From: Andrea Asperti Date: Mon, 14 Oct 2013 18:08:22 +0000 (+0000) Subject: almost there X-Git-Tag: make_still_working~1080 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=2ee1d9b1e0589aea7c5ca39a4b2a208b47f6463e;p=helm.git almost there --- diff --git a/matita/matita/lib/turing/multi_to_mono/multi_to_mono.ma b/matita/matita/lib/turing/multi_to_mono/multi_to_mono.ma index c0c102694..0e9bce53e 100644 --- a/matita/matita/lib/turing/multi_to_mono/multi_to_mono.ma +++ b/matita/matita/lib/turing/multi_to_mono/multi_to_mono.ma @@ -7,13 +7,71 @@ include "turing/multi_to_mono/shift_trace_machines.ma". (* come back to the head position. *) (******************************************************************************) +(* we say that a tape is regular if for any trace after the first blank we + only have other blanks *) + +definition all_blanks_in ≝ λsig,l. + ∀x. mem ? x l → x = blank sig. + +definition regular_i ≝ λsig,n.λl:list (multi_sig sig n).λi. + all_blanks_in ? (after_blank ? (trace sig n i l)). + +definition regular_trace ≝ λsig,n,a.λls,rs:list (multi_sig sig n).λi. + Or (And (regular_i sig n (a::ls) i) (regular_i sig n rs i)) + (And (regular_i sig n ls i) (regular_i sig n (a::rs) i)). + +axiom regular_tail: ∀sig,n,l,i. + regular_i sig n l i → regular_i sig n (tail ? l) i. + +axiom regular_extend: ∀sig,n,l,i. + regular_i sig n l i → regular_i sig n (l@[all_blank sig n]) i. + +axiom all_blank_after_blank: ∀sig,n,l1,b,l2,i. + nth i ? (vec … b) (blank ?) = blank ? → + regular_i sig n (l1@b::l2) i → all_blanks_in ? (trace sig n i l2). + +lemma regular_trace_extl: ∀sig,n,a,ls,rs,i. + regular_trace sig n a ls rs i → + regular_trace sig n a (ls@[all_blank sig n]) rs i. +#sig #n #a #ls #rs #i * + [* #H1 #H2 % % // @(regular_extend … H1) + |* #H1 #H2 %2 % // @(regular_extend … H1) + ] +qed. + +lemma regular_cons_hd_rs: ∀sig,n.∀a:multi_sig sig n.∀ls,rs1,rs2,i. + regular_trace sig n a ls (rs1@rs2) i → + regular_trace sig n a ls (rs1@((hd ? rs2 (all_blank …))::(tail ? rs2))) i. +#sig #n #a #ls #rs1 #rs2 #i cases rs2 [2: #b #tl #H @H] +*[* #H1 >append_nil #H2 %1 % + [@H1 | whd in match (hd ???); @(regular_extend … rs1) //] + |* #H1 >append_nil #H2 %2 % + [@H1 | whd in match (hd ???); @(regular_extend … (a::rs1)) //] + ] +qed. + +lemma eq_trace_to_regular : ∀sig,n.∀a1,a2:multi_sig sig n.∀ls1,ls2,rs1,rs2,i. + nth i ? (vec … a1) (blank ?) = nth i ? (vec … a2) (blank ?) → + trace sig n i ls1 = trace sig n i ls2 → + trace sig n i rs1 = trace sig n i rs2 → + regular_trace sig n a1 ls1 rs1 i → + regular_trace sig n a2 ls2 rs2 i. +#sig #n #a1 #a2 #ls1 #ls2 #rs1 #rs2 #i #H1 #H2 #H3 #H4 +whd in match (regular_trace ??????); whd in match (regular_i ????); +whd in match (regular_i ?? rs2 ?); whd in match (regular_i ?? ls2 ?); +whd in match (regular_i ?? (a2::rs2) ?); whd in match (trace ????); +(Ht1a Hcur) in Ht2a; /2 by / - |#ls #a #rs #Htin -Ht1a cases (Ht1b … Htin) - [* #Hnb #Ht1 -Ht1b -Ht2a >Ht1 in Ht2b; >Htin #H %1 - % [//|@H normalize % #H1 destruct (H1)] + |#ls #a #rs #Htin #Hreg #Hreg2 -Ht1a cases (Ht1b … Htin) + [* #Hnb #Ht1 -Ht1b -Ht2a >Ht1 in Ht2b; >Htin #H + %{a} %{[ ]} %{ls} + %[%[%[%[%[@Hreg|@Hreg2]|@Hnb]|//]|//]|@H normalize % #H1 destruct (H1)] |* [(* we find the blank *) - * #ls1 * #b * #ls2 * * * #H1 #H2 #H3 #H4 %2 - %{b} %{ls1} %{ls2} - %[%[@H2|>H1 //] - |-Ht1b -Ht2a >H4 in Ht2b; #H5 @H5 - % normalize #H6 destruct (H6) + * #ls1 * #b * #ls2 * * * #H1 #H2 #H3 #Ht1 + >Ht1 in Ht2b; #Hout -Ht1b + %{b} %{(a::ls1)} %{ls2} + %[%[%[%[%[>H1 in Hreg; #H @H + |#j #jneqi whd in match (hd ???); whd in match (tail ??); +

H1 //] + |@Hout normalize % normalize #H destruct (H) ] - |* #b * #lss * * #H1 #H2 #H3 %2 - %{(all_blank …)} %{ls} %{[ ]} - %[%[whd in match (no_blank ????); >blank_all_blank // @daemon - |@daemon (* make a lemma *)] - |-Ht1b -Ht2b >H3 in Ht2a; - whd in match (left ??); whd in match (right ??); #H4 - >H2 >reverse_append >reverse_single @H4 normalize // + |* #b * #lss * * #H1 #H2 #Ht1 -Ht1b >Ht1 in Ht2a; + whd in match (left ??); whd in match (right ??); #Hout + %{(all_blank …)} %{(lss@[b])} %{[]} + %[%[%[%[%[

blank_all_blank //] + |

reverse_append >reverse_single @Hout normalize // ] ] ] qed. -theorem sem_move_to_blank_L_new: ∀sig,n,i. - move_to_blank_L sig n i ⊨ R_move_to_blank_L_new sig n i. -#sig #n #i -@(Realize_to_Realize … (sem_move_to_blank_L sig n i)) -#t1 #t2 * #H1 #H2 % [@H1] -#ls #a #rs #Ht1 lapply (H2 ls a rs Ht1) -H2 * - [* #Ha #Ht2 >Ht2 %{a} %{[ ]} %{ls} - %[%[%[@Ha| //]| normalize //] | @Ht1] - |* #b * #ls1 * #ls2 * * * #Hblank #Ht2 - %{b} %{(a::ls1)} %{ls2} - %[2:@Ht2|%[%[//|//]| - #j #lejn whd in match (to_blank_i ????); - whd in match (to_blank_i ???(a::ls)); - lapply (Hblank j lejn) whd in match (to_blank_i ????); - whd in match (to_blank_i ???(a::ls)); #H >H % - ] -qed. - (******************************************************************************) definition shift_i_L ≝ λsig,n,i. @@ -90,10 +143,6 @@ definition shift_i_L ≝ λsig,n,i. extend ? (all_blank sig n). definition R_shift_i_L ≝ λsig,n,i,t1,t2. - (* ∀b:multi_sig sig n.∀ls. - (t1 = midtape ? ls b [ ] → - t2 = midtape (multi_sig sig n) - ((shift_i sig n i b (all_blank sig n))::ls) (all_blank sig n) [ ]) ∧ *) (∀a,ls,rs. t1 = midtape ? ls a rs → ((∃rs1,b,rs2,a1,rss. @@ -126,10 +175,6 @@ theorem sem_shift_i_L: ∀sig,n,i. shift_i_L sig n i ⊨ R_shift_i_L sig n i. (sem_seq ????? (ssem_mti sig n i) (sem_extend ? (all_blank sig n)))) #tin #tout * #t1 * * #Ht1a #Ht1b * #t2 * * #Ht2a #Ht2b * #Htout1 #Htout2 -(* #b #ls % - [#Htin lapply (Ht1a … Htin) -Ht1a -Ht1b #Ht1 - lapply (Ht2a … Ht1) -Ht2a -Ht2b #Ht2 >Ht2 in Htout1; - >Ht1 whd in match (left ??); whd in match (right ??); #Htout @Htout // *) #a #ls #rs cases rs [#Htin %2 %{(shift_i sig n i a (all_blank sig n))} %{[ ]} %[%[#x @False_ind | @daemon] @@ -182,7 +227,12 @@ theorem sem_shift_i_L_new: ∀sig,n,i. qed. -(******************************************************************************) +(******************************************************************************* +The following machine implements a full move of for a trace: we reach the left +border, shift the i-th trace and come back to the head position. *) + +(* this exclude the possibility that traces do not overlap: the head must +remain inside all traces *) definition mtiL ≝ λsig,n,i. move_to_blank_L sig n i · @@ -192,11 +242,16 @@ definition mtiL ≝ λsig,n,i. definition Rmtil ≝ λsig,n,i,t1,t2. ∀ls,a,rs. t1 = midtape (multi_sig sig n) ls a rs → - nth n ? (vec … a) (blank ?) = head ? → + nth n ? (vec … a) (blank ?) = head ? → + (∀i.regular_trace sig n a ls rs i) → + (* next: we cannot be on rightof on trace i *) + (nth i ? (vec … a) (blank ?) = (blank ?) + → nth i ? (vec … (hd ? rs (all_blank …))) (blank ?) ≠ (blank ?)) → no_head_in … ls → no_head_in … rs → (∃ls1,a1,rs1. t2 = midtape (multi_sig …) ls1 a1 rs1 ∧ + (∀i.regular_trace … a1 ls1 rs1 i) ∧ (∀j. j ≤ n → j ≠ i → to_blank_i ? n j (a1::ls1) = to_blank_i ? n j (a::ls)) ∧ (∀j. j ≤ n → j ≠ i → to_blank_i ? n j rs1 = to_blank_i ? n j rs) ∧ (to_blank_i ? n i ls1 = to_blank_i ? n i (a::ls)) ∧ @@ -205,47 +260,53 @@ definition Rmtil ≝ λsig,n,i,t1,t2. theorem sem_Rmtil: ∀sig,n,i. i < n → mtiL sig n i ⊨ Rmtil sig n i. #sig #n #i #lt_in @(sem_seq_app ?????? - (sem_move_to_blank_L_new … ) + (sem_move_to_blank_L … ) (sem_seq ????? (sem_shift_i_L_new …) (ssem_move_until_L ? (no_head sig n)))) #tin #tout * #t1 * * #_ #Ht1 * #t2 * #Ht2 * #_ #Htout (* we start looking into Rmitl *) #ls #a #rs #Htin (* tin is a midtape *) -#Hhead #Hnohead_ls #Hnohead_rs -lapply (Ht1 … Htin) -Ht1 -Htin -* #b * #ls1 * #ls2 * * * #Hno_blankb #Hhead #Hls1 #Ht1 +#Hhead #Hreg #no_rightof #Hnohead_ls #Hnohead_rs +cut (regular_i sig n (a::ls) i) + [cases (Hreg i) * // + cases (true_or_false (nth i ? (vec … a) (blank ?) == (blank ?))) #Htest + [#_ @daemon (* absurd, since hd rs non e' blank *) + |#H #_ @daemon]] #Hreg1 +lapply (Ht1 … Htin Hreg1 ?) [#j #_ @Hreg] -Ht1 -Htin +* #b * #ls1 * #ls2 * * * * * #reg_ls1_i #reg_ls1_j #Hno_blankb #Hhead #Hls1 #Ht1 lapply (Ht2 … Ht1) -Ht2 -Ht1 * #rs1 * #b0 * #rs2 * #rss * * * * * #Hb0 #Hb0blank #Hrs1 #Hrs1b #Hrss #Ht2 (* we need to recover the position of the head of the emulated machine that is the head of ls1. This is somewhere inside rs1 *) cut (∃rs11. rs1 = (reverse ? ls1)@rs11) - [cut (ls1 = [ ] ∨ ∃aa,tlls1. ls1 = aa::tlls1) - [cases ls1 [%1 // | #aa #tlls1 %2 %{aa} %{tlls1} //]] * - [#H1ls1 %{rs1} >H1ls1 // - |* #aa * #tlls1 #H1ls1 >H1ls1 in Hrs1; - cut (aa = a) [>H1ls1 in Hls1; #H @(to_blank_hd … H)] #eqaa >eqaa - #Hrs1_aux cases (compare_append … (sym_eq … Hrs1_aux)) #l * - [* #H1 #H2 %{l} @H1 - |(* this is absurd : if l is empty, the case is as before. + [cut (ls1 = [ ] ∨ ∃aa,tlls1. ls1 = aa::tlls1) + [cases ls1 [%1 // | #aa #tlls1 %2 %{aa} %{tlls1} //]] * + [#H1ls1 %{rs1} >H1ls1 // + |* #aa * #tlls1 #H1ls1 >H1ls1 in Hrs1; + cut (aa = a) [>H1ls1 in Hls1; #H @(to_blank_hd … H)] #eqaa >eqaa + #Hrs1_aux cases (compare_append … (sym_eq … Hrs1_aux)) #l * + [* #H1 #H2 %{l} @H1 + |(* this is absurd : if l is empty, the case is as before. if l is not empty then it must start with a blank, since it is the - frist character in rs2. But in this case we would have a blank - inside ls1=attls1 that is absurd *) + first character in rs2. But in this case we would have a blank + inside ls1=a::tls1 that is absurd *) @daemon - ]]] + ]]] * #rs11 #H1 +cut (rs = rs11@rs2) + [@(injective_append_l … (reverse … ls1)) >Hrs1 Hb0 >Hrs2 normalize >all_blank_n // - |* #c * #rs22 #Hrs2 destruct (Hrs2) @no_head_true @Hnohead_rs - > *) + * #H3 @False_ind @(absurd (nth n ? (vec … b0) (blank sig) = head ?)) + [@(\P ?) @injective_notb @H3 ] + @Hnohead_rs >H2 >trace_append @mem_append_l2 + lapply Hb0 cases rs2 + [whd in match (hd ???); #H >H in H3; whd in match (no_head ???); + >all_blank_n normalize -H #H destruct (H); @False_ind + |#c #r #H4 %1 >H4 // + ] |* [(* we reach the head position *) (* cut (trace sig n j (a1::ls20)=trace sig n j (ls1@b::ls2)) *) @@ -275,24 +336,40 @@ lapply (Htout … Ht2) -Htout -Ht2 * | *) ] #H2 cut ((trace sig n i (b0::reverse ? rs11) = trace sig n i (ls10@[a1])) ∧ (trace sig n i (ls1@ls2) = trace sig n i ls20)) - [>H1 in Htracei; >reverse_append >reverse_single >reverse_append + [>H1 in Htracei; >reverse_append >reverse_single >reverse_append >reverse_reverse >associative_append >associative_append @daemon - ] #H3 - %{ls20} %{a1} %{(reverse ? (b0::ls10)@tail (multi_sig sig n) rs2)} - %[%[%[%[@Htout - |#j #lejn #jneqi <(Hls1 … lejn) - >to_blank_i_def >to_blank_i_def @eq_f @sym_eq @(proj2 … (H2 j jneqi))] - |#j #lejn #jneqi >reverse_cons >associative_append >Hb0 - to_blank_i_def >to_blank_i_def @eq_f - @(injective_append_l … (trace sig n j (reverse ? ls1))) (* >trace_def >trace_def *) + ] #H3 + cut (∀j. j ≠ i → + trace sig n j (reverse (multi_sig sig n) ls10@rs2) = trace sig n j rs) + [#j #jneqi @(injective_append_l … (trace sig n j (reverse ? ls1))) >map_append >map_append >Hrs1 >H1 >associative_append eqji (* by cases wether a1 is blank *) + @daemon + |#jneqi lapply (reg_ls1_j … jneqi) #H4 + >reverse_cons >associative_append >Hb0 @regular_cons_hd_rs + @(eq_trace_to_regular … H4) + [(proj2 … (H2 … jneqi)) >hd_trace % + |(proj2 … (H2 … jneqi)) >tail_trace % + |@sym_eq @Hrs_j // + ] + ]] + |#j #lejn #jneqi <(Hls1 … lejn) + >to_blank_i_def >to_blank_i_def @eq_f @sym_eq @(proj2 … (H2 j jneqi))] + |#j #lejn #jneqi >reverse_cons >associative_append >Hb0 + to_blank_i_def >to_blank_i_def @eq_f @Hrs_j //] + |<(Hls1 i) [2:@lt_to_le //] + lapply (all_blank_after_blank … reg_ls1_i) + [@(\P ?) @daemon] #allb_ls2 + whd in match (to_blank_i ????); <(proj2 … H3) + @daemon ] |>reverse_cons >associative_append cut (to_blank_i sig n i rs = to_blank_i sig n i (rs11@[b0])) [@daemon] #Hcut >Hcut >(to_blank_i_chop … b0 (a1::reverse …ls10)) [2: @Hb0blank] diff --git a/matita/matita/lib/turing/multi_to_mono/trace_alphabet.ma b/matita/matita/lib/turing/multi_to_mono/trace_alphabet.ma index 86db47400..bb1e54e63 100644 --- a/matita/matita/lib/turing/multi_to_mono/trace_alphabet.ma +++ b/matita/matita/lib/turing/multi_to_mono/trace_alphabet.ma @@ -57,6 +57,12 @@ definition trace ≝ λsig,n,i,l. lemma trace_def : ∀sig,n,i,l. trace sig n i l = map ?? (λa. nth i ? (vec … n a) (blank sig)) l. // qed. + +lemma hd_trace: ∀sig,n,i,l. + hd ? (trace sig n i l) (blank ?) = + nth i ? (hd ? l (all_blank … )) (blank ?). +#sig #n #i #l elim l // normalize >blank_all_blank % +qed. lemma tail_trace: ∀sig,n,i,l. tail ? (trace sig n i l) = trace sig n i (tail ? l). @@ -95,6 +101,7 @@ qed. definition no_head_in ≝ λsig,n,l. ∀x. mem ? x (trace sig n n l) → x ≠ head ?. + (* some lemmas over lists, to be moved *) lemma injective_append_l: ∀A,l. injective ?? (append A l). #A #l elim l @@ -212,6 +219,12 @@ let rec to_blank sig l on l ≝ | cons a tl ⇒ if a == blank sig then [ ] else a::(to_blank sig tl)]. +let rec after_blank sig l on l ≝ + match l with + [ nil ⇒ [ ] + | cons a tl ⇒ + if a == blank sig then (a::tl) else (after_blank sig tl)]. + definition to_blank_i ≝ λsig,n,i,l. to_blank ? (trace sig n i l). lemma to_blank_i_def : ∀sig,n,i,l.