∀alpha.Realize alpha (nop alpha) (R_nop alpha). -#alpha #intape @(ex_intro ?? 1) @ex_intro [| % normalize % ] -qed. - definition match_and_adv ≝ λalpha,f.ifTM ? (test_char ? f) (adv_both_marks alpha) (nop ?) tc_true.