From: Enrico Tassi Date: Sun, 29 Jan 2006 19:54:12 +0000 (+0000) Subject: chosmetic X-Git-Tag: make_still_working~7743 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=30bf48113bb0ea53f5300b3a6a2d129a9f4d73d9;p=helm.git chosmetic --- diff --git a/helm/papers/system_T/t.tex b/helm/papers/system_T/t.tex index 5aece0cd6..9d5622d2b 100644 --- a/helm/papers/system_T/t.tex +++ b/helm/papers/system_T/t.tex @@ -172,14 +172,14 @@ informative part of the algorithms. say that ax:AX refers to the previous Axioms list... \[ - (Proj)\hspace{0.2cm} \Gamma, x:A, \Delta \vdash x:A + (Proj)\hspace{0.1cm} \Gamma, x:A, \Delta \vdash x:A \hspace{2cm} - (Const)\hspace{0.2cm} \Gamma \vdash ax : AX + (Const)\hspace{0.1cm} \Gamma \vdash ax : AX \] \[ - (\to_i)\hspace{0.2cm}\frac{\Gamma,x:A \vdash M:Q}{\Gamma \vdash \lambda x:A.M: A \to Q} \hspace{2cm} - (\to_e)\hspace{0.2cm}\frac{\Gamma \vdash M: A \to Q \hspace{1cm}\Gamma \vdash N: A} + (\to_i)\hspace{0.1cm}\frac{\Gamma,x:A \vdash M:Q}{\Gamma \vdash \lambda x:A.M: A \to Q} \hspace{2cm} + (\to_e)\hspace{0.1cm}\frac{\Gamma \vdash M: A \to Q \hspace{1cm}\Gamma \vdash N: A} {\Gamma \vdash M N: Q} \] @@ -193,9 +193,9 @@ say that ax:AX refers to the previous Axioms list... %\] \[ - (\forall_i)\hspace{0.2cm}\frac{\Gamma \vdash M:P}{\Gamma \vdash + (\forall_i)\hspace{0.1cm}\frac{\Gamma \vdash M:P}{\Gamma \vdash \lambda x:\N.M: \forall x.P}(*) \hspace{2cm} - (\forall_e)\hspace{0.2cm}\frac{\Gamma \vdash M :\forall x.P}{\Gamma \vdash M t: P[t/x]} + (\forall_e)\hspace{0.1cm}\frac{\Gamma \vdash M :\forall x.P}{\Gamma \vdash M t: P[t/x]} \] @@ -207,48 +207,78 @@ say that ax:AX refers to the previous Axioms list... \section{Extraction} -The formulae to types translation function -$\sem{\cdot}$ takes in input formulae in HA and returns types in T. - -\begin{enumerate} -\item $\sem{A} = \one$ if A is atomic -\item $\sem{A \land B} = \sem{A}\times \sem{B}$ -\item $\sem{A \to B} = \sem{A}\to \sem{B}$ -\item $\sem{\forall x:\N.P} = \N \to \sem{P}$ -\item $\sem{\exists x:\N.P} = \N \times \sem{P}$ -\end{enumerate} - -definition. -For any type T of system T $\canonical_T: \one \to T$ is inductively defined as follows: -\begin{enumerate} -\item $\canonical_\one = \lambda x:\one.x$ -\item $\canonical_N = \lambda x:\one.0$ -\item $\canonical_{U\times V} = \lambda x:\one.\pair{\canonical_{U} x}{\canonical_{V} x}$ -\item $\canonical_{U\to V} = \lambda x:\one.\lambda \_:U. \canonical_{V} x$ -\end{enumerate} +The formulae to types translation function $\sem{\cdot}$, see table +\ref{tab:formulae2types}, takes in input formulae in HA and returns +types in T. In table \ref{tab:structproof} we the proofs to terms +function for structured proofs. Axiom translation is reported in table +\ref{tab:axioms}. In table \ref{tab:canonical} we define how the +canoniac element is formed. + +\begin{table}[!h] +\hrule\vspace{0.1cm} +\begin{tabular}{p{0.47\textwidth}p{0.47\textwidth}} + $\sem{A} = \one$ if A is atomic & + $\sem{A \land B} = \sem{A}\times \sem{B}$ \\ + $\sem{A \to B} = \sem{A}\to \sem{B}$ & + $\sem{\forall x:\N.P} = \N \to \sem{P}$ \\ + $\sem{\exists x:\N.P} = \N \times \sem{P}$ & +\end{tabular}\vspace{0.1cm} +\hrule +\caption{\label{tab:formulae2types}Formulae to types translation} +\end{table} + +\begin{table}[!h] +\hrule\vspace{0.1cm} +\begin{tabular}{p{0.47\textwidth}p{0.47\textwidth}} + $\semT{M N} = \semT{M} \semT{N}$ & + $\semT{\lambda x:A.M} = \lambda x:\sem{A}.\semT{M}$ \\ + $\semT{\lambda x:\N.M} = \lambda x:\N.\semT{M}$ & + $\semT{M t} = \semT{M} \semT{t}$ +\end{tabular}\vspace{0.1cm} +\hrule +\caption{\label{tab:structproof}Structured proofs} +\end{table} + +\begin{table}[!h] +\hrule\vspace{0.1cm} +\begin{tabular}{p{0.47\textwidth}p{0.47\textwidth}} + $\sem{fst} = \pi_1$& + $\sem{snd} = \pi_2$\\ + $\sem{conj} = \lambda x:\sem{P}.\lambda y:\sem{Q}.\pair{x}{y}$& + $\sem{false\_ind} = \canonical_{\sem{Q}}$\\ + $\sem{discriminate} = \lambda \_:\N.\lambda \_:\one.\star$& + $\sem{injS}= \lambda \_:\N. \lambda \_:\N.\lambda \_:\one.\star$\\ + $\sem{plus\_O} = \sem{times\_O} = \lambda \_:\N.\star$& + $\sem{nat\_ind} = R$ \\ + \multicolumn{2}{l}{ + $\sem{plus\_S} = \sem{times\_S} = \lambda \_:\N. \lambda \_:\N.\star$ + }\\ + \multicolumn{2}{l}{ + $\sem{ex\_intro} = \lambda x:\N.\lambda f:\sem{P}.\pair{x}{f}$ + }\\ + \multicolumn{2}{l}{ + $\sem{ex\_ind} = + \lambda f:(\N \to \sem{P} \to \sem{Q}). + \lambda p:\N\times \sem{P}.f~(fst~p)~(snd~p)$. + } +\end{tabular}\vspace{0.1cm} +\hrule +\caption{\label{tab:axioms}Axioms translation} +\end{table} + +\begin{table}[!h] +\hrule\vspace{0.1cm} +\begin{tabular}{p{0.47\textwidth}p{0.47\textwidth}} + $\canonical_\one = \lambda x:\one.x$ & + $\canonical_N = \lambda x:\one.0$ \\ + $\canonical_{U\times V} = \lambda x:\one.\pair{\canonical_{U} + x}{\canonical_{V} x}$ & + $\canonical_{U\to V} = \lambda x:\one.\lambda \_:U. \canonical_{V} x$ +\end{tabular}\vspace{0.1cm} +\hrule +\caption{\label{tab:canonical}Canonical element} +\end{table} -\begin{itemize} -\item $\sem{nat\_ind} = R$ -\item $\sem{ex\_ind} = (\lambda f:(\N \to \sem{P} \to \sem{Q}). -\lambda p:\N\times \sem{P}.f (fst \,p) (snd \,p)$. -\item $\sem{ex\_intro} = \lambda x:\N.\lambda f:\sem{P}.\pair{x}{f}$ -\item $\sem{fst} = \pi_1$ -\item $\sem{snd} = \pi_2$ -\item $\sem{conj} = \lambda x:\sem{P}.\lambda y:\sem{Q}.\pair{x}{y}$ -\item $\sem{false\_ind} = \canonical_{\sem{Q}}$ -\item $\sem{discriminate} = \lambda \_:\N.\lambda \_:\one.\star$ -\item $\sem{injS}= \lambda \_:\N. \lambda \_:\N.\lambda \_:\one.\star$ -\item $\sem{plus\_O} = \sem{times\_O} = \lambda \_:\N.\star$ -\item $\sem{plus\_S} = \sem{times_S} = \lambda \_:\N. \lambda \_:\N.\star$ -\end{itemize} - -In the case of structured proofs: -\begin{itemize} -\item $\semT{M N} = \semT{M} \semT{N}$ -\item $\semT{\lambda x:A.M} = \lambda x:\sem{A}.\semT{M}$ -\item $\semT{\lambda x:\N.M} = \lambda x:\N.\semT{M}$ -\item $\semT{M t} = \semT{M} \semT{t}$ -\end{itemize} \section{Realizability} The realizability relation is a relation $f \R P$ where $f: \sem{P}$, and