From: Claudio Sacerdoti Coen Date: Tue, 6 Jan 2009 16:41:01 +0000 (+0000) Subject: Cool: only 8 universes in use. X-Git-Tag: make_still_working~4276 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=33fbecf99c187fb4fc84a68ee9f479da046e9df9;p=helm.git Cool: only 8 universes in use. --- diff --git a/helm/software/matita/contribs/formal_topology/overlap/categories.ma b/helm/software/matita/contribs/formal_topology/overlap/categories.ma index 3ee391507..75ca005c6 100644 --- a/helm/software/matita/contribs/formal_topology/overlap/categories.ma +++ b/helm/software/matita/contribs/formal_topology/overlap/categories.ma @@ -26,9 +26,9 @@ record setoid : Type1 ≝ eq: equivalence_relation carr }. -definition reflexive1 ≝ λA:Type1.λR:A→A→CProp1.∀x:A.R x x. -definition symmetric1 ≝ λC:Type1.λlt:C→C→CProp1. ∀x,y:C.lt x y → lt y x. -definition transitive1 ≝ λA:Type1.λR:A→A→CProp1.∀x,y,z:A.R x y → R y z → R x z. +definition reflexive1: ∀A:Type1.∀R:A→A→CProp1.CProp1 ≝ λA:Type1.λR:A→A→CProp1.∀x:A.R x x. +definition symmetric1: ∀A:Type1.∀R:A→A→CProp1.CProp1 ≝ λC:Type1.λlt:C→C→CProp1. ∀x,y:C.lt x y → lt y x. +definition transitive1: ∀A:Type1.∀R:A→A→CProp1.CProp1 ≝ λA:Type1.λR:A→A→CProp1.∀x,y,z:A.R x y → R y z → R x z. record equivalence_relation1 (A:Type1) : Type2 ≝ { eq_rel1:2> A → A → CProp1; @@ -57,9 +57,9 @@ qed. (* questa coercion e' necessaria per problemi di unificazione *) coercion setoid1_of_setoid. -definition reflexive2 ≝ λA:Type2.λR:A→A→CProp2.∀x:A.R x x. -definition symmetric2 ≝ λC:Type2.λlt:C→C→CProp2. ∀x,y:C.lt x y → lt y x. -definition transitive2 ≝ λA:Type2.λR:A→A→CProp2.∀x,y,z:A.R x y → R y z → R x z. +definition reflexive2: ∀A:Type2.∀R:A→A→CProp2.CProp2 ≝ λA:Type2.λR:A→A→CProp2.∀x:A.R x x. +definition symmetric2: ∀A:Type2.∀R:A→A→CProp2.CProp2 ≝ λC:Type2.λlt:C→C→CProp2. ∀x,y:C.lt x y → lt y x. +definition transitive2: ∀A:Type2.∀R:A→A→CProp2.CProp2 ≝ λA:Type2.λR:A→A→CProp2.∀x,y,z:A.R x y → R y z → R x z. record equivalence_relation2 (A:Type2) : Type3 ≝ { eq_rel2:2> A → A → CProp2; diff --git a/helm/software/matita/contribs/formal_topology/overlap/cprop_connectives.ma b/helm/software/matita/contribs/formal_topology/overlap/cprop_connectives.ma index 36616b2f8..4855bf658 100644 --- a/helm/software/matita/contribs/formal_topology/overlap/cprop_connectives.ma +++ b/helm/software/matita/contribs/formal_topology/overlap/cprop_connectives.ma @@ -140,16 +140,18 @@ definition Not : CProp0 → Prop ≝ λx:CProp.x → False. interpretation "constructive not" 'not x = (Not x). -definition cotransitive ≝ +definition cotransitive: ∀C:Type0. ∀lt:C→C→CProp0.CProp0 ≝ λC:Type0.λlt:C→C→CProp0.∀x,y,z:C. lt x y → lt x z ∨ lt z y. -definition coreflexive ≝ λC:Type0.λlt:C→C→CProp0. ∀x:C. ¬ (lt x x). +definition coreflexive: ∀C:Type0. ∀lt:C→C→CProp0.CProp0 ≝ + λC:Type0.λlt:C→C→CProp0. ∀x:C. ¬ (lt x x). -definition symmetric ≝ λC:Type0.λlt:C→C→CProp0. ∀x,y:C.lt x y → lt y x. +definition symmetric: ∀C:Type0. ∀lt:C→C→CProp0.CProp0 ≝ + λC:Type0.λlt:C→C→CProp0. ∀x,y:C.lt x y → lt y x. -definition antisymmetric ≝ λA:Type0.λR:A→A→CProp0.λeq:A→A→Prop.∀x:A.∀y:A.R x y→R y x→eq x y. +definition antisymmetric: ∀A:Type0. ∀R:A→A→CProp0. ∀eq:A→A→Prop.CProp0 ≝ + λA:Type0.λR:A→A→CProp0.λeq:A→A→Prop.∀x:A.∀y:A.R x y→R y x→eq x y. -definition reflexive ≝ λA:Type0.λR:A→A→CProp0.∀x:A.R x x. +definition reflexive: ∀C:Type0. ∀lt:C→C→CProp0.CProp0 ≝ λA:Type0.λR:A→A→CProp0.∀x:A.R x x. -definition transitive ≝ λA:Type0.λR:A→A→CProp0.∀x,y,z:A.R x y → R y z → R x z. - +definition transitive: ∀C:Type0. ∀lt:C→C→CProp0.CProp0 ≝ λA:Type0.λR:A→A→CProp0.∀x,y,z:A.R x y → R y z → R x z. \ No newline at end of file diff --git a/helm/software/matita/contribs/formal_topology/overlap/o-algebra.ma b/helm/software/matita/contribs/formal_topology/overlap/o-algebra.ma index 6be19d92c..10f503581 100644 --- a/helm/software/matita/contribs/formal_topology/overlap/o-algebra.ma +++ b/helm/software/matita/contribs/formal_topology/overlap/o-algebra.ma @@ -168,7 +168,7 @@ definition hint5: OAlgebra → objs2 SET1. qed. coercion hint5. -record ORelation (P,Q : OAlgebra) : Type ≝ { +record ORelation (P,Q : OAlgebra) : Type2 ≝ { or_f_ : P ⇒ Q; or_f_minus_star_ : P ⇒ Q; or_f_star_ : Q ⇒ P;