From: Cosimo Oliboni Date: Fri, 4 Sep 2009 00:52:21 +0000 (+0000) Subject: freescale porting, work in progress X-Git-Tag: make_still_working~3501 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=34e2c8f59dd7924e15a7746644182d12ad09fed3;p=helm.git freescale porting, work in progress --- diff --git a/helm/software/matita/contribs/ng_assembly/common/list_utility.ma b/helm/software/matita/contribs/ng_assembly/common/list_utility.ma index ce118e74c..1c062a912 100755 --- a/helm/software/matita/contribs/ng_assembly/common/list_utility.ma +++ b/helm/software/matita/contribs/ng_assembly/common/list_utility.ma @@ -321,8 +321,6 @@ ndefinition abs_neList_aux1 : ∀T:Type.∀h:T.∀n.((len_neList T («£h»)) > ndefinition abs_neList_aux2 : ∀T:Type.∀h:T.∀t:ne_list T.∀n.((len_neList T (h§§t)) > (S n) = true) → ((len_neList T t) > n) = true. #T; #h; #t; #n; nnormalize; #H; napply H. nqed. -naxiom daemon : False. - nlet rec abs_neList (T:Type) (l:ne_list T) on l ≝ match l return λl.Πn.(((len_neList T l) > n) = true) → T diff --git a/helm/software/matita/contribs/ng_assembly/common/theory.ma b/helm/software/matita/contribs/ng_assembly/common/theory.ma index 093c85e13..2ce5c7036 100644 --- a/helm/software/matita/contribs/ng_assembly/common/theory.ma +++ b/helm/software/matita/contribs/ng_assembly/common/theory.ma @@ -525,3 +525,35 @@ ndefinition symmetricT: ∀A,T:Type.∀R:relationT A T.Prop ≝ ndefinition associative : ∀A:Type.∀R:relationT A A.Prop ≝ λA.λR.∀x,y,z:A.R (R x y) z = R x (R y z). + +(* aggiunta per bypassare i punti in cui le dimostrazioni sono equivalenti *) + +ninductive peqv (A:Prop) (x:A) : A → Prop ≝ + prefl_eqv : peqv A x x. + +interpretation "prop equivalence" 'preqv t x y = (peqv t x y). + +(* \equiv *) +notation > "hvbox(a break ≡ b)" + non associative with precedence 45 +for @{ 'preqv ? $a $b }. + +nlemma symmetric_peqv: ∀A:Prop. symmetric A (peqv A). + #A; + nnormalize; + #x; #y; #H; + napply (peqv_ind A x (λ_.?) ? y H); + napply prefl_eqv. +nqed. + +nlemma peqv_ind_r: ∀A:Prop.∀x:A.∀P:A → Prop.P x → ∀y:A.y ≡ x → P y. + #A; #x; #P; #H; #y; #H1; + napply (peqv_ind A x (λ_.?) H y (symmetric_peqv … H1)). +nqed. + +naxiom peqv_ax : ∀P:Prop.∀Q,R:P.Q ≡ R. + +(* uso P x → P y, H e' P x + nrewrite > cioe' napply (peqv_ind ? x (λ_.?) H y (dimostrazione di x ≡ y)); + nrewrite < cioe' napply (peqv_ind_r ? x ? H y (dimostrazione y ≡ x))); +*) diff --git a/helm/software/matita/contribs/ng_assembly/compiler/environment.ma b/helm/software/matita/contribs/ng_assembly/compiler/environment.ma index 73a2c8aa4..6a5e204f3 100755 --- a/helm/software/matita/contribs/ng_assembly/compiler/environment.ma +++ b/helm/software/matita/contribs/ng_assembly/compiler/environment.ma @@ -58,6 +58,8 @@ ndefinition defined_envList ≝ (* bisogna dimostrare "defined_envList (S ...)" impossibile anche cercando di usare l'emulazione di inversion *) +naxiom defined_envList_S : ∀d.∀l:env_list (S d).defined_envList (S d) l. + ndefinition cut_first_envList_aux : Πd.env_list (S d) → env_list d ≝ λd.λl:env_list (S d). match l @@ -65,8 +67,4 @@ ndefinition cut_first_envList_aux : Πd.env_list (S d) → env_list d ≝ with [ env_nil h ⇒ λp:defined_envList O (env_nil h).False_rect_Type0 ? p | env_cons n h t ⇒ λp:defined_envList (S n) (env_cons n h t).t - ] ?. - napply (inv_envList ? l …); - (* se apro l, a ritroso modifica il suo parametro destro d e non dimostro piu' nulla *) - (* io pensavo di ottenere per env_nil l'assurdo S d = O ... *) - ncases l; + ] (defined_envList_S d l). diff --git a/helm/software/matita/contribs/ng_assembly/universe/universe.ma b/helm/software/matita/contribs/ng_assembly/universe/universe.ma index a673c999b..061cccd3e 100755 --- a/helm/software/matita/contribs/ng_assembly/universe/universe.ma +++ b/helm/software/matita/contribs/ng_assembly/universe/universe.ma @@ -103,34 +103,8 @@ nlemma neqSUN_to_neq : ∀l.∀x,y:S_UN l.eq_SUN l x y = false → x ≠ y. ##] nqed. -(* perche' non si riesce a dimstrare ??? * -nlemma SUN_construct - : ∀l.∀u. - ∀dim1,dim2:(member_natList u l = true). - ((S_EL l u dim1) = (S_EL l u dim2)). - #l; #u; #dim1; #dim2; - nchange with (S_EL l u dim1 = S_EL l u dim1); - napply refl_eq. -nqed. -*) -naxiom SUN_construct - : ∀l.∀u. - ∀dim1,dim2:(member_natList u l = true). - ((S_EL l u dim1) = (S_EL l u dim2)). - -nlemma eqgetelem_to_eq : ∀l.∀x,y:S_UN l.(getelem ? x) = (getelem ? y) → x = y. - #l; #x; nelim x; - #u1; #dim1; - #y; nelim y; - #u2; #dim2; - nchange with (u1 = u2 → ?); - #H; - nrewrite > H in dim1:(%) ⊢ %; - #dim1; - napply (SUN_construct l u2 dim1 dim2). -nqed. - (* eqxx_to_eq universale *) +(* serve l'assioma di equivalenza sulle dimostrazioni *) nlemma eqSUN_to_eq : ∀l.∀x,y:S_UN l.eq_SUN l x y = true → x = y. #l; #x; nelim x; #u1; #dim1; @@ -138,7 +112,9 @@ nlemma eqSUN_to_eq : ∀l.∀x,y:S_UN l.eq_SUN l x y = true → x = y. #u2; #dim2; nchange with ((eq_nat u1 u2 = true) → ?); #H; - nrewrite > (eqgetelem_to_eq l (S_EL l u1 dim1) (S_EL l u2 dim2) (eqnat_to_eq u1 u2 H)); + nrewrite > (eqnat_to_eq u1 u2 H) in dim1:(%) ⊢ %; + #dim1; + napply (peqv_ind ? dim1 (λ_.?) ? dim2 (peqv_ax ? dim1 dim2)); napply refl_eq. nqed.