From: Ferruccio Guidi Date: Mon, 27 Oct 2014 19:39:37 +0000 (+0000) Subject: - the trace is explicit in all auto tactics with depth > 1 X-Git-Tag: make_still_working~809 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=37e1b4f314ffae815beca71300688040f8da6939;p=helm.git - the trace is explicit in all auto tactics with depth > 1 - one bug fixed - the renaming continues ... --- diff --git a/matita/matita/contribs/lambdadelta/basic_2/computation/cprs.ma b/matita/matita/contribs/lambdadelta/basic_2/computation/cprs.ma index 889659759..6881d9c92 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/computation/cprs.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/computation/cprs.ma @@ -52,12 +52,12 @@ lemma cprs_refl: ∀G,L,T. ⦃G, L⦄ ⊢ T ➡* T. lemma cprs_strap1: ∀G,L,T1,T,T2. ⦃G, L⦄ ⊢ T1 ➡* T → ⦃G, L⦄ ⊢ T ➡ T2 → ⦃G, L⦄ ⊢ T1 ➡* T2. -normalize /2 width=3 by step/ qed. +normalize /2 width=3 by step/ qed-. (* Basic_1: was: pr3_step *) lemma cprs_strap2: ∀G,L,T1,T,T2. ⦃G, L⦄ ⊢ T1 ➡ T → ⦃G, L⦄ ⊢ T ➡* T2 → ⦃G, L⦄ ⊢ T1 ➡* T2. -normalize /2 width=3 by TC_strap/ qed. +normalize /2 width=3 by TC_strap/ qed-. lemma lsubr_cprs_trans: ∀G. lsub_trans … (cprs G) lsubr. /3 width=5 by lsubr_cpr_trans, LTC_lsub_trans/ @@ -122,7 +122,7 @@ qed-. (* Basic_1: was: pr3_gen_cast *) lemma cprs_inv_cast1: ∀G,L,W1,T1,U2. ⦃G, L⦄ ⊢ ⓝW1.T1 ➡* U2 → ⦃G, L⦄ ⊢ T1 ➡* U2 ∨ ∃∃W2,T2. ⦃G, L⦄ ⊢ W1 ➡* W2 & ⦃G, L⦄ ⊢ T1 ➡* T2 & U2 = ⓝW2.T2. -#G #L #W1 #T1 #U2 #H @(cprs_ind … H) -U2 /3 width=5/ +#G #L #W1 #T1 #U2 #H @(cprs_ind … H) -U2 /3 width=5 by ex3_2_intro, or_intror/ #U2 #U #_ #HU2 * /3 width=3 by cprs_strap1, or_introl/ * #W #T #HW1 #HT1 #H destruct elim (cpr_inv_cast1 … HU2) -HU2 /3 width=3 by cprs_strap1, or_introl/ * diff --git a/matita/matita/contribs/lambdadelta/basic_2/computation/csx_vector.ma b/matita/matita/contribs/lambdadelta/basic_2/computation/csx_vector.ma index 733666659..5b4d465cb 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/computation/csx_vector.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/computation/csx_vector.ma @@ -34,9 +34,9 @@ normalize // qed-. lemma csx_fwd_applv: ∀h,g,G,L,T,Vs. ⦃G, L⦄ ⊢ ⬊*[h, g] Ⓐ Vs.T → ⦃G, L⦄ ⊢ ⬊*[h, g] Vs ∧ ⦃G, L⦄ ⊢ ⬊*[h, g] T. -#h #g #G #L #T #Vs elim Vs -Vs /2 width=1/ +#h #g #G #L #T #Vs elim Vs -Vs /2 width=1 by conj/ #V #Vs #IHVs #HVs lapply (csx_fwd_pair_sn … HVs) #HV lapply (csx_fwd_flat_dx … HVs) -HVs #HVs -elim (IHVs HVs) -IHVs -HVs /3 width=1/ +elim (IHVs HVs) -IHVs -HVs /3 width=1 by conj/ qed-. diff --git a/matita/matita/contribs/lambdadelta/basic_2/computation/gcp_aaa.ma b/matita/matita/contribs/lambdadelta/basic_2/computation/gcp_aaa.ma index 6ff7ee804..3428478ea 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/computation/gcp_aaa.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/computation/gcp_aaa.ma @@ -25,21 +25,21 @@ include "basic_2/computation/lsubc_drops.ma". (* Basic_1: was: sc3_arity_csubc *) theorem acr_aaa_csubc_lifts: ∀RR,RS,RP. gcp RR RS RP → gcr RR RS RP RP → - ∀G,L1,T,A. ⦃G, L1⦄ ⊢ T ⁝ A → ∀L0,des. ⬇*[Ⓕ, des] L0 ≡ L1 → - ∀T0. ⬆*[des] T ≡ T0 → ∀L2. G ⊢ L2 ⫃[RP] L0 → + ∀G,L1,T,A. ⦃G, L1⦄ ⊢ T ⁝ A → ∀L0,cs. ⬇*[Ⓕ, cs] L0 ≡ L1 → + ∀T0. ⬆*[cs] T ≡ T0 → ∀L2. G ⊢ L2 ⫃[RP] L0 → ⦃G, L2, T0⦄ ϵ[RP] 〚A〛. #RR #RS #RP #H1RP #H2RP #G #L1 #T #A #H elim H -G -L1 -T -A -[ #G #L #k #L0 #des #HL0 #X #H #L2 #HL20 +[ #G #L #k #L0 #cs #HL0 #X #H #L2 #HL20 >(lifts_inv_sort1 … H) -H lapply (acr_gcr … H1RP H2RP (⓪)) #HAtom lapply (s4 … HAtom G L2 (◊)) /2 width=1 by/ -| #I #G #L1 #K1 #V1 #B #i #HLK1 #HKV1B #IHB #L0 #des #HL01 #X #H #L2 #HL20 +| #I #G #L1 #K1 #V1 #B #i #HLK1 #HKV1B #IHB #L0 #cs #HL01 #X #H #L2 #HL20 lapply (acr_gcr … H1RP H2RP B) #HB elim (lifts_inv_lref1 … H) -H #i1 #Hi1 #H destruct lapply (drop_fwd_drop2 … HLK1) #HK1b - elim (drops_drop_trans … HL01 … HLK1) #X #des1 #i0 #HL0 #H #Hi0 #Hcs1 + elim (drops_drop_trans … HL01 … HLK1) #X #cs1 #i0 #HL0 #H #Hi0 #Hcs1 >(at_mono … Hi1 … Hi0) -i1 - elim (drops_inv_skip2 … Hcs1 … H) -des1 #K0 #V0 #des0 #Hcs0 #HK01 #HV10 #H destruct + elim (drops_inv_skip2 … Hcs1 … H) -cs1 #K0 #V0 #cs0 #Hcs0 #HK01 #HV10 #H destruct elim (lsubc_drop_O1_trans … HL20 … HL0) -HL0 #X #HLK2 #H elim (lsubc_inv_pair2 … H) -H * [ #K2 #HK20 #H destruct @@ -56,24 +56,24 @@ theorem acr_aaa_csubc_lifts: ∀RR,RS,RP. lapply (s5 … HB ? G ? ? (◊) … (ⓝV3.V) … HLK2) /2 width=1 by lift_flat/ lapply (s7 … HB G L2 (◊)) /3 width=7 by gcr_lift/ ] -| #a #G #L #V #T #B #A #_ #_ #IHB #IHA #L0 #des #HL0 #X #H #L2 #HL20 +| #a #G #L #V #T #B #A #_ #_ #IHB #IHA #L0 #cs #HL0 #X #H #L2 #HL20 elim (lifts_inv_bind1 … H) -H #V0 #T0 #HV0 #HT0 #H destruct lapply (acr_gcr … H1RP H2RP A) #HA lapply (acr_gcr … H1RP H2RP B) #HB lapply (s1 … HB) -HB #HB lapply (s6 … HA G L2 (◊) (◊)) /4 width=5 by lsubc_pair, drops_skip, liftv_nil/ -| #a #G #L #W #T #B #A #HLWB #_ #IHB #IHA #L0 #des #HL0 #X #H #L2 #HL02 +| #a #G #L #W #T #B #A #HLWB #_ #IHB #IHA #L0 #cs #HL0 #X #H #L2 #HL02 elim (lifts_inv_bind1 … H) -H #W0 #T0 #HW0 #HT0 #H destruct @(acr_abst … H1RP H2RP) /2 width=5 by/ - #L3 #V3 #W3 #T3 #des3 #HL32 #HW03 #HT03 #H1B #H2B + #L3 #V3 #W3 #T3 #cs3 #HL32 #HW03 #HT03 #H1B #H2B elim (drops_lsubc_trans … H1RP … HL32 … HL02) -L2 #L2 #HL32 #HL20 - lapply (aaa_lifts … L2 W3 … (des @@ des3) … HLWB) -HLWB /2 width=4 by drops_trans, lifts_trans/ #HLW2B - @(IHA (L2. ⓛW3) … (des + 1 @@ des3 + 1)) -IHA + lapply (aaa_lifts … L2 W3 … (cs @@ cs3) … HLWB) -HLWB /2 width=4 by drops_trans, lifts_trans/ #HLW2B + @(IHA (L2. ⓛW3) … (cs + 1 @@ cs3 + 1)) -IHA /3 width=5 by lsubc_beta, drops_trans, drops_skip, lifts_trans/ -| #G #L #V #T #B #A #_ #_ #IHB #IHA #L0 #des #HL0 #X #H #L2 #HL20 +| #G #L #V #T #B #A #_ #_ #IHB #IHA #L0 #cs #HL0 #X #H #L2 #HL20 elim (lifts_inv_flat1 … H) -H #V0 #T0 #HV0 #HT0 #H destruct /3 width=10 by drops_nil, lifts_nil/ -| #G #L #V #T #A #_ #_ #IH1A #IH2A #L0 #des #HL0 #X #H #L2 #HL20 +| #G #L #V #T #A #_ #_ #IH1A #IH2A #L0 #cs #HL0 #X #H #L2 #HL20 elim (lifts_inv_flat1 … H) -H #V0 #T0 #HV0 #HT0 #H destruct lapply (acr_gcr … H1RP H2RP A) #HA lapply (s7 … HA G L2 (◊)) /3 width=5 by/ diff --git a/matita/matita/contribs/lambdadelta/basic_2/computation/gcp_cr.ma b/matita/matita/contribs/lambdadelta/basic_2/computation/gcp_cr.ma index 1da427f5b..dc9c4498e 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/computation/gcp_cr.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/computation/gcp_cr.ma @@ -62,8 +62,8 @@ record gcr (RR:relation4 genv lenv term term) (RS:relation term) (RP,C:candidate (* the functional construction for candidates *) definition cfun: candidate → candidate → candidate ≝ - λC1,C2,G,K,T. ∀L,W,U,des. - ⬇*[Ⓕ, des] L ≡ K → ⬆*[des] T ≡ U → C1 G L W → C2 G L (ⓐW.U). + λC1,C2,G,K,T. ∀L,W,U,cs. + ⬇*[Ⓕ, cs] L ≡ K → ⬆*[cs] T ≡ U → C1 G L W → C2 G L (ⓐW.U). (* the reducibility candidate associated to an atomic arity *) let rec acr (RP:candidate) (A:aarity) on A: candidate ≝ @@ -102,44 +102,44 @@ lemma acr_gcr: ∀RR,RS,RP. gcp RR RS RP → gcr RR RS RP RP → [ lapply (s2 … IHB G L (◊) … HK) // | /3 width=6 by s1, cp3/ ] -| #G #L #Vs #HVs #T #H1T #H2T #L0 #V0 #X #des #HL0 #H #HB +| #G #L #Vs #HVs #T #H1T #H2T #L0 #V0 #X #cs #HL0 #H #HB elim (lifts_inv_applv1 … H) -H #V0s #T0 #HV0s #HT0 #H destruct lapply (s1 … IHB … HB) #HV0 @(s2 … IHA … (V0 @ V0s)) /3 width=14 by gcp2_lifts_all, gcp2_lifts, gcp0_lifts, lifts_simple_dx, conj/ -| #a #G #L #Vs #U #T #W #HA #L0 #V0 #X #des #HL0 #H #HB +| #a #G #L #Vs #U #T #W #HA #L0 #V0 #X #cs #HL0 #H #HB elim (lifts_inv_applv1 … H) -H #V0s #Y #HV0s #HY #H destruct elim (lifts_inv_flat1 … HY) -HY #U0 #X #HU0 #HX #H destruct elim (lifts_inv_bind1 … HX) -HX #W0 #T0 #HW0 #HT0 #H destruct @(s3 … IHA … (V0 @ V0s)) /5 width=6 by lifts_applv, lifts_flat, lifts_bind/ -| #G #L #Vs #HVs #k #L0 #V0 #X #des #HL0 #H #HB +| #G #L #Vs #HVs #k #L0 #V0 #X #cs #HL0 #H #HB elim (lifts_inv_applv1 … H) -H #V0s #Y #HV0s #HY #H destruct >(lifts_inv_sort1 … HY) -Y lapply (s1 … IHB … HB) #HV0 @(s4 … IHA … (V0 @ V0s)) /3 width=7 by gcp2_lifts_all, conj/ -| #I #G #L #K #Vs #V1 #V2 #i #HA #HV12 #HLK #L0 #V0 #X #des #HL0 #H #HB +| #I #G #L #K #Vs #V1 #V2 #i #HA #HV12 #HLK #L0 #V0 #X #cs #HL0 #H #HB elim (lifts_inv_applv1 … H) -H #V0s #Y #HV0s #HY #H destruct elim (lifts_inv_lref1 … HY) -HY #i0 #Hi0 #H destruct - elim (drops_drop_trans … HL0 … HLK) #X #des0 #i1 #HL02 #H #Hi1 #Hcs0 + elim (drops_drop_trans … HL0 … HLK) #X #cs0 #i1 #HL02 #H #Hi1 #Hcs0 >(at_mono … Hi1 … Hi0) in HL02; -i1 #HL02 - elim (drops_inv_skip2 … Hcs0 … H) -H -des0 #L2 #W1 #des0 #Hcs0 #HLK #HVW1 #H destruct + elim (drops_inv_skip2 … Hcs0 … H) -H -cs0 #L2 #W1 #cs0 #Hcs0 #HLK #HVW1 #H destruct elim (lift_total W1 0 (i0 + 1)) #W2 #HW12 elim (lifts_lift_trans … Hcs0 … HVW1 … HW12) // -Hcs0 -Hi0 #V3 #HV13 #HVW2 >(lift_mono … HV13 … HV12) in HVW2; -V3 #HVW2 @(s5 … IHA … (V0 @ V0s) … HW12 HL02) /3 width=5 by lifts_applv/ -| #G #L #V1s #V2s #HV12s #a #V #T #HA #HV #L0 #V10 #X #des #HL0 #H #HB +| #G #L #V1s #V2s #HV12s #a #V #T #HA #HV #L0 #V10 #X #cs #HL0 #H #HB elim (lifts_inv_applv1 … H) -H #V10s #Y #HV10s #HY #H destruct elim (lifts_inv_bind1 … HY) -HY #V0 #T0 #HV0 #HT0 #H destruct elim (lift_total V10 0 1) #V20 #HV120 elim (liftv_total 0 1 V10s) #V20s #HV120s @(s6 … IHA … (V10 @ V10s) (V20 @ V20s)) /3 width=7 by gcp2_lifts, liftv_cons/ - @(HA … (des + 1)) /2 width=2 by drops_skip/ + @(HA … (cs + 1)) /2 width=2 by drops_skip/ [ @lifts_applv // elim (liftsv_liftv_trans_le … HV10s … HV120s) -V10s #V10s #HV10s #HV120s >(liftv_mono … HV12s … HV10s) -V1s // | @(gcr_lift … H1RP … HB … HV120) /2 width=2 by drop_drop/ ] -| #G #L #Vs #T #W #HA #HW #L0 #V0 #X #des #HL0 #H #HB +| #G #L #Vs #T #W #HA #HW #L0 #V0 #X #cs #HL0 #H #HB elim (lifts_inv_applv1 … H) -H #V0s #Y #HV0s #HY #H destruct elim (lifts_inv_flat1 … HY) -HY #W0 #T0 #HW0 #HT0 #H destruct @(s7 … IHA … (V0 @ V0s)) /3 width=5 by lifts_applv/ @@ -148,11 +148,11 @@ qed. lemma acr_abst: ∀RR,RS,RP. gcp RR RS RP → gcr RR RS RP RP → ∀a,G,L,W,T,A,B. ⦃G, L, W⦄ ϵ[RP] 〚B〛 → ( - ∀L0,V0,W0,T0,des. ⬇*[Ⓕ, des] L0 ≡ L → ⬆*[des] W ≡ W0 → ⬆*[des + 1] T ≡ T0 → + ∀L0,V0,W0,T0,cs. ⬇*[Ⓕ, cs] L0 ≡ L → ⬆*[cs] W ≡ W0 → ⬆*[cs + 1] T ≡ T0 → ⦃G, L0, V0⦄ ϵ[RP] 〚B〛 → ⦃G, L0, W0⦄ ϵ[RP] 〚B〛 → ⦃G, L0.ⓓⓝW0.V0, T0⦄ ϵ[RP] 〚A〛 ) → ⦃G, L, ⓛ{a}W.T⦄ ϵ[RP] 〚②B.A〛. -#RR #RS #RP #H1RP #H2RP #a #G #L #W #T #A #B #HW #HA #L0 #V0 #X #des #HL0 #H #HB +#RR #RS #RP #H1RP #H2RP #a #G #L #W #T #A #B #HW #HA #L0 #V0 #X #cs #HL0 #H #HB lapply (acr_gcr … H1RP H2RP A) #HCA lapply (acr_gcr … H1RP H2RP B) #HCB elim (lifts_inv_bind1 … H) -H #W0 #T0 #HW0 #HT0 #H destruct diff --git a/matita/matita/contribs/lambdadelta/basic_2/computation/lprs.ma b/matita/matita/contribs/lambdadelta/basic_2/computation/lprs.ma index ddf4e24ca..4bc12d246 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/computation/lprs.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/computation/lprs.ma @@ -43,16 +43,16 @@ qed-. (* Basic properties *********************************************************) lemma lpr_lprs: ∀G,L1,L2. ⦃G, L1⦄ ⊢ ➡ L2 → ⦃G, L1⦄ ⊢ ➡* L2. -/2 width=1/ qed. +/2 width=1 by inj/ qed. lemma lprs_refl: ∀G,L. ⦃G, L⦄ ⊢ ➡* L. -/2 width=1/ qed. +/2 width=1 by lpr_lprs/ qed. lemma lprs_strap1: ∀G,L1,L,L2. ⦃G, L1⦄ ⊢ ➡* L → ⦃G, L⦄ ⊢ ➡ L2 → ⦃G, L1⦄ ⊢ ➡* L2. -/2 width=3/ qed. +/2 width=3 by step/ qed-. lemma lprs_strap2: ∀G,L1,L,L2. ⦃G, L1⦄ ⊢ ➡ L → ⦃G, L⦄ ⊢ ➡* L2 → ⦃G, L1⦄ ⊢ ➡* L2. -/2 width=3/ qed. +/2 width=3 by TC_strap/ qed-. lemma lprs_pair_refl: ∀G,L1,L2. ⦃G, L1⦄ ⊢ ➡* L2 → ∀I,V. ⦃G, L1.ⓑ{I}V⦄ ⊢ ➡* L2.ⓑ{I}V. /2 width=1 by TC_lpx_sn_pair_refl/ qed. diff --git a/matita/matita/contribs/lambdadelta/basic_2/computation/lprs_lprs.ma b/matita/matita/contribs/lambdadelta/basic_2/computation/lprs_lprs.ma index 1da198d4e..1bb611012 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/computation/lprs_lprs.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/computation/lprs_lprs.ma @@ -28,4 +28,4 @@ theorem lprs_conf: ∀G. confluent2 … (lprs G) (lprs G). /3 width=3 by TC_confluent2, lpr_conf/ qed-. theorem lprs_trans: ∀G. Transitive … (lprs G). -/2 width=3/ qed-. +/2 width=3 by trans_TC/ qed-. diff --git a/matita/matita/contribs/lambdadelta/basic_2/computation/lsubc_drops.ma b/matita/matita/contribs/lambdadelta/basic_2/computation/lsubc_drops.ma index f76065b80..df89d984f 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/computation/lsubc_drops.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/computation/lsubc_drops.ma @@ -20,11 +20,11 @@ include "basic_2/computation/lsubc_drop.ma". (* Basic_1: was: csubc_drop1_conf_rev *) lemma drops_lsubc_trans: ∀RR,RS,RP. gcp RR RS RP → - ∀G,L1,K1,des. ⬇*[Ⓕ, des] L1 ≡ K1 → ∀K2. G ⊢ K1 ⫃[RP] K2 → - ∃∃L2. G ⊢ L1 ⫃[RP] L2 & ⬇*[Ⓕ, des] L2 ≡ K2. -#RR #RS #RP #Hgcp #G #L1 #K1 #des #H elim H -L1 -K1 -des + ∀G,L1,K1,cs. ⬇*[Ⓕ, cs] L1 ≡ K1 → ∀K2. G ⊢ K1 ⫃[RP] K2 → + ∃∃L2. G ⊢ L1 ⫃[RP] L2 & ⬇*[Ⓕ, cs] L2 ≡ K2. +#RR #RS #RP #Hgcp #G #L1 #K1 #cs #H elim H -L1 -K1 -cs [ /2 width=3 by drops_nil, ex2_intro/ -| #L1 #L #K1 #des #l #m #_ #HLK1 #IHL #K2 #HK12 +| #L1 #L #K1 #cs #l #m #_ #HLK1 #IHL #K2 #HK12 elim (drop_lsubc_trans … Hgcp … HLK1 … HK12) -Hgcp -K1 #K #HLK #HK2 elim (IHL … HLK) -IHL -HLK /3 width=5 by drops_cons, ex2_intro/ ] diff --git a/matita/matita/contribs/lambdadelta/basic_2/conversion/cpc.ma b/matita/matita/contribs/lambdadelta/basic_2/conversion/cpc.ma index 116e15950..1268d8887 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/conversion/cpc.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/conversion/cpc.ma @@ -27,14 +27,14 @@ interpretation (* Basic properties *********************************************************) lemma cpc_refl: ∀G,L. reflexive … (cpc G L). -/2 width=1/ qed. +/2 width=1 by or_intror/ qed. lemma cpc_sym: ∀G,L. symmetric … (cpc L G). -#G #L #T1 #T2 * /2 width=1/ -qed. +#G #L #T1 #T2 * /2 width=1 by or_introl, or_intror/ +qed-. (* Basic forward lemmas *****************************************************) lemma cpc_fwd_cpr: ∀G,L,T1,T2. ⦃G, L⦄ ⊢ T1 ⬌ T2 → ∃∃T. ⦃G, L⦄ ⊢ T1 ➡ T & ⦃G, L⦄ ⊢ T2 ➡ T. -#G #L #T1 #T2 * /2 width=3/ +#G #L #T1 #T2 * /2 width=3 by ex2_intro/ qed-. diff --git a/matita/matita/contribs/lambdadelta/basic_2/conversion/cpc_cpc.ma b/matita/matita/contribs/lambdadelta/basic_2/conversion/cpc_cpc.ma index 714d3e712..14518aaab 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/conversion/cpc_cpc.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/conversion/cpc_cpc.ma @@ -20,4 +20,4 @@ include "basic_2/conversion/cpc.ma". theorem cpc_conf: ∀G,L,T0,T1,T2. ⦃G, L⦄ ⊢ T0 ⬌ T1 → ⦃G, L⦄ ⊢ T0 ⬌ T2 → ∃∃T. ⦃G, L⦄ ⊢ T1 ⬌ T & ⦃G, L⦄ ⊢ T2 ⬌ T. -/3 width=3/ qed-. +/3 width=3 by cpc_sym, ex2_intro/ qed-. diff --git a/matita/matita/contribs/lambdadelta/basic_2/equivalence/cpcs.ma b/matita/matita/contribs/lambdadelta/basic_2/equivalence/cpcs.ma index c979cedde..cec1db1bc 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/equivalence/cpcs.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/equivalence/cpcs.ma @@ -45,7 +45,8 @@ lemma cpcs_refl: ∀G,L. reflexive … (cpcs G L). (* Basic_1: was: pc3_s *) lemma cpcs_sym: ∀G,L. symmetric … (cpcs G L). -#G #L @TC_symmetric // qed-. (**) (* auto fails even after normalize *) +normalize /3 width=1 by cpc_sym, TC_symmetric/ +qed-. lemma cpc_cpcs: ∀G,L,T1,T2. ⦃G, L⦄ ⊢ T1 ⬌ T2 → ⦃G, L⦄ ⊢ T1 ⬌* T2. /2 width=1 by inj/ qed. diff --git a/matita/matita/contribs/lambdadelta/basic_2/grammar/lenv_append.ma b/matita/matita/contribs/lambdadelta/basic_2/grammar/lenv_append.ma index cec15c818..0afb82db5 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/grammar/lenv_append.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/grammar/lenv_append.ma @@ -126,6 +126,6 @@ qed-. lemma lenv_ind_alt: ∀R:predicate lenv. R (⋆) → (∀I,L,T. R L → R (ⓑ{I}T.L)) → ∀L. R L. -#R #IH1 #IH2 #L @(f_ind … length … L) -L #n #IHn * // -IH1 +#R #IH1 #IH2 #L @(f_ind … length … L) -L #x #IHx * // -IH1 #L #I #V normalize #H destruct elim (lpair_ltail L I V) /3 width=1 by/ qed-. diff --git a/matita/matita/contribs/lambdadelta/basic_2/grammar/lenv_weight.ma b/matita/matita/contribs/lambdadelta/basic_2/grammar/lenv_weight.ma index 642a3d1b8..9bd6e8260 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/grammar/lenv_weight.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/grammar/lenv_weight.ma @@ -27,7 +27,7 @@ interpretation "weight (local environment)" 'Weight L = (lw L). (* Basic properties *********************************************************) lemma lw_pair: ∀I,L,V. ♯{L} < ♯{L.ⓑ{I}V}. -/3 width=1/ qed. +/3 width=1 by lt_plus_to_minus_r, monotonic_lt_plus_r/ qed. (* Basic_1: removed theorems 4: clt_cong clt_head clt_thead clt_wf_ind *) (* Basic_1: removed local theorems 1: clt_wf__q_ind *) diff --git a/matita/matita/contribs/lambdadelta/basic_2/grammar/term_simple.ma b/matita/matita/contribs/lambdadelta/basic_2/grammar/term_simple.ma index fba6617b4..6bffbf4fa 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/grammar/term_simple.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/grammar/term_simple.ma @@ -34,9 +34,9 @@ fact simple_inv_bind_aux: ∀T. 𝐒⦃T⦄ → ∀a,J,W,U. T = ⓑ{a,J} W. U qed. lemma simple_inv_bind: ∀a,I,V,T. 𝐒⦃ⓑ{a,I} V. T⦄ → ⊥. -/2 width=7/ qed-. +/2 width=7 by simple_inv_bind_aux/ qed-. lemma simple_inv_pair: ∀I,V,T. 𝐒⦃②{I}V.T⦄ → ∃J. I = Flat2 J. -* /2 width=2/ #a #I #V #T #H +* /2 width=2 by ex_intro/ #a #I #V #T #H elim (simple_inv_bind … H) qed-. diff --git a/matita/matita/contribs/lambdadelta/basic_2/multiple/drops.ma b/matita/matita/contribs/lambdadelta/basic_2/multiple/drops.ma index c6edbf3ed..53253e55e 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/multiple/drops.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/multiple/drops.ma @@ -22,12 +22,12 @@ include "basic_2/multiple/lifts_vector.ma". inductive drops (s:bool): list2 nat nat → relation lenv ≝ | drops_nil : ∀L. drops s (◊) L L -| drops_cons: ∀L1,L,L2,des,l,m. - drops s des L1 L → ⬇[s, l, m] L ≡ L2 → drops s ({l, m} @ des) L1 L2 +| drops_cons: ∀L1,L,L2,cs,l,m. + drops s cs L1 L → ⬇[s, l, m] L ≡ L2 → drops s ({l, m} @ cs) L1 L2 . interpretation "iterated slicing (local environment) abstract" - 'RDropStar s des T1 T2 = (drops s des T1 T2). + 'RDropStar s cs T1 T2 = (drops s cs T1 T2). (* interpretation "iterated slicing (local environment) general" 'RDropStar des T1 T2 = (drops true des T1 T2). @@ -38,57 +38,57 @@ definition d_liftable1: relation2 lenv term → predicate bool ≝ ∀U. ⬆[l, m] T ≡ U → R L U. definition d_liftables1: relation2 lenv term → predicate bool ≝ - λR,s. ∀L,K,des. ⬇*[s, des] L ≡ K → - ∀T,U. ⬆*[des] T ≡ U → R K T → R L U. + λR,s. ∀L,K,cs. ⬇*[s, cs] L ≡ K → + ∀T,U. ⬆*[cs] T ≡ U → R K T → R L U. definition d_liftables1_all: relation2 lenv term → predicate bool ≝ - λR,s. ∀L,K,des. ⬇*[s, des] L ≡ K → - ∀Ts,Us. ⬆*[des] Ts ≡ Us → + λR,s. ∀L,K,cs. ⬇*[s, cs] L ≡ K → + ∀Ts,Us. ⬆*[cs] Ts ≡ Us → all … (R K) Ts → all … (R L) Us. (* Basic inversion lemmas ***************************************************) -fact drops_inv_nil_aux: ∀L1,L2,s,des. ⬇*[s, des] L1 ≡ L2 → des = ◊ → L1 = L2. -#L1 #L2 #s #des * -L1 -L2 -des // -#L1 #L #L2 #l #m #des #_ #_ #H destruct +fact drops_inv_nil_aux: ∀L1,L2,s,cs. ⬇*[s, cs] L1 ≡ L2 → cs = ◊ → L1 = L2. +#L1 #L2 #s #cs * -L1 -L2 -cs // +#L1 #L #L2 #l #m #cs #_ #_ #H destruct qed-. (* Basic_1: was: drop1_gen_pnil *) lemma drops_inv_nil: ∀L1,L2,s. ⬇*[s, ◊] L1 ≡ L2 → L1 = L2. /2 width=4 by drops_inv_nil_aux/ qed-. -fact drops_inv_cons_aux: ∀L1,L2,s,des. ⬇*[s, des] L1 ≡ L2 → - ∀l,m,tl. des = {l, m} @ tl → +fact drops_inv_cons_aux: ∀L1,L2,s,cs. ⬇*[s, cs] L1 ≡ L2 → + ∀l,m,tl. cs = {l, m} @ tl → ∃∃L. ⬇*[s, tl] L1 ≡ L & ⬇[s, l, m] L ≡ L2. -#L1 #L2 #s #des * -L1 -L2 -des +#L1 #L2 #s #cs * -L1 -L2 -cs [ #L #l #m #tl #H destruct -| #L1 #L #L2 #des #l #m #HT1 #HT2 #l0 #m0 #tl #H destruct +| #L1 #L #L2 #cs #l #m #HT1 #HT2 #l0 #m0 #tl #H destruct /2 width=3 by ex2_intro/ ] qed-. (* Basic_1: was: drop1_gen_pcons *) -lemma drops_inv_cons: ∀L1,L2,s,l,m,des. ⬇*[s, {l, m} @ des] L1 ≡ L2 → - ∃∃L. ⬇*[s, des] L1 ≡ L & ⬇[s, l, m] L ≡ L2. +lemma drops_inv_cons: ∀L1,L2,s,l,m,cs. ⬇*[s, {l, m} @ cs] L1 ≡ L2 → + ∃∃L. ⬇*[s, cs] L1 ≡ L & ⬇[s, l, m] L ≡ L2. /2 width=3 by drops_inv_cons_aux/ qed-. -lemma drops_inv_skip2: ∀I,s,des,des2,i. des ▭ i ≡ des2 → - ∀L1,K2,V2. ⬇*[s, des2] L1 ≡ K2. ⓑ{I} V2 → - ∃∃K1,V1,des1. des + 1 ▭ i + 1 ≡ des1 + 1 & - ⬇*[s, des1] K1 ≡ K2 & - ⬆*[des1] V2 ≡ V1 & +lemma drops_inv_skip2: ∀I,s,cs,cs2,i. cs ▭ i ≡ cs2 → + ∀L1,K2,V2. ⬇*[s, cs2] L1 ≡ K2. ⓑ{I} V2 → + ∃∃K1,V1,cs1. cs + 1 ▭ i + 1 ≡ cs1 + 1 & + ⬇*[s, cs1] K1 ≡ K2 & + ⬆*[cs1] V2 ≡ V1 & L1 = K1. ⓑ{I} V1. -#I #s #des #des2 #i #H elim H -des -des2 -i +#I #s #cs #cs2 #i #H elim H -cs -cs2 -i [ #i #L1 #K2 #V2 #H >(drops_inv_nil … H) -L1 /2 width=7 by lifts_nil, minuss_nil, ex4_3_intro, drops_nil/ -| #des #des2 #l #m #i #Hil #_ #IHcs2 #L1 #K2 #V2 #H +| #cs #cs2 #l #m #i #Hil #_ #IHcs2 #L1 #K2 #V2 #H elim (drops_inv_cons … H) -H #L #HL1 #H elim (drop_inv_skip2 … H) -H /2 width=1 by lt_plus_to_minus_r/ #K #V >minus_plus #HK2 #HV2 #H destruct - elim (IHcs2 … HL1) -IHcs2 -HL1 #K1 #V1 #des1 #Hcs1 #HK1 #HV1 #X destruct + elim (IHcs2 … HL1) -IHcs2 -HL1 #K1 #V1 #cs1 #Hcs1 #HK1 #HV1 #X destruct @(ex4_3_intro … K1 V1 … ) // [3,4: /2 width=7 by lifts_cons, drops_cons/ | skip ] normalize >plus_minus /3 width=1 by minuss_lt, lt_minus_to_plus/ (**) (* explicit constructors *) -| #des #des2 #l #m #i #Hil #_ #IHcs2 #L1 #K2 #V2 #H - elim (IHcs2 … H) -IHcs2 -H #K1 #V1 #des1 #Hcs1 #HK1 #HV1 #X destruct +| #cs #cs2 #l #m #i #Hil #_ #IHcs2 #L1 #K2 #V2 #H + elim (IHcs2 … H) -IHcs2 -H #K1 #V1 #cs1 #Hcs1 #HK1 #HV1 #X destruct /4 width=7 by minuss_ge, ex4_3_intro, le_S_S/ ] qed-. @@ -96,26 +96,26 @@ qed-. (* Basic properties *********************************************************) (* Basic_1: was: drop1_skip_bind *) -lemma drops_skip: ∀L1,L2,s,des. ⬇*[s, des] L1 ≡ L2 → ∀V1,V2. ⬆*[des] V2 ≡ V1 → - ∀I. ⬇*[s, des + 1] L1.ⓑ{I}V1 ≡ L2.ⓑ{I}V2. -#L1 #L2 #s #des #H elim H -L1 -L2 -des +lemma drops_skip: ∀L1,L2,s,cs. ⬇*[s, cs] L1 ≡ L2 → ∀V1,V2. ⬆*[cs] V2 ≡ V1 → + ∀I. ⬇*[s, cs + 1] L1.ⓑ{I}V1 ≡ L2.ⓑ{I}V2. +#L1 #L2 #s #cs #H elim H -L1 -L2 -cs [ #L #V1 #V2 #HV12 #I >(lifts_inv_nil … HV12) -HV12 // -| #L1 #L #L2 #des #l #m #_ #HL2 #IHL #V1 #V2 #H #I +| #L1 #L #L2 #cs #l #m #_ #HL2 #IHL #V1 #V2 #H #I elim (lifts_inv_cons … H) -H /3 width=5 by drop_skip, drops_cons/ ]. qed. lemma d1_liftable_liftables: ∀R,s. d_liftable1 R s → d_liftables1 R s. -#R #s #HR #L #K #des #H elim H -L -K -des +#R #s #HR #L #K #cs #H elim H -L -K -cs [ #L #T #U #H #HT <(lifts_inv_nil … H) -H // -| #L1 #L #L2 #des #l #m #_ #HL2 #IHL #T2 #T1 #H #HLT2 +| #L1 #L #L2 #cs #l #m #_ #HL2 #IHL #T2 #T1 #H #HLT2 elim (lifts_inv_cons … H) -H /3 width=10 by/ ] qed. lemma d1_liftables_liftables_all: ∀R,s. d_liftables1 R s → d_liftables1_all R s. -#R #s #HR #L #K #des #HLK #Ts #Us #H elim H -Ts -Us normalize // +#R #s #HR #L #K #cs #HLK #Ts #Us #H elim H -Ts -Us normalize // #Ts #Us #T #U #HTU #_ #IHTUs * /3 width=7 by conj/ qed. diff --git a/matita/matita/contribs/lambdadelta/basic_2/multiple/drops_drop.ma b/matita/matita/contribs/lambdadelta/basic_2/multiple/drops_drop.ma index e835b2e18..2f9a34c08 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/multiple/drops_drop.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/multiple/drops_drop.ma @@ -19,12 +19,12 @@ include "basic_2/multiple/drops.ma". (* Properties concerning basic local environment slicing ********************) -lemma drops_drop_trans: ∀L1,L,des. ⬇*[Ⓕ, des] L1 ≡ L → ∀L2,i. ⬇[i] L ≡ L2 → - ∃∃L0,des0,i0. ⬇[i0] L1 ≡ L0 & ⬇*[Ⓕ, des0] L0 ≡ L2 & - @⦃i, des⦄ ≡ i0 & des ▭ i ≡ des0. -#L1 #L #des #H elim H -L1 -L -des +lemma drops_drop_trans: ∀L1,L,cs. ⬇*[Ⓕ, cs] L1 ≡ L → ∀L2,i. ⬇[i] L ≡ L2 → + ∃∃L0,cs0,i0. ⬇[i0] L1 ≡ L0 & ⬇*[Ⓕ, cs0] L0 ≡ L2 & + @⦃i, cs⦄ ≡ i0 & cs ▭ i ≡ cs0. +#L1 #L #cs #H elim H -L1 -L -cs [ /2 width=7 by drops_nil, minuss_nil, at_nil, ex4_3_intro/ -| #L1 #L0 #L #des #l #m #_ #HL0 #IHL0 #L2 #i #HL2 +| #L1 #L0 #L #cs #l #m #_ #HL0 #IHL0 #L2 #i #HL2 elim (lt_or_ge i l) #Hil [ elim (drop_trans_le … HL0 … HL2) -L /2 width=2 by lt_to_le/ #L #HL0 #HL2 elim (IHL0 … HL0) -L0 /3 width=7 by drops_cons, minuss_lt, at_lt, ex4_3_intro/ diff --git a/matita/matita/contribs/lambdadelta/basic_2/multiple/drops_drops.ma b/matita/matita/contribs/lambdadelta/basic_2/multiple/drops_drops.ma index 2ee3a07ff..c2b0b30d1 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/multiple/drops_drops.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/multiple/drops_drops.ma @@ -19,7 +19,7 @@ include "basic_2/multiple/drops_drop.ma". (* Main properties **********************************************************) (* Basic_1: was: drop1_trans *) -theorem drops_trans: ∀L,L2,s,des2. ⬇*[s, des2] L ≡ L2 → ∀L1,des1. ⬇*[s, des1] L1 ≡ L → - ⬇*[s, des2 @@ des1] L1 ≡ L2. -#L #L2 #s #des2 #H elim H -L -L2 -des2 /3 width=3 by drops_cons/ +theorem drops_trans: ∀L,L2,s,cs2. ⬇*[s, cs2] L ≡ L2 → ∀L1,cs1. ⬇*[s, cs1] L1 ≡ L → + ⬇*[s, cs2 @@ cs1] L1 ≡ L2. +#L #L2 #s #cs2 #H elim H -L -L2 -cs2 /3 width=3 by drops_cons/ qed-. diff --git a/matita/matita/contribs/lambdadelta/basic_2/multiple/fqup.ma b/matita/matita/contribs/lambdadelta/basic_2/multiple/fqup.ma index 6c1e0f127..b126081ba 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/multiple/fqup.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/multiple/fqup.ma @@ -98,12 +98,12 @@ lemma fqup_wf_ind: ∀R:relation3 …. ( ∀G1,L1,T1. (∀G2,L2,T2. ⦃G1, L1, T1⦄ ⊐+ ⦃G2, L2, T2⦄ → R G2 L2 T2) → R G1 L1 T1 ) → ∀G1,L1,T1. R G1 L1 T1. -#R #HR @(f3_ind … fw) #n #IHn #G1 #L1 #T1 #H destruct /4 width=1 by fqup_fwd_fw/ +#R #HR @(f3_ind … fw) #x #IHx #G1 #L1 #T1 #H destruct /4 width=1 by fqup_fwd_fw/ qed-. lemma fqup_wf_ind_eq: ∀R:relation3 …. ( ∀G1,L1,T1. (∀G2,L2,T2. ⦃G1, L1, T1⦄ ⊐+ ⦃G2, L2, T2⦄ → R G2 L2 T2) → ∀G2,L2,T2. G1 = G2 → L1 = L2 → T1 = T2 → R G2 L2 T2 ) → ∀G1,L1,T1. R G1 L1 T1. -#R #HR @(f3_ind … fw) #n #IHn #G1 #L1 #T1 #H destruct /4 width=7 by fqup_fwd_fw/ +#R #HR @(f3_ind … fw) #x #IHx #G1 #L1 #T1 #H destruct /4 width=7 by fqup_fwd_fw/ qed-. diff --git a/matita/matita/contribs/lambdadelta/basic_2/multiple/frees_lift.ma b/matita/matita/contribs/lambdadelta/basic_2/multiple/frees_lift.ma index 0b60f7af7..a95f1ac3f 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/multiple/frees_lift.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/multiple/frees_lift.ma @@ -21,31 +21,31 @@ include "basic_2/multiple/frees.ma". lemma frees_dec: ∀L,U,l,i. Decidable (frees l L U i). #L #U @(f2_ind … rfw … L U) -L -U -#n #IH #L * * +#x #IH #L * * [ -IH /3 width=5 by frees_inv_sort, or_intror/ -| #j #Hn #l #i elim (lt_or_eq_or_gt i j) #Hji - [ -n @or_intror #H elim (lt_refl_false i) +| #j #Hx #l #i elim (lt_or_eq_or_gt i j) #Hji + [ -x @or_intror #H elim (lt_refl_false i) lapply (frees_inv_lref_ge … H ?) -L -l /2 width=1 by lt_to_le/ - | -n /2 width=1 by or_introl/ + | -x /2 width=1 by or_introl/ | elim (ylt_split j l) #Hli - [ -n @or_intror #H elim (lt_refl_false i) + [ -x @or_intror #H elim (lt_refl_false i) lapply (frees_inv_lref_skip … H ?) -L // | elim (lt_or_ge j (|L|)) #Hj [ elim (drop_O1_lt (Ⓕ) L j) // -Hj #I #K #W #HLK destruct elim (IH K W … 0 (i-j-1)) -IH [1,3: /3 width=5 by frees_lref_be, drop_fwd_rfw, or_introl/ ] #HnW @or_intror #H elim (frees_inv_lref_lt … H) // #Z #Y #X #_ #HLY -l lapply (drop_mono … HLY … HLK) -L #H destruct /2 width=1 by/ - | -n @or_intror #H elim (lt_refl_false i) + | -x @or_intror #H elim (lt_refl_false i) lapply (frees_inv_lref_free … H ?) -l // ] ] ] | -IH /3 width=5 by frees_inv_gref, or_intror/ -| #a #I #W #U #Hn #l #i destruct +| #a #I #W #U #Hx #l #i destruct elim (IH L W … l i) [1,3: /3 width=1 by frees_bind_sn, or_introl/ ] #HnW elim (IH (L.ⓑ{I}W) U … (⫯l) (i+1)) -IH [1,3: /3 width=1 by frees_bind_dx, or_introl/ ] #HnU @or_intror #H elim (frees_inv_bind … H) -H /2 width=1 by/ -| #I #W #U #Hn #l #i destruct +| #I #W #U #Hx #l #i destruct elim (IH L W … l i) [1,3: /3 width=1 by frees_flat_sn, or_introl/ ] #HnW elim (IH L U … l i) -IH [1,3: /3 width=1 by frees_flat_dx, or_introl/ ] #HnU @or_intror #H elim (frees_inv_flat … H) -H /2 width=1 by/ diff --git a/matita/matita/contribs/lambdadelta/basic_2/multiple/lifts.ma b/matita/matita/contribs/lambdadelta/basic_2/multiple/lifts.ma index d4a5a61cc..be2d50f1e 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/multiple/lifts.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/multiple/lifts.ma @@ -20,75 +20,75 @@ include "basic_2/multiple/mr2_plus.ma". inductive lifts: list2 nat nat → relation term ≝ | lifts_nil : ∀T. lifts (◊) T T -| lifts_cons: ∀T1,T,T2,des,l,m. - ⬆[l,m] T1 ≡ T → lifts des T T2 → lifts ({l, m} @ des) T1 T2 +| lifts_cons: ∀T1,T,T2,cs,l,m. + ⬆[l,m] T1 ≡ T → lifts cs T T2 → lifts ({l, m} @ cs) T1 T2 . interpretation "generic relocation (term)" - 'RLiftStar des T1 T2 = (lifts des T1 T2). + 'RLiftStar cs T1 T2 = (lifts cs T1 T2). (* Basic inversion lemmas ***************************************************) -fact lifts_inv_nil_aux: ∀T1,T2,des. ⬆*[des] T1 ≡ T2 → des = ◊ → T1 = T2. -#T1 #T2 #des * -T1 -T2 -des // -#T1 #T #T2 #l #m #des #_ #_ #H destruct +fact lifts_inv_nil_aux: ∀T1,T2,cs. ⬆*[cs] T1 ≡ T2 → cs = ◊ → T1 = T2. +#T1 #T2 #cs * -T1 -T2 -cs // +#T1 #T #T2 #l #m #cs #_ #_ #H destruct qed-. lemma lifts_inv_nil: ∀T1,T2. ⬆*[◊] T1 ≡ T2 → T1 = T2. /2 width=3 by lifts_inv_nil_aux/ qed-. -fact lifts_inv_cons_aux: ∀T1,T2,des. ⬆*[des] T1 ≡ T2 → - ∀l,m,tl. des = {l, m} @ tl → +fact lifts_inv_cons_aux: ∀T1,T2,cs. ⬆*[cs] T1 ≡ T2 → + ∀l,m,tl. cs = {l, m} @ tl → ∃∃T. ⬆[l, m] T1 ≡ T & ⬆*[tl] T ≡ T2. -#T1 #T2 #des * -T1 -T2 -des +#T1 #T2 #cs * -T1 -T2 -cs [ #T #l #m #tl #H destruct -| #T1 #T #T2 #des #l #m #HT1 #HT2 #l0 #m0 #tl #H destruct +| #T1 #T #T2 #cs #l #m #HT1 #HT2 #l0 #m0 #tl #H destruct /2 width=3 by ex2_intro/ qed-. -lemma lifts_inv_cons: ∀T1,T2,l,m,des. ⬆*[{l, m} @ des] T1 ≡ T2 → - ∃∃T. ⬆[l, m] T1 ≡ T & ⬆*[des] T ≡ T2. +lemma lifts_inv_cons: ∀T1,T2,l,m,cs. ⬆*[{l, m} @ cs] T1 ≡ T2 → + ∃∃T. ⬆[l, m] T1 ≡ T & ⬆*[cs] T ≡ T2. /2 width=3 by lifts_inv_cons_aux/ qed-. (* Basic_1: was: lift1_sort *) -lemma lifts_inv_sort1: ∀T2,k,des. ⬆*[des] ⋆k ≡ T2 → T2 = ⋆k. -#T2 #k #des elim des -des +lemma lifts_inv_sort1: ∀T2,k,cs. ⬆*[cs] ⋆k ≡ T2 → T2 = ⋆k. +#T2 #k #cs elim cs -cs [ #H <(lifts_inv_nil … H) -H // -| #l #m #des #IH #H +| #l #m #cs #IH #H elim (lifts_inv_cons … H) -H #X #H >(lift_inv_sort1 … H) -H /2 width=1 by/ ] qed-. (* Basic_1: was: lift1_lref *) -lemma lifts_inv_lref1: ∀T2,des,i1. ⬆*[des] #i1 ≡ T2 → - ∃∃i2. @⦃i1, des⦄ ≡ i2 & T2 = #i2. -#T2 #des elim des -des +lemma lifts_inv_lref1: ∀T2,cs,i1. ⬆*[cs] #i1 ≡ T2 → + ∃∃i2. @⦃i1, cs⦄ ≡ i2 & T2 = #i2. +#T2 #cs elim cs -cs [ #i1 #H <(lifts_inv_nil … H) -H /2 width=3 by at_nil, ex2_intro/ -| #l #m #des #IH #i1 #H +| #l #m #cs #IH #i1 #H elim (lifts_inv_cons … H) -H #X #H1 #H2 elim (lift_inv_lref1 … H1) -H1 * #Hli1 #H destruct elim (IH … H2) -IH -H2 /3 width=3 by at_lt, at_ge, ex2_intro/ ] qed-. -lemma lifts_inv_gref1: ∀T2,p,des. ⬆*[des] §p ≡ T2 → T2 = §p. -#T2 #p #des elim des -des +lemma lifts_inv_gref1: ∀T2,p,cs. ⬆*[cs] §p ≡ T2 → T2 = §p. +#T2 #p #cs elim cs -cs [ #H <(lifts_inv_nil … H) -H // -| #l #m #des #IH #H +| #l #m #cs #IH #H elim (lifts_inv_cons … H) -H #X #H >(lift_inv_gref1 … H) -H /2 width=1 by/ ] qed-. (* Basic_1: was: lift1_bind *) -lemma lifts_inv_bind1: ∀a,I,T2,des,V1,U1. ⬆*[des] ⓑ{a,I} V1. U1 ≡ T2 → - ∃∃V2,U2. ⬆*[des] V1 ≡ V2 & ⬆*[des + 1] U1 ≡ U2 & +lemma lifts_inv_bind1: ∀a,I,T2,cs,V1,U1. ⬆*[cs] ⓑ{a,I} V1. U1 ≡ T2 → + ∃∃V2,U2. ⬆*[cs] V1 ≡ V2 & ⬆*[cs + 1] U1 ≡ U2 & T2 = ⓑ{a,I} V2. U2. -#a #I #T2 #des elim des -des +#a #I #T2 #cs elim cs -cs [ #V1 #U1 #H <(lifts_inv_nil … H) -H /2 width=5 by ex3_2_intro, lifts_nil/ -| #l #m #des #IHcs #V1 #U1 #H +| #l #m #cs #IHcs #V1 #U1 #H elim (lifts_inv_cons … H) -H #X #H #HT2 elim (lift_inv_bind1 … H) -H #V #U #HV1 #HU1 #H destruct elim (IHcs … HT2) -IHcs -HT2 #V2 #U2 #HV2 #HU2 #H destruct @@ -97,13 +97,13 @@ lemma lifts_inv_bind1: ∀a,I,T2,des,V1,U1. ⬆*[des] ⓑ{a,I} V1. U1 ≡ T2 → qed-. (* Basic_1: was: lift1_flat *) -lemma lifts_inv_flat1: ∀I,T2,des,V1,U1. ⬆*[des] ⓕ{I} V1. U1 ≡ T2 → - ∃∃V2,U2. ⬆*[des] V1 ≡ V2 & ⬆*[des] U1 ≡ U2 & +lemma lifts_inv_flat1: ∀I,T2,cs,V1,U1. ⬆*[cs] ⓕ{I} V1. U1 ≡ T2 → + ∃∃V2,U2. ⬆*[cs] V1 ≡ V2 & ⬆*[cs] U1 ≡ U2 & T2 = ⓕ{I} V2. U2. -#I #T2 #des elim des -des +#I #T2 #cs elim cs -cs [ #V1 #U1 #H <(lifts_inv_nil … H) -H /2 width=5 by ex3_2_intro, lifts_nil/ -| #l #m #des #IHcs #V1 #U1 #H +| #l #m #cs #IHcs #V1 #U1 #H elim (lifts_inv_cons … H) -H #X #H #HT2 elim (lift_inv_flat1 … H) -H #V #U #HV1 #HU1 #H destruct elim (IHcs … HT2) -IHcs -HT2 #V2 #U2 #HV2 #HU2 #H destruct @@ -113,38 +113,38 @@ qed-. (* Basic forward lemmas *****************************************************) -lemma lifts_simple_dx: ∀T1,T2,des. ⬆*[des] T1 ≡ T2 → 𝐒⦃T1⦄ → 𝐒⦃T2⦄. -#T1 #T2 #des #H elim H -T1 -T2 -des /3 width=5 by lift_simple_dx/ +lemma lifts_simple_dx: ∀T1,T2,cs. ⬆*[cs] T1 ≡ T2 → 𝐒⦃T1⦄ → 𝐒⦃T2⦄. +#T1 #T2 #cs #H elim H -T1 -T2 -cs /3 width=5 by lift_simple_dx/ qed-. -lemma lifts_simple_sn: ∀T1,T2,des. ⬆*[des] T1 ≡ T2 → 𝐒⦃T2⦄ → 𝐒⦃T1⦄. -#T1 #T2 #des #H elim H -T1 -T2 -des /3 width=5 by lift_simple_sn/ +lemma lifts_simple_sn: ∀T1,T2,cs. ⬆*[cs] T1 ≡ T2 → 𝐒⦃T2⦄ → 𝐒⦃T1⦄. +#T1 #T2 #cs #H elim H -T1 -T2 -cs /3 width=5 by lift_simple_sn/ qed-. (* Basic properties *********************************************************) -lemma lifts_bind: ∀a,I,T2,V1,V2,des. ⬆*[des] V1 ≡ V2 → - ∀T1. ⬆*[des + 1] T1 ≡ T2 → - ⬆*[des] ⓑ{a,I} V1. T1 ≡ ⓑ{a,I} V2. T2. -#a #I #T2 #V1 #V2 #des #H elim H -V1 -V2 -des +lemma lifts_bind: ∀a,I,T2,V1,V2,cs. ⬆*[cs] V1 ≡ V2 → + ∀T1. ⬆*[cs + 1] T1 ≡ T2 → + ⬆*[cs] ⓑ{a,I} V1. T1 ≡ ⓑ{a,I} V2. T2. +#a #I #T2 #V1 #V2 #cs #H elim H -V1 -V2 -cs [ #V #T1 #H >(lifts_inv_nil … H) -H // -| #V1 #V #V2 #des #l #m #HV1 #_ #IHV #T1 #H +| #V1 #V #V2 #cs #l #m #HV1 #_ #IHV #T1 #H elim (lifts_inv_cons … H) -H /3 width=3 by lift_bind, lifts_cons/ ] qed. -lemma lifts_flat: ∀I,T2,V1,V2,des. ⬆*[des] V1 ≡ V2 → - ∀T1. ⬆*[des] T1 ≡ T2 → - ⬆*[des] ⓕ{I} V1. T1 ≡ ⓕ{I} V2. T2. -#I #T2 #V1 #V2 #des #H elim H -V1 -V2 -des +lemma lifts_flat: ∀I,T2,V1,V2,cs. ⬆*[cs] V1 ≡ V2 → + ∀T1. ⬆*[cs] T1 ≡ T2 → + ⬆*[cs] ⓕ{I} V1. T1 ≡ ⓕ{I} V2. T2. +#I #T2 #V1 #V2 #cs #H elim H -V1 -V2 -cs [ #V #T1 #H >(lifts_inv_nil … H) -H // -| #V1 #V #V2 #des #l #m #HV1 #_ #IHV #T1 #H +| #V1 #V #V2 #cs #l #m #HV1 #_ #IHV #T1 #H elim (lifts_inv_cons … H) -H /3 width=3 by lift_flat, lifts_cons/ ] qed. -lemma lifts_total: ∀des,T1. ∃T2. ⬆*[des] T1 ≡ T2. -#des elim des -des /2 width=2 by lifts_nil, ex_intro/ -#l #m #des #IH #T1 elim (lift_total T1 l m) +lemma lifts_total: ∀cs,T1. ∃T2. ⬆*[cs] T1 ≡ T2. +#cs elim cs -cs /2 width=2 by lifts_nil, ex_intro/ +#l #m #cs #IH #T1 elim (lift_total T1 l m) #T #HT1 elim (IH T) -IH /3 width=4 by lifts_cons, ex_intro/ qed. diff --git a/matita/matita/contribs/lambdadelta/basic_2/multiple/lifts_lift.ma b/matita/matita/contribs/lambdadelta/basic_2/multiple/lifts_lift.ma index 990878bee..102ed0ceb 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/multiple/lifts_lift.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/multiple/lifts_lift.ma @@ -21,39 +21,39 @@ include "basic_2/multiple/lifts.ma". (* Properties concerning basic term relocation ******************************) (* Basic_1: was: lift1_xhg (right to left) *) -lemma lifts_lift_trans_le: ∀T1,T,des. ⬆*[des] T1 ≡ T → ∀T2. ⬆[0, 1] T ≡ T2 → - ∃∃T0. ⬆[0, 1] T1 ≡ T0 & ⬆*[des + 1] T0 ≡ T2. -#T1 #T #des #H elim H -T1 -T -des -[ /2 width=3/ -| #T1 #T3 #T #des #l #m #HT13 #_ #IHT13 #T2 #HT2 +lemma lifts_lift_trans_le: ∀T1,T,cs. ⬆*[cs] T1 ≡ T → ∀T2. ⬆[0, 1] T ≡ T2 → + ∃∃T0. ⬆[0, 1] T1 ≡ T0 & ⬆*[cs + 1] T0 ≡ T2. +#T1 #T #cs #H elim H -T1 -T -cs +[ /2 width=3 by lifts_nil, ex2_intro/ +| #T1 #T3 #T #cs #l #m #HT13 #_ #IHT13 #T2 #HT2 elim (IHT13 … HT2) -T #T #HT3 #HT2 - elim (lift_trans_le … HT13 … HT3) -T3 // /3 width=5/ + elim (lift_trans_le … HT13 … HT3) -T3 /3 width=5 by lifts_cons, ex2_intro/ ] qed-. (* Basic_1: was: lift1_free (right to left) *) -lemma lifts_lift_trans: ∀des,i,i0. @⦃i, des⦄ ≡ i0 → - ∀des0. des + 1 ▭ i + 1 ≡ des0 + 1 → - ∀T1,T0. ⬆*[des0] T1 ≡ T0 → +lemma lifts_lift_trans: ∀cs,i,i0. @⦃i, cs⦄ ≡ i0 → + ∀cs0. cs + 1 ▭ i + 1 ≡ cs0 + 1 → + ∀T1,T0. ⬆*[cs0] T1 ≡ T0 → ∀T2. ⬆[O, i0 + 1] T0 ≡ T2 → - ∃∃T. ⬆[0, i + 1] T1 ≡ T & ⬆*[des] T ≡ T2. -#des elim des -des normalize -[ #i #x #H1 #des0 #H2 #T1 #T0 #HT10 #T2 + ∃∃T. ⬆[0, i + 1] T1 ≡ T & ⬆*[cs] T ≡ T2. +#cs elim cs -cs normalize +[ #i #x #H1 #cs0 #H2 #T1 #T0 #HT10 #T2 <(at_inv_nil … H1) -x #HT02 lapply (minuss_inv_nil1 … H2) -H2 #H - >(pluss_inv_nil2 … H) in HT10; -des0 #H - >(lifts_inv_nil … H) -T1 /2 width=3/ -| #l #m #des #IHcs #i #i0 #H1 #des0 #H2 #T1 #T0 #HT10 #T2 #HT02 + >(pluss_inv_nil2 … H) in HT10; -cs0 #H + >(lifts_inv_nil … H) -T1 /2 width=3 by lifts_nil, ex2_intro/ +| #l #m #cs #IHcs #i #i0 #H1 #cs0 #H2 #T1 #T0 #HT10 #T2 #HT02 elim (at_inv_cons … H1) -H1 * #Hil #Hi0 - [ elim (minuss_inv_cons1_lt … H2) -H2 [2: /2 width=1/ ] #des1 #Hcs1 minus_plus #HT1 #HT0 elim (IHcs … Hi0 … Hcs1 … HT0 … HT02) -IHcs -Hi0 -Hcs1 -T0 #T0 #HT0 #HT02 - elim (lift_trans_le … HT1 … HT0) -T /2 width=1/ #T #HT1 commutative_plus in Hi0; #Hi0 - lapply (minuss_inv_cons1_ge … H2 ?) -H2 [ /2 width=1/ ] (liftv_inv_nil1 … H) -T1s /2 width=3/ + >(liftv_inv_nil1 … H) -T1s /2 width=3 by liftsv_nil, liftv_nil, ex2_intro/ | #T1s #Ts #T1 #T #HT1 #_ #IHT1s #X #H elim (liftv_inv_cons1 … H) -H #T2 #T2s #HT2 #HT2s #H destruct elim (IHT1s … HT2s) -Ts #Ts #HT1s #HT2s - elim (lifts_lift_trans_le … HT1 … HT2) -T /3 width=5/ + elim (lifts_lift_trans_le … HT1 … HT2) -T /3 width=5 by liftsv_cons, liftv_cons, ex2_intro/ ] qed-. diff --git a/matita/matita/contribs/lambdadelta/basic_2/multiple/lifts_lifts.ma b/matita/matita/contribs/lambdadelta/basic_2/multiple/lifts_lifts.ma index 739f79009..cff6bf238 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/multiple/lifts_lifts.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/multiple/lifts_lifts.ma @@ -19,7 +19,7 @@ include "basic_2/multiple/lifts_lift.ma". (* Main properties **********************************************************) (* Basic_1: was: lift1_lift1 (left to right) *) -theorem lifts_trans: ∀T1,T,des1. ⬆*[des1] T1 ≡ T → ∀T2:term. ∀des2. ⬆*[des2] T ≡ T2 → - ⬆*[des1 @@ des2] T1 ≡ T2. -#T1 #T #des1 #H elim H -T1 -T -des1 // /3 width=3/ +theorem lifts_trans: ∀T1,T,cs1. ⬆*[cs1] T1 ≡ T → ∀T2:term. ∀cs2. ⬆*[cs2] T ≡ T2 → + ⬆*[cs1 @@ cs2] T1 ≡ T2. +#T1 #T #cs1 #H elim H -T1 -T -cs1 /3 width=3 by lifts_cons/ qed. diff --git a/matita/matita/contribs/lambdadelta/basic_2/multiple/lifts_vector.ma b/matita/matita/contribs/lambdadelta/basic_2/multiple/lifts_vector.ma index c285d520a..5951134f6 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/multiple/lifts_vector.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/multiple/lifts_vector.ma @@ -17,26 +17,26 @@ include "basic_2/multiple/lifts.ma". (* GENERIC TERM VECTOR RELOCATION *******************************************) -inductive liftsv (des:list2 nat nat) : relation (list term) ≝ -| liftsv_nil : liftsv des (◊) (◊) +inductive liftsv (cs:list2 nat nat) : relation (list term) ≝ +| liftsv_nil : liftsv cs (◊) (◊) | liftsv_cons: ∀T1s,T2s,T1,T2. - ⬆*[des] T1 ≡ T2 → liftsv des T1s T2s → - liftsv des (T1 @ T1s) (T2 @ T2s) + ⬆*[cs] T1 ≡ T2 → liftsv cs T1s T2s → + liftsv cs (T1 @ T1s) (T2 @ T2s) . interpretation "generic relocation (vector)" - 'RLiftStar des T1s T2s = (liftsv des T1s T2s). + 'RLiftStar cs T1s T2s = (liftsv cs T1s T2s). (* Basic inversion lemmas ***************************************************) (* Basic_1: was: lifts1_flat (left to right) *) -lemma lifts_inv_applv1: ∀V1s,U1,T2,des. ⬆*[des] Ⓐ V1s. U1 ≡ T2 → - ∃∃V2s,U2. ⬆*[des] V1s ≡ V2s & ⬆*[des] U1 ≡ U2 & +lemma lifts_inv_applv1: ∀V1s,U1,T2,cs. ⬆*[cs] Ⓐ V1s. U1 ≡ T2 → + ∃∃V2s,U2. ⬆*[cs] V1s ≡ V2s & ⬆*[cs] U1 ≡ U2 & T2 = Ⓐ V2s. U2. #V1s elim V1s -V1s normalize -[ #T1 #T2 #des #HT12 +[ #T1 #T2 #cs #HT12 @ex3_2_intro [3,4: // |1,2: skip | // ] (**) (* explicit constructor *) -| #V1 #V1s #IHV1s #T1 #X #des #H +| #V1 #V1s #IHV1s #T1 #X #cs #H elim (lifts_inv_flat1 … H) -H #V2 #Y #HV12 #HY #H destruct elim (IHV1s … HY) -IHV1s -HY #V2s #T2 #HV12s #HT12 #H destruct @(ex3_2_intro) [4: // |3: /2 width=2 by liftsv_cons/ |1,2: skip | // ] (**) (* explicit constructor *) @@ -46,8 +46,8 @@ qed-. (* Basic properties *********************************************************) (* Basic_1: was: lifts1_flat (right to left) *) -lemma lifts_applv: ∀V1s,V2s,des. ⬆*[des] V1s ≡ V2s → - ∀T1,T2. ⬆*[des] T1 ≡ T2 → - ⬆*[des] Ⓐ V1s. T1 ≡ Ⓐ V2s. T2. -#V1s #V2s #des #H elim H -V1s -V2s /3 width=1 by lifts_flat/ +lemma lifts_applv: ∀V1s,V2s,cs. ⬆*[cs] V1s ≡ V2s → + ∀T1,T2. ⬆*[cs] T1 ≡ T2 → + ⬆*[cs] Ⓐ V1s. T1 ≡ Ⓐ V2s. T2. +#V1s #V2s #cs #H elim H -V1s -V2s /3 width=1 by lifts_flat/ qed. diff --git a/matita/matita/contribs/lambdadelta/basic_2/multiple/lleq.ma b/matita/matita/contribs/lambdadelta/basic_2/multiple/lleq.ma index c9cd4c54c..1f57f73be 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/multiple/lleq.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/multiple/lleq.ma @@ -74,7 +74,7 @@ lemma lleq_fwd_lref: ∀L1,L2,l,i. L1 ≡[#i, l] L2 → | ∃∃I,K1,K2,V. ⬇[i] L1 ≡ K1.ⓑ{I}V & ⬇[i] L2 ≡ K2.ⓑ{I}V & K1 ≡[V, yinj 0] K2 & l ≤ yinj i. -#L1 #L2 #l #i #H elim (llpx_sn_fwd_lref … H) /2 width=1/ +#L1 #L2 #l #i #H elim (llpx_sn_fwd_lref … H) /2 width=1 by or3_intro0, or3_intro1/ * /3 width=7 by or3_intro2, ex4_4_intro/ qed-. diff --git a/matita/matita/contribs/lambdadelta/basic_2/multiple/llpx_sn.ma b/matita/matita/contribs/lambdadelta/basic_2/multiple/llpx_sn.ma index f75d1a4a9..d95462070 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/multiple/llpx_sn.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/multiple/llpx_sn.ma @@ -149,17 +149,17 @@ qed-. lemma llpx_sn_refl: ∀R. (∀L. reflexive … (R L)) → ∀T,L,l. llpx_sn R l T L L. #R #HR #T #L @(f2_ind … rfw … L T) -L -T -#n #IH #L * * /3 width=1 by llpx_sn_sort, llpx_sn_gref, llpx_sn_bind, llpx_sn_flat/ -#i #Hn elim (lt_or_ge i (|L|)) /2 width=1 by llpx_sn_free/ +#x #IH #L * * /3 width=1 by llpx_sn_sort, llpx_sn_gref, llpx_sn_bind, llpx_sn_flat/ +#i #Hx elim (lt_or_ge i (|L|)) /2 width=1 by llpx_sn_free/ #HiL #l elim (ylt_split i l) /2 width=1 by llpx_sn_skip/ elim (drop_O1_lt … HiL) -HiL destruct /4 width=9 by llpx_sn_lref, drop_fwd_rfw/ qed-. lemma llpx_sn_Y: ∀R,T,L1,L2. |L1| = |L2| → llpx_sn R (∞) T L1 L2. #R #T #L1 @(f2_ind … rfw … L1 T) -L1 -T -#n #IH #L1 * * /3 width=1 by llpx_sn_sort, llpx_sn_skip, llpx_sn_gref, llpx_sn_flat/ -#a #I #V1 #T1 #Hn #L2 #HL12 -@llpx_sn_bind /2 width=1/ (**) (* explicit constructor *) +#x #IH #L1 * * /3 width=1 by llpx_sn_sort, llpx_sn_skip, llpx_sn_gref, llpx_sn_flat/ +#a #I #V1 #T1 #Hx #L2 #HL12 +@llpx_sn_bind /2 width=1 by/ (**) (* explicit constructor *) @IH -IH // normalize /2 width=1 by eq_f2/ qed-. diff --git a/matita/matita/contribs/lambdadelta/basic_2/multiple/llpx_sn_alt.ma b/matita/matita/contribs/lambdadelta/basic_2/multiple/llpx_sn_alt.ma index ee49dc20c..a849ade55 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/multiple/llpx_sn_alt.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/multiple/llpx_sn_alt.ma @@ -29,27 +29,27 @@ definition llpx_sn_alt: relation3 lenv term term → relation4 ynat term lenv le theorem llpx_sn_llpx_sn_alt: ∀R,T,L1,L2,l. llpx_sn R l T L1 L2 → llpx_sn_alt R l T L1 L2. #R #U #L1 @(f2_ind … rfw … L1 U) -L1 -U -#n #IHn #L1 #U #Hn #L2 #l #H elim (llpx_sn_inv_alt_r … H) -H +#x #IHx #L1 #U #Hx #L2 #l #H elim (llpx_sn_inv_alt_r … H) -H #HL12 #IHU @conj // #I1 #I2 #K1 #K2 #V1 #V2 #i #Hli #H #HLK1 #HLK2 elim (frees_inv … H) -H -[ -n #HnU elim (IHU … HnU HLK1 HLK2) -IHU -HnU -HLK1 -HLK2 /2 width=1 by conj/ +[ -x #HnU elim (IHU … HnU HLK1 HLK2) -IHU -HnU -HLK1 -HLK2 /2 width=1 by conj/ | * #J1 #K10 #W10 #j #Hlj #Hji #HnU #HLK10 #HnW10 destruct lapply (drop_fwd_drop2 … HLK10) #H lapply (drop_conf_ge … H … HLK1 ?) -H /2 width=1 by lt_to_le/ (aaa_inv_sort … H) -H // | #I1 #G #L #K1 #V1 #B #i #HLK1 #_ #IHA1 #A2 #H elim (aaa_inv_lref … H) -H #I2 #K2 #V2 #HLK2 #HA2 - lapply (drop_mono … HLK1 … HLK2) -L #H destruct /2 width=1/ + lapply (drop_mono … HLK1 … HLK2) -L #H destruct /2 width=1 by/ | #a #G #L #V #T #B1 #A1 #_ #_ #_ #IHA1 #A2 #H - elim (aaa_inv_abbr … H) -H /2 width=1/ + elim (aaa_inv_abbr … H) -H /2 width=1 by/ | #a #G #L #V1 #T1 #B1 #A1 #_ #_ #IHB1 #IHA1 #X #H - elim (aaa_inv_abst … H) -H #B2 #A2 #HB2 #HA2 #H destruct /3 width=1/ + elim (aaa_inv_abst … H) -H #B2 #A2 #HB2 #HA2 #H destruct /3 width=1 by eq_f2/ | #G #L #V1 #T1 #B1 #A1 #_ #_ #_ #IHA1 #A2 #H elim (aaa_inv_appl … H) -H #B2 #_ #HA2 lapply (IHA1 … HA2) -L #H destruct // | #G #L #V #T #A1 #_ #_ #_ #IHA1 #A2 #H - elim (aaa_inv_cast … H) -H /2 width=1/ + elim (aaa_inv_cast … H) -H /2 width=1 by/ ] qed-. diff --git a/matita/matita/contribs/lambdadelta/basic_2/static/aaa_lifts.ma b/matita/matita/contribs/lambdadelta/basic_2/static/aaa_lifts.ma index 051ab4d29..cf972d088 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/static/aaa_lifts.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/static/aaa_lifts.ma @@ -19,12 +19,12 @@ include "basic_2/static/aaa_lift.ma". (* Properties concerning generic relocation *********************************) -lemma aaa_lifts: ∀G,L1,L2,T2,A,s,des. ⬇*[s, des] L2 ≡ L1 → ∀T1. ⬆*[des] T1 ≡ T2 → +lemma aaa_lifts: ∀G,L1,L2,T2,A,s,cs. ⬇*[s, cs] L2 ≡ L1 → ∀T1. ⬆*[cs] T1 ≡ T2 → ⦃G, L1⦄ ⊢ T1 ⁝ A → ⦃G, L2⦄ ⊢ T2 ⁝ A. -#G #L1 #L2 #T2 #A #s #des #H elim H -L1 -L2 -des +#G #L1 #L2 #T2 #A #s #cs #H elim H -L1 -L2 -cs [ #L #T1 #H #HT1 <(lifts_inv_nil … H) -H // -| #L1 #L #L2 #des #l #m #_ #HL2 #IHL1 #T1 #H #HT1 +| #L1 #L #L2 #cs #l #m #_ #HL2 #IHL1 #T1 #H #HT1 elim (lifts_inv_cons … H) -H /3 width=10 by aaa_lift/ ] qed. diff --git a/matita/matita/contribs/lambdadelta/basic_2/static/da_da.ma b/matita/matita/contribs/lambdadelta/basic_2/static/da_da.ma index 64b7b7d84..c670e0a5d 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/static/da_da.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/static/da_da.ma @@ -26,13 +26,13 @@ theorem da_mono: ∀h,g,G,L,T,d1. ⦃G, L⦄ ⊢ T ▪[h, g] d1 → >(deg_mono … Hkd2 … Hkd1) -h -k -d2 // | #G #L #K #V #i #d1 #HLK #_ #IHV #d2 #H elim (da_inv_lref … H) -H * #K0 #V0 [| #d0 ] #HLK0 #HV0 [| #Hd0 ] - lapply (drop_mono … HLK0 … HLK) -HLK -HLK0 #H destruct /2 width=1/ + lapply (drop_mono … HLK0 … HLK) -HLK -HLK0 #H destruct /2 width=1 by/ | #G #L #K #W #i #d1 #HLK #_ #IHW #d2 #H elim (da_inv_lref … H) -H * #K0 #W0 [| #d0 ] #HLK0 #HW0 [| #Hd0 ] - lapply (drop_mono … HLK0 … HLK) -HLK -HLK0 #H destruct /3 width=1/ + lapply (drop_mono … HLK0 … HLK) -HLK -HLK0 #H destruct /3 width=1 by eq_f/ | #a #I #G #L #V #T #d1 #_ #IHT #d2 #H - lapply (da_inv_bind … H) -H /2 width=1/ + lapply (da_inv_bind … H) -H /2 width=1 by/ | #I #G #L #V #T #d1 #_ #IHT #d2 #H - lapply (da_inv_flat … H) -H /2 width=1/ + lapply (da_inv_flat … H) -H /2 width=1 by/ ] qed-. diff --git a/matita/matita/contribs/lambdadelta/basic_2/static/lsuba_lsuba.ma b/matita/matita/contribs/lambdadelta/basic_2/static/lsuba_lsuba.ma index cc4af1670..bb77403bd 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/static/lsuba_lsuba.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/static/lsuba_lsuba.ma @@ -23,7 +23,7 @@ theorem lsuba_trans: ∀G,L1,L. G ⊢ L1 ⫃⁝ L → ∀L2. G ⊢ L ⫃⁝ L2 [ #X #H >(lsuba_inv_atom1 … H) -H // | #I #L1 #L #Y #HL1 #IHL1 #X #H elim (lsuba_inv_pair1 … H) -H * #L2 - [ #HL2 #H destruct /3 width=1/ + [ #HL2 #H destruct /3 width=1 by lsuba_pair/ | #W #V #A #HV #HW #HL2 #H1 #H2 #H3 destruct /3 width=3 by lsuba_beta, lsuba_aaa_trans/ ] diff --git a/matita/matita/contribs/lambdadelta/basic_2/static/lsubd_da.ma b/matita/matita/contribs/lambdadelta/basic_2/static/lsubd_da.ma index 457b64e77..111a0103a 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/static/lsubd_da.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/static/lsubd_da.ma @@ -22,44 +22,44 @@ include "basic_2/static/lsubd.ma". lemma lsubd_da_trans: ∀h,g,G,L2,T,d. ⦃G, L2⦄ ⊢ T ▪[h, g] d → ∀L1. G ⊢ L1 ⫃▪[h, g] L2 → ⦃G, L1⦄ ⊢ T ▪[h, g] d. #h #g #G #L2 #T #d #H elim H -G -L2 -T -d -[ /2 width=1/ +[ /2 width=1 by da_sort/ | #G #L2 #K2 #V #i #d #HLK2 #_ #IHV #L1 #HL12 elim (lsubd_drop_O1_trans … HL12 … HLK2) -L2 #X #H #HLK1 elim (lsubd_inv_pair2 … H) -H * #K1 [ | -IHV -HLK1 ] - [ #HK12 #H destruct /3 width=4/ + [ #HK12 #H destruct /3 width=4 by da_ldef/ | #W #d0 #_ #_ #_ #H destruct ] | #G #L2 #K2 #W #i #d #HLK2 #HW #IHW #L1 #HL12 elim (lsubd_drop_O1_trans … HL12 … HLK2) -L2 #X #H #HLK1 elim (lsubd_inv_pair2 … H) -H * #K1 [ -HW | -IHW ] - [ #HK12 #H destruct /3 width=4/ + [ #HK12 #H destruct /3 width=4 by da_ldec/ | #V #d0 #HV #H0W #_ #_ #H destruct - lapply (da_mono … H0W … HW) -H0W -HW #H destruct /3 width=7/ + lapply (da_mono … H0W … HW) -H0W -HW #H destruct /3 width=7 by da_ldef, da_flat/ ] -| /4 width=1/ -| /3 width=1/ +| /4 width=1 by lsubd_pair, da_bind/ +| /3 width=1 by da_flat/ ] qed-. lemma lsubd_da_conf: ∀h,g,G,L1,T,d. ⦃G, L1⦄ ⊢ T ▪[h, g] d → ∀L2. G ⊢ L1 ⫃▪[h, g] L2 → ⦃G, L2⦄ ⊢ T ▪[h, g] d. #h #g #G #L1 #T #d #H elim H -G -L1 -T -d -[ /2 width=1/ +[ /2 width=1 by da_sort/ | #G #L1 #K1 #V #i #d #HLK1 #HV #IHV #L2 #HL12 elim (lsubd_drop_O1_conf … HL12 … HLK1) -L1 #X #H #HLK2 elim (lsubd_inv_pair1 … H) -H * #K2 [ -HV | -IHV ] - [ #HK12 #H destruct /3 width=4/ + [ #HK12 #H destruct /3 width=4 by da_ldef/ | #W0 #V0 #d0 #HV0 #HW0 #_ #_ #H1 #H2 destruct lapply (da_inv_flat … HV) -HV #H0V0 - lapply (da_mono … H0V0 … HV0) -H0V0 -HV0 #H destruct /2 width=4/ + lapply (da_mono … H0V0 … HV0) -H0V0 -HV0 #H destruct /2 width=4 by da_ldec/ ] | #G #L1 #K1 #W #i #d #HLK1 #HW #IHW #L2 #HL12 elim (lsubd_drop_O1_conf … HL12 … HLK1) -L1 #X #H #HLK2 elim (lsubd_inv_pair1 … H) -H * #K2 [ -HW | -IHW ] - [ #HK12 #H destruct /3 width=4/ + [ #HK12 #H destruct /3 width=4 by da_ldec/ | #W0 #V0 #d0 #HV0 #HW0 #_ #H destruct ] -| /4 width=1/ -| /3 width=1/ +| /4 width=1 by lsubd_pair, da_bind/ +| /3 width=1 by da_flat/ ] qed-. diff --git a/matita/matita/contribs/lambdadelta/basic_2/static/lsubd_lsubd.ma b/matita/matita/contribs/lambdadelta/basic_2/static/lsubd_lsubd.ma index 18670b4f1..270cdbd9d 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/static/lsubd_lsubd.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/static/lsubd_lsubd.ma @@ -23,7 +23,7 @@ theorem lsubd_trans: ∀h,g,G. Transitive … (lsubd h g G). [ #X #H >(lsubd_inv_atom1 … H) -H // | #I #L1 #L #Y #HL1 #IHL1 #X #H elim (lsubd_inv_pair1 … H) -H * #L2 - [ #HL2 #H destruct /3 width=1/ + [ #HL2 #H destruct /3 width=1 by lsubd_pair/ | #W #V #d #HV #HW #HL2 #H1 #H2 #H3 destruct /3 width=3 by lsubd_beta, lsubd_da_trans/ ] diff --git a/matita/matita/contribs/lambdadelta/basic_2/substitution/fqu.ma b/matita/matita/contribs/lambdadelta/basic_2/substitution/fqu.ma index fa388daca..47bd0eabe 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/substitution/fqu.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/substitution/fqu.ma @@ -86,5 +86,5 @@ lemma fqu_wf_ind: ∀R:relation3 …. ( ∀G1,L1,T1. (∀G2,L2,T2. ⦃G1, L1, T1⦄ ⊐ ⦃G2, L2, T2⦄ → R G2 L2 T2) → R G1 L1 T1 ) → ∀G1,L1,T1. R G1 L1 T1. -#R #HR @(f3_ind … fw) #n #IHn #G1 #L1 #T1 #H destruct /4 width=1 by fqu_fwd_fw/ +#R #HR @(f3_ind … fw) #x #IHx #G1 #L1 #T1 #H destruct /4 width=1 by fqu_fwd_fw/ qed-. diff --git a/matita/matita/contribs/lambdadelta/basic_2/substitution/gget.ma b/matita/matita/contribs/lambdadelta/basic_2/substitution/gget.ma index eb5c8fdab..1ea9ce7ff 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/substitution/gget.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/substitution/gget.ma @@ -74,7 +74,7 @@ lemma gget_total: ∀m,G1. ∃G2. ⬇[m] G1 ≡ G2. #m #G1 elim G1 -G1 /3 width=2 by gget_gt, ex_intro/ #I #V #G1 * #G2 #HG12 elim (lt_or_eq_or_gt m (|G1|)) #Hm -[ /3 width=2/ +[ /3 width=2 by gget_lt, ex_intro/ | destruct /3 width=2 by gget_eq, ex_intro/ | @ex_intro [2: @gget_gt normalize /2 width=1 by/ | skip ] (**) (* explicit constructor *) ] diff --git a/matita/matita/contribs/lambdadelta/basic_2/substitution/gget_gget.ma b/matita/matita/contribs/lambdadelta/basic_2/substitution/gget_gget.ma index c08ab3960..7bd39f09b 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/substitution/gget_gget.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/substitution/gget_gget.ma @@ -25,7 +25,7 @@ theorem gget_mono: ∀G,G1,m. ⬇[m] G ≡ G1 → ∀G2. ⬇[m] G ≡ G2 → G1 | #G #Hm #G2 #H >(gget_inv_eq … H Hm) -H -Hm // | #I #G #G1 #V #Hm #_ #IHG1 #G2 #H - lapply (gget_inv_lt … H Hm) -H -Hm /2 width=1/ + lapply (gget_inv_lt … H Hm) -H -Hm /2 width=1 by/ ] qed-. @@ -33,8 +33,8 @@ lemma gget_dec: ∀G1,G2,m. Decidable (⬇[m] G1 ≡ G2). #G1 #G2 #m elim (gget_total m G1) #G #HG1 elim (eq_genv_dec G G2) #HG2 -[ destruct /2 width=1/ +[ destruct /2 width=1 by or_introl/ | @or_intror #HG12 - lapply (gget_mono … HG1 … HG12) -HG1 -HG12 /2 width=1/ + lapply (gget_mono … HG1 … HG12) -HG1 -HG12 /2 width=1 by/ ] qed-. diff --git a/matita/matita/contribs/lambdadelta/basic_2/substitution/lift.ma b/matita/matita/contribs/lambdadelta/basic_2/substitution/lift.ma index fdb8b6a72..1d02e6b8b 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/substitution/lift.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/substitution/lift.ma @@ -309,7 +309,7 @@ lemma lift_lref_ge_minus: ∀l,m,i. l + m ≤ i → ⬆[l, m] #(i - m) ≡ #i. qed. lemma lift_lref_ge_minus_eq: ∀l,m,i,j. l + m ≤ i → j = i - m → ⬆[l, m] #j ≡ #i. -/2 width=1/ qed-. +/2 width=1 by lift_lref_ge_minus/ qed-. (* Basic_1: was: lift_r *) lemma lift_refl: ∀T,l. ⬆[l, 0] T ≡ T. @@ -321,7 +321,8 @@ qed. lemma lift_total: ∀T1,l,m. ∃T2. ⬆[l,m] T1 ≡ T2. #T1 elim T1 -T1 -[ * #i /2 width=2/ #l #m elim (lt_or_ge i l) /3 width=2 by lift_lref_lt, lift_lref_ge, ex_intro/ +[ * #i /2 width=2 by lift_sort, lift_gref, ex_intro/ + #l #m elim (lt_or_ge i l) /3 width=2 by lift_lref_lt, lift_lref_ge, ex_intro/ | * [ #a ] #I #V1 #T1 #IHV1 #IHT1 #l #m elim (IHV1 l m) -IHV1 #V2 #HV12 [ elim (IHT1 (l+1) m) -IHT1 /3 width=2 by lift_bind, ex_intro/ @@ -335,13 +336,13 @@ lemma lift_split: ∀l1,m2,T1,T2. ⬆[l1, m2] T1 ≡ T2 → ∀l2,m1. l1 ≤ l2 → l2 ≤ l1 + m1 → m1 ≤ m2 → ∃∃T. ⬆[l1, m1] T1 ≡ T & ⬆[l2, m2 - m1] T ≡ T2. #l1 #m2 #T1 #T2 #H elim H -l1 -m2 -T1 -T2 -[ /3 width=3/ +[ /3 width=3 by lift_sort, ex2_intro/ | #i #l1 #m2 #Hil1 #l2 #m1 #Hl12 #_ #_ lapply (lt_to_le_to_lt … Hil1 Hl12) -Hl12 #Hil2 /4 width=3 by lift_lref_lt, ex2_intro/ | #i #l1 #m2 #Hil1 #l2 #m1 #_ #Hl21 #Hm12 lapply (transitive_le … (i+m1) Hl21 ?) /2 width=1 by monotonic_le_plus_l/ -Hl21 #Hl21 >(plus_minus_m_m m2 m1 ?) /3 width=3 by lift_lref_ge, ex2_intro/ -| /3 width=3/ +| /3 width=3 by lift_gref, ex2_intro/ | #a #I #V1 #V2 #T1 #T2 #l1 #m2 #_ #_ #IHV #IHT #l2 #m1 #Hl12 #Hl21 #Hm12 elim (IHV … Hl12 Hl21 Hm12) -IHV #V0 #HV0a #HV0b elim (IHT (l2+1) … ? ? Hm12) /3 width=5 by lift_bind, le_S_S, ex2_intro/ @@ -374,7 +375,7 @@ lemma is_lift_dec: ∀T2,l,m. Decidable (∃T1. ⬆[l,m] T1 ≡ T2). ] | elim (IHV2 l m) -IHV2 [ * #V1 #HV12 elim (IHT2 l m) -IHT2 - [ * #T1 #HT12 /4 width=2/ + [ * #T1 #HT12 /4 width=2 by lift_flat, ex_intro, or_introl/ | -V1 #HT2 @or_intror * #X #H elim (lift_inv_flat2 … H) -H /3 width=2 by ex_intro/ ] diff --git a/matita/matita/contribs/lambdadelta/basic_2/substitution/lift_lift_vector.ma b/matita/matita/contribs/lambdadelta/basic_2/substitution/lift_lift_vector.ma index 44ed6a7b4..577682957 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/substitution/lift_lift_vector.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/substitution/lift_lift_vector.ma @@ -25,6 +25,6 @@ theorem liftv_mono: ∀Ts,U1s,l,m. ⬆[l,m] Ts ≡ U1s → [ #U2s #H >(liftv_inv_nil1 … H) -H // | #Ts #U1s #T #U1 #HTU1 #_ #IHTU1s #X #H destruct elim (liftv_inv_cons1 … H) -H #U2 #U2s #HTU2 #HTU2s #H destruct - >(lift_mono … HTU1 … HTU2) -T /3 width=1/ + >(lift_mono … HTU1 … HTU2) -T /3 width=1 by eq_f/ ] qed. diff --git a/matita/matita/contribs/lambdadelta/basic_2/substitution/lpx_sn_lpx_sn.ma b/matita/matita/contribs/lambdadelta/basic_2/substitution/lpx_sn_lpx_sn.ma index 70b8931f0..fe4b2b845 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/substitution/lpx_sn_lpx_sn.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/substitution/lpx_sn_lpx_sn.ma @@ -35,11 +35,11 @@ qed-. theorem lpx_sn_conf: ∀R1,R2. lpx_sn_confluent R1 R2 → confluent2 … (lpx_sn R1) (lpx_sn R2). -#R1 #R2 #HR12 #L0 @(f_ind … length … L0) -L0 #n #IH * -[ #_ #X1 #H1 #X2 #H2 -n +#R1 #R2 #HR12 #L0 @(f_ind … length … L0) -L0 #x #IH * +[ #_ #X1 #H1 #X2 #H2 -x >(lpx_sn_inv_atom1 … H1) -X1 >(lpx_sn_inv_atom1 … H2) -X2 /2 width=3 by lpx_sn_atom, ex2_intro/ -| #L0 #I #V0 #Hn #X1 #H1 #X2 #H2 destruct +| #L0 #I #V0 #Hx #X1 #H1 #X2 #H2 destruct elim (lpx_sn_inv_pair1 … H1) -H1 #L1 #V1 #HL01 #HV01 #H destruct elim (lpx_sn_inv_pair1 … H2) -H2 #L2 #V2 #HL02 #HV02 #H destruct elim (IH … HL01 … HL02) -IH normalize // #L #HL1 #HL2