From: Enrico Tassi Date: Fri, 30 Nov 2007 14:35:21 +0000 (+0000) Subject: cleanup of the eq_trans burdain X-Git-Tag: make_still_working~5748 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=39c55604f8114e2e8f9f9769acd328de8f19c7e4;p=helm.git cleanup of the eq_trans burdain --- diff --git a/helm/software/matita/dama/attic/ordered_fields_ch0.ma b/helm/software/matita/dama/attic/ordered_fields_ch0.ma index b312c31ab..5be3c9da4 100644 --- a/helm/software/matita/dama/attic/ordered_fields_ch0.ma +++ b/helm/software/matita/dama/attic/ordered_fields_ch0.ma @@ -18,7 +18,7 @@ include "attic/fields.ma". include "ordered_group.ma". (*CSC: non capisco questi alias! Una volta non servivano*) -alias id "plus" = "cic:/matita/groups/plus.con". +alias id "plus" = "cic:/matita/group/plus.con". alias symbol "plus" = "Abelian group plus". record pre_ordered_field_ch0: Type ≝ diff --git a/helm/software/matita/dama/classical_pointfree/ordered_sets.ma b/helm/software/matita/dama/classical_pointfree/ordered_sets.ma index 604da01d6..127bbf696 100644 --- a/helm/software/matita/dama/classical_pointfree/ordered_sets.ma +++ b/helm/software/matita/dama/classical_pointfree/ordered_sets.ma @@ -320,10 +320,10 @@ notation "hvbox(〈a〉)" for @{ 'hide_everything_but $a }. interpretation "mk_bounded_above_sequence" 'hide_everything_but a -= (cic:/matita/ordered_sets/bounded_above_sequence.ind#xpointer(1/1/1) _ _ a _). += (cic:/matita/ordered_set/bounded_above_sequence.ind#xpointer(1/1/1) _ _ a _). interpretation "mk_bounded_below_sequence" 'hide_everything_but a -= (cic:/matita/ordered_sets/bounded_below_sequence.ind#xpointer(1/1/1) _ _ a _). += (cic:/matita/ordered_set/bounded_below_sequence.ind#xpointer(1/1/1) _ _ a _). theorem eq_f_sup_sup_f: ∀O':dedekind_sigma_complete_ordered_set. diff --git a/helm/software/matita/dama/classical_pointfree/ordered_sets2.ma b/helm/software/matita/dama/classical_pointfree/ordered_sets2.ma index dafa0df4f..d85a02cf4 100644 --- a/helm/software/matita/dama/classical_pointfree/ordered_sets2.ma +++ b/helm/software/matita/dama/classical_pointfree/ordered_sets2.ma @@ -61,7 +61,7 @@ theorem le_to_le_sup_sup: qed. interpretation "mk_bounded_sequence" 'hide_everything_but a -= (cic:/matita/ordered_sets/bounded_sequence.ind#xpointer(1/1/1) _ _ a _ _). += (cic:/matita/ordered_set/bounded_sequence.ind#xpointer(1/1/1) _ _ a _ _). lemma reduce_bas_seq: ∀O:ordered_set.∀a:nat→O.∀p.∀i. diff --git a/helm/software/matita/dama/excedence.ma b/helm/software/matita/dama/excedence.ma index 22612e2c1..42d53a5dc 100644 --- a/helm/software/matita/dama/excedence.ma +++ b/helm/software/matita/dama/excedence.ma @@ -96,7 +96,14 @@ intros 6 (E x y z Exy Eyz); intro Axy; cases (ap_cotransitive ???y Axy); [apply Exy|apply Eyz] assumption. qed. -lemma eq_trans:∀E:apartness.∀x,y,z:E.x ≈ y → y ≈ z → x ≈ z ≝ eq_trans_. +lemma eq_trans:∀E:apartness.∀x,z,y:E.x ≈ y → y ≈ z → x ≈ z ≝ + λE,x,y,z.eq_trans_ E x z y. + +notation > "'Eq'≈" non associative with precedence 50 for + @{'eqrewrite}. + +interpretation "eq_rew" 'eqrewrite = + (cic:/matita/excedence/eq_trans.con _ _ _). (* BUG: vedere se ricapita *) alias id "antisymmetric" = "cic:/matita/constructive_higher_order_relations/antisymmetric.con". @@ -139,11 +146,23 @@ intros (E z y x Exy Lxz); apply (le_transitive ???? ? Lxz); intro Xyz; apply Exy; apply unfold_apart; right; assumption; qed. +notation > "'Ex'≪" non associative with precedence 50 for + @{'excedencerewritel}. + +interpretation "exc_rewl" 'excedencerewritel = + (cic:/matita/excedence/exc_rewl.con _ _ _). + lemma le_rewr: ∀E:excedence.∀z,y,x:E. x ≈ y → z ≤ x → z ≤ y. intros (E z y x Exy Lxz); apply (le_transitive ???? Lxz); intro Xyz; apply Exy; apply unfold_apart; left; assumption; qed. + +notation > "'Ex'≫" non associative with precedence 50 for + @{'excedencerewriter}. +interpretation "exc_rewr" 'excedencerewriter = + (cic:/matita/excedence/exc_rewr.con _ _ _). + lemma ap_rewl: ∀A:apartness.∀x,z,y:A. x ≈ y → y # z → x # z. intros (A x z y Exy Ayz); cases (ap_cotransitive ???x Ayz); [2:assumption] cases (Exy (ap_symmetric ??? a)); @@ -183,4 +202,8 @@ qed. lemma le_le_eq: ∀E:excedence.∀a,b:E. a ≤ b → b ≤ a → a ≈ b. intros (E x y L1 L2); intro H; cases H; [apply L1|apply L2] assumption; +qed. + +lemma ap_le_to_lt: ∀E:excedence.∀a,c:E.c # a → c ≤ a → c < a. +intros; split; assumption; qed. \ No newline at end of file diff --git a/helm/software/matita/dama/group.ma b/helm/software/matita/dama/group.ma index b0c7c2e9b..87cc25855 100644 --- a/helm/software/matita/dama/group.ma +++ b/helm/software/matita/dama/group.ma @@ -142,37 +142,38 @@ qed. theorem eq_opp_plus_plus_opp_opp: ∀G:abelian_group.∀x,y:G. -(x+y) ≈ -x + -y. intros (G x y); apply (plus_cancr ??? (x+y)); -apply (eq_trans ?? 0 ? (opp_inverse ??)); -apply (eq_trans ?? (-x + -y + x + y)); [2: apply (eq_sym ??? (plus_assoc ????))] -apply (eq_trans ?? (-y + -x + x + y)); [2: repeat apply feq_plusr; apply plus_comm] -apply (eq_trans ?? (-y + (-x + x) + y)); [2: apply feq_plusr; apply plus_assoc;] -apply (eq_trans ?? (-y + 0 + y)); +apply (Eq≈ 0 (opp_inverse ??)); +apply (Eq≈ (-x + -y + x + y)); [2: apply (eq_sym ??? (plus_assoc ????))] +apply (Eq≈ (-y + -x + x + y)); [2: repeat apply feq_plusr; apply plus_comm] +apply (Eq≈ (-y + (-x + x) + y)); [2: apply feq_plusr; apply plus_assoc;] +apply (Eq≈ (-y + 0 + y)); [2: apply feq_plusr; apply feq_plusl; apply eq_sym; apply opp_inverse] -apply (eq_trans ?? (-y + y)); +apply (Eq≈ (-y + y)); [2: apply feq_plusr; apply eq_sym; - apply (eq_trans ?? (0+-y)); [apply plus_comm|apply zero_neutral]] + apply (Eq≈ (0+-y)); [apply plus_comm|apply zero_neutral]] apply eq_sym; apply opp_inverse. qed. theorem eq_opp_opp_x_x: ∀G:abelian_group.∀x:G.--x ≈ x. intros (G x); apply (plus_cancl ??? (-x)); -apply (eq_trans ?? (--x + -x)); [apply plus_comm] -apply (eq_trans ?? 0); [apply opp_inverse] +apply (Eq≈ (--x + -x) (plus_comm ???)); +apply (Eq≈ 0 (opp_inverse ??)); apply eq_sym; apply opp_inverse; qed. theorem eq_zero_opp_zero: ∀G:abelian_group.0 ≈ -0. [assumption] intro G; apply (plus_cancr ??? 0); -apply (eq_trans ?? 0); [apply zero_neutral;] +apply (Eq≈ 0); [apply zero_neutral;] apply eq_sym; apply opp_inverse; qed. lemma feq_oppr: ∀G:abelian_group.∀x,y,z:G. y ≈ z → x ≈ -y → x ≈ -z. intros (G x y z H1 H2); apply (plus_cancr ??? z); -apply (eq_trans ?? 0 ?? (opp_inverse ?z)); -apply (eq_trans ?? (-y + z) ? H2); -apply (eq_trans ?? (-y + y) ? H1); -apply (eq_trans ?? 0 ? (opp_inverse ??)); +(* apply (eq_trans ??? 0 ? (opp_inverse ??)); *) +apply (Eq≈ 0 ? (opp_inverse ??)); +apply (Eq≈ (-y + z) H2); +apply (Eq≈ (-y + y) H1); +apply (Eq≈ 0 (opp_inverse ??)); apply eq_reflexive; qed. diff --git a/helm/software/matita/dama/lattice.ma b/helm/software/matita/dama/lattice.ma index 9e91376d1..d6b637a0d 100644 --- a/helm/software/matita/dama/lattice.ma +++ b/helm/software/matita/dama/lattice.ma @@ -77,9 +77,9 @@ qed. lemma le_to_eqj: ∀ml:lattice.∀a,b:ml. a ≤ b → b ≈ (a ∨ b). intros (l a b H); lapply (le_to_eqm ??? H) as H1; lapply (feq_jl ??? b H1) as H2; -apply (eq_trans ????? (join_comm ???)); -apply (eq_trans ?? (b∨a∧b) ?? H2); clear H1 H2 H; -apply (eq_trans ?? (b∨(b∧a)) ?? (feq_jl ???? (meet_comm ???))); +apply (Eq≈ ?? (join_comm ???)); +apply (Eq≈ (b∨a∧b) ? H2); clear H1 H2 H; +apply (Eq≈ (b∨(b∧a)) ? (feq_jl ???? (meet_comm ???))); apply eq_sym; apply absorbjm; qed. diff --git a/helm/software/matita/dama/metric_lattice.ma b/helm/software/matita/dama/metric_lattice.ma index 917e2a199..a4ca3b4f4 100644 --- a/helm/software/matita/dama/metric_lattice.ma +++ b/helm/software/matita/dama/metric_lattice.ma @@ -54,13 +54,6 @@ apply (ml_prop1 ?? ml); split [apply mpositive] apply ap_symmetric; assumption; qed. -(* -lemma lt_to_dpos: ∀R.∀ml:mlattice R.∀x,y:ml.x < y → 0 < δ x y. -intros 4; repeat (unfold in ⊢ (? % ? ?→?)); simplify; unfold excl; -intro H; elim H (H1 H2); elim H2 (H3 H3); [cases (H1 H3)] -split; [apply mpositive] -*) - lemma meq_l: ∀R.∀ml:mlattice R.∀x,y,z:ml. x≈z → δx y ≈ δz y. intros (R ml x y z); apply le_le_eq; [ apply (le_transitive ???? (mtineq ???y z)); @@ -76,10 +69,7 @@ lemma meq_r: ∀R.∀ml:mlattice R.∀x,y,z:ml. x≈z → δy x ≈ δy z. intros; apply (eq_trans ???? (msymmetric ??y x)); apply (eq_trans ????? (msymmetric ??z y)); apply meq_l; assumption; qed. - -lemma ap_le_to_lt: ∀O:ogroup.∀a,c:O.c # a → c ≤ a → c < a. -intros (R a c A L); split; assumption; -qed. + lemma dap_to_lt: ∀R.∀ml:mlattice R.∀x,y:ml. δ x y # 0 → 0 < δ x y. intros; split [apply mpositive] apply ap_symmetric; assumption; @@ -95,22 +85,28 @@ lemma le_mtri: ∀R.∀ml:mlattice R.∀x,y,z:ml. x ≤ y → y ≤ z → δ x z ≈ δ x y + δ y z. intros (R ml x y z Lxy Lyz); apply le_le_eq; [apply mtineq] apply (le_transitive ????? (ml_prop2 ?? ml (y) ??)); - cut ( δx y+ δy z ≈ δ(y∨x) (y∨z)+ δ(y∧x) (y∧z)); [ - apply (le_rewr ??? (δx y+ δy z)); [assumption] apply le_reflexive] - lapply (le_to_eqm ??? Lxy) as Dxm; - lapply (le_to_eqm ??? Lyz) as Dym; - lapply (le_to_eqj ??? Lxy) as Dxj; - lapply (le_to_eqj ??? Lyz) as Dyj; clear Lxy Lyz; - apply (eq_trans ?? (δ(x∧y) y + δy z)); [apply feq_plusr; apply (meq_l ????? Dxm);] - apply (eq_trans ?? (δ(x∧y) (y∧z) + δy z)); [apply feq_plusr; apply (meq_r ????? Dym);] - apply (eq_trans ?? (δ(x∧y) (y∧z) + δ(x∨y) z)); [apply feq_plusl; apply (meq_l ????? Dxj);] - apply (eq_trans ?? (δ(x∧y) (y∧z) + δ(x∨y) (y∨z))); [apply feq_plusl; apply (meq_r ????? Dyj);] - apply (eq_trans ?? ? ? (plus_comm ???)); - apply (eq_trans ?? (δ(y∨x) (y∨z)+ δ(x∧y) (y∧z))); [apply feq_plusr; apply (meq_l ????? (join_comm ???));] - apply feq_plusl; - apply (eq_trans ?? (δ(y∧x) (y∧z))); [apply (meq_l ????? (meet_comm ???));] - apply eq_reflexive; +cut ( δx y+ δy z ≈ δ(y∨x) (y∨z)+ δ(y∧x) (y∧z)); [ + apply (le_rewr ??? (δx y+ δy z)); [assumption] apply le_reflexive] +lapply (le_to_eqm ??? Lxy) as Dxm; lapply (le_to_eqm ??? Lyz) as Dym; +lapply (le_to_eqj ??? Lxy) as Dxj; lapply (le_to_eqj ??? Lyz) as Dyj; clear Lxy Lyz; +apply (Eq≈ (δ(x∧y) y + δy z)); [apply feq_plusr; apply (meq_l ????? Dxm);] +apply (Eq≈ (δ(x∧y) (y∧z) + δy z)); [apply feq_plusr; apply (meq_r ????? Dym);] +apply (Eq≈ (δ(x∧y) (y∧z) + δ(x∨y) z)); [apply feq_plusl; apply (meq_l ????? Dxj);] +apply (Eq≈ (δ(x∧y) (y∧z) + δ(x∨y) (y∨z))); [apply feq_plusl; apply (meq_r ????? Dyj);] +apply (Eq≈ ? (plus_comm ???)); +apply (Eq≈ (δ(y∨x) (y∨z)+ δ(x∧y) (y∧z))); [apply feq_plusr; apply (meq_l ????? (join_comm ???));] +apply feq_plusl; +apply (Eq≈ (δ(y∧x) (y∧z))); [apply (meq_l ????? (meet_comm ???));] +apply eq_reflexive; qed. - - +(* 3.17 conclusione: δ x y ≈ 0 *) +(* 3.20 conclusione: δ x y ≈ 0 *) +(* 3.21 sup forte + strong_sup x ≝ ∀n. s n ≤ x ∧ ∀y x ≰ y → ∃n. s n ≰ y + strong_sup_zoli x ≝ ∀n. s n ≤ x ∧ ∄y. y#x ∧ y ≤ x +*) +(* 3.22 sup debole (più piccolo dei maggioranti) *) +(* 3.23 conclusion: δ x sup(...) ≈ 0 *) +(* 3.25 vero nel reticolo e basta (niente δ) *) +(* 3.36 conclusion: δ x y ≈ 0 *) \ No newline at end of file diff --git a/helm/software/matita/dama/ordered_group.ma b/helm/software/matita/dama/ordered_group.ma index 5b0f0aa9b..d2f96fb5c 100644 --- a/helm/software/matita/dama/ordered_group.ma +++ b/helm/software/matita/dama/ordered_group.ma @@ -37,18 +37,6 @@ record ogroup : Type ≝ { exc_canc_plusr: ∀f,g,h:og_carr. f+h ≰ g+h → f ≰ g }. -notation > "'Ex'≪" non associative with precedence 50 for - @{'excedencerewritel}. - -interpretation "exc_rewl" 'excedencerewritel = - (cic:/matita/excedence/exc_rewl.con _ _ _). - -notation > "'Ex'≫" non associative with precedence 50 for - @{'excedencerewriter}. - -interpretation "exc_rewr" 'excedencerewriter = - (cic:/matita/excedence/exc_rewr.con _ _ _). - lemma fexc_plusr: ∀G:ogroup.∀x,y,z:G. x ≰ y → x+z ≰ y + z. intros 5 (G x y z L); apply (exc_canc_plusr ??? (-z)); @@ -196,6 +184,5 @@ apply (le_rewr ??? b (zero_neutral ??)); assumption; qed. - \ No newline at end of file diff --git a/helm/software/matita/dama/preweighted_lattice.ma b/helm/software/matita/dama/preweighted_lattice.ma index 39105c0fd..5dbaf51ec 100644 --- a/helm/software/matita/dama/preweighted_lattice.ma +++ b/helm/software/matita/dama/preweighted_lattice.ma @@ -50,27 +50,27 @@ lemma feq_joinr: ∀R.∀L:wlattice R.∀x,y,z:L. μ x ≈ μ y → μ (z ∧ x) ≈ μ (z ∧ y) → μ (z ∨ x) ≈ μ (z ∨ y). intros (R L x y z H H1); apply (plus_cancr ??? (μ(z∧x))); -apply (eq_trans ?? (μz + μx) ? (modular_mjp ????)); -apply (eq_trans ?? (μz + μy) ? H); clear H; -apply (eq_trans ?? (μ(z∨y) + μ(z∧y)) ? (modular_mjp ??z y)); +apply (Eq≈ (μz + μx) (modular_mjp ????)); +apply (Eq≈ (μz + μy) H); clear H; +apply (Eq≈ (μ(z∨y) + μ(z∧y)) (modular_mjp ??z y)); apply (plus_cancl ??? (- μ (z ∨ y))); -apply (eq_trans ?? ? ? (plus_assoc ????)); -apply (eq_trans ?? (0+ μ(z∧y)) ? (opp_inverse ??)); -apply (eq_trans ?? ? ? (zero_neutral ??)); -apply (eq_trans ?? (- μ(z∨y)+ μ(z∨y)+ μ(z∧x)) ?? (plus_assoc ????)); -apply (eq_trans ?? (0+ μ(z∧x)) ?? (opp_inverse ??)); -apply (eq_trans ?? (μ (z ∧ x)) ?H1 (zero_neutral ??)); +apply (Eq≈ ? (plus_assoc ????)); +apply (Eq≈ (0+ μ(z∧y)) (opp_inverse ??)); +apply (Eq≈ ? (zero_neutral ??)); +apply (Eq≈ (- μ(z∨y)+ μ(z∨y)+ μ(z∧x)) ? (plus_assoc ????)); +apply (Eq≈ (0+ μ(z∧x)) ? (opp_inverse ??)); +apply (Eq≈ (μ (z ∧ x)) H1 (zero_neutral ??)); qed. lemma modularj: ∀R.∀L:wlattice R.∀y,z:L. μ(y∨z) ≈ μy + μz + -μ (y ∧ z). intros (R L y z); lapply (modular_mjp ?? y z) as H1; apply (plus_cancr ??? (μ(y ∧ z))); -apply (eq_trans ?? ? ? H1); clear H1; -apply (eq_trans ?? ? ?? (plus_assoc ????)); -apply (eq_trans ?? (μy+ μz + 0) ?? (opp_inverse ??)); -apply (eq_trans ?? ? ?? (plus_comm ???)); -apply (eq_trans ?? (μy + μz) ?? (eq_sym ??? (zero_neutral ??))); +apply (Eq≈ ? H1); clear H1; +apply (Eq≈ ?? (plus_assoc ????)); +apply (Eq≈ (μy+ μz + 0) ? (opp_inverse ??)); +apply (Eq≈ ?? (plus_comm ???)); +apply (Eq≈ (μy + μz) ? (eq_sym ??? (zero_neutral ??))); apply eq_reflexive. qed. @@ -80,63 +80,63 @@ lemma modularm: ∀R.∀L:wlattice R.∀y,z:L. μ(y∧z) ≈ μy + μz + -μ (y intros (R L y z); lapply (modular_mjp ?? y z) as H1; apply (plus_cancl ??? (μ(y ∨ z))); -apply (eq_trans ?? ? ? H1); clear H1; -apply (eq_trans ????? (plus_comm ???)); -apply (eq_trans ?? ? ?? (plus_assoc ????)); -apply (eq_trans ?? (μy+ μz + 0) ?? (opp_inverse ??)); -apply (eq_trans ?? ? ?? (plus_comm ???)); -apply (eq_trans ?? (μy + μz) ?? (eq_sym ??? (zero_neutral ??))); +apply (Eq≈ ? H1); clear H1; +apply (Eq≈ ?? (plus_comm ???)); +apply (Eq≈ ?? (plus_assoc ????)); +apply (Eq≈ (μy+ μz + 0) ? (opp_inverse ??)); +apply (Eq≈ ?? (plus_comm ???)); +apply (Eq≈ (μy + μz) ? (eq_sym ??? (zero_neutral ??))); apply eq_reflexive. qed. lemma modularmj: ∀R.∀L:wlattice R.∀x,y,z:L.μ(x∧(y∨z))≈(μx + μ(y ∨ z) + - μ(x∨(y∨z))). intros (R L x y z); lapply (modular_mjp ?? x (y ∨ z)) as H1; -apply (eq_trans ?? (μ(x∨(y∨z))+ μ(x∧(y∨z)) +-μ(x∨(y∨z))) ?? (feq_plusr ???? H1)); clear H1; -apply (eq_trans ?? ? ?? (plus_comm ???)); -apply (eq_trans ?? (- μ(x∨(y∨z))+ μ(x∨(y∨z))+ μ(x∧(y∨z))) ?? (plus_assoc ????)); -apply (eq_trans ?? (0+μ(x∧(y∨z))) ?? (opp_inverse ??)); -apply (eq_trans ?? (μ(x∧(y∨z))) ?? (zero_neutral ??)); +apply (Eq≈ (μ(x∨(y∨z))+ μ(x∧(y∨z)) +-μ(x∨(y∨z))) ? (feq_plusr ???? H1)); clear H1; +apply (Eq≈ ? ? (plus_comm ???)); +apply (Eq≈ (- μ(x∨(y∨z))+ μ(x∨(y∨z))+ μ(x∧(y∨z))) ? (plus_assoc ????)); +apply (Eq≈ (0+μ(x∧(y∨z))) ? (opp_inverse ??)); +apply (Eq≈ (μ(x∧(y∨z))) ? (zero_neutral ??)); apply eq_reflexive. qed. lemma modularjm: ∀R.∀L:wlattice R.∀x,y,z:L.μ(x∨(y∧z))≈(μx + μ(y ∧ z) + - μ(x∧(y∧z))). intros (R L x y z); lapply (modular_mjp ?? x (y ∧ z)) as H1; -apply (eq_trans ?? (μ(x∧(y∧z))+ μ(x∨(y∧z)) +-μ(x∧(y∧z)))); [2: apply feq_plusr; apply (eq_trans ???? (plus_comm ???)); apply H1] clear H1; -apply (eq_trans ?? ? ?? (plus_comm ???)); -apply (eq_trans ?? (- μ(x∧(y∧z))+ μ(x∧(y∧z))+ μ(x∨y∧z)) ?? (plus_assoc ????)); -apply (eq_trans ?? (0+ μ(x∨y∧z)) ?? (opp_inverse ??)); +apply (Eq≈ (μ(x∧(y∧z))+ μ(x∨(y∧z)) +-μ(x∧(y∧z)))); [2: apply feq_plusr; apply (eq_trans ???? (plus_comm ???)); apply H1] clear H1; +apply (Eq≈ ? ? (plus_comm ???)); +apply (Eq≈ (- μ(x∧(y∧z))+ μ(x∧(y∧z))+ μ(x∨y∧z)) ? (plus_assoc ????)); +apply (Eq≈ (0+ μ(x∨y∧z)) ? (opp_inverse ??)); apply eq_sym; apply zero_neutral; qed. lemma step1_3_57': ∀R.∀L:wlattice R.∀x,y,z:L. μ(x ∨ (y ∧ z)) ≈ (μ x) + (μ y) + μ z + -μ (y ∨ z) + -μ (z ∧ (x ∧ y)). intros (R L x y z); -apply (eq_trans ?? ? ? (modularjm ?? x y z)); -apply (eq_trans ?? ( μx+ (μy+ μz+- μ(y∨z)) +- μ(x∧(y∧z))) ?); [ +apply (Eq≈ ? (modularjm ?? x y z)); +apply (Eq≈ ( μx+ (μy+ μz+- μ(y∨z)) +- μ(x∧(y∧z)))); [ apply feq_plusr; apply feq_plusl; apply (modularm ?? y z);] -apply (eq_trans ?? (μx+ μy+ μz+- μ(y∨z)+- μ(x∧(y∧z)))); [2: +apply (Eq≈ (μx+ μy+ μz+- μ(y∨z)+- μ(x∧(y∧z)))); [2: apply feq_plusl; apply feq_opp; - apply (eq_trans ?? ? ? (meet_assoc ?????)); - apply (eq_trans ?? ? ? (meet_comm ????)); + apply (Eq≈ ? (meet_assoc ?????)); + apply (Eq≈ ? (meet_comm ????)); apply eq_reflexive;] -apply feq_plusr; apply (eq_trans ?? ? ? (plus_assoc ????)); +apply feq_plusr; apply (Eq≈ ? (plus_assoc ????)); apply feq_plusr; apply plus_assoc; qed. lemma step1_3_57: ∀R.∀L:wlattice R.∀x,y,z:L. μ(x ∧ (y ∨ z)) ≈ (μ x) + (μ y) + μ z + -μ (y ∧ z) + -μ (z ∨ (x ∨ y)). intros (R L x y z); -apply (eq_trans ?? ? ? (modularmj ?? x y z)); -apply (eq_trans ?? ( μx+ (μy+ μz+- μ(y∧z)) +- μ(x∨(y∨z))) ?); [ +apply (Eq≈ ? (modularmj ?? x y z)); +apply (Eq≈ ( μx+ (μy+ μz+- μ(y∧z)) +- μ(x∨(y∨z)))); [ apply feq_plusr; apply feq_plusl; apply (modularj ?? y z);] -apply (eq_trans ?? (μx+ μy+ μz+- μ(y∧z)+- μ(x∨(y∨z)))); [2: +apply (Eq≈ (μx+ μy+ μz+- μ(y∧z)+- μ(x∨(y∨z)))); [2: apply feq_plusl; apply feq_opp; - apply (eq_trans ?? ? ? (join_assoc ?????)); - apply (eq_trans ?? ? ? (join_comm ????)); + apply (Eq≈ ? (join_assoc ?????)); + apply (Eq≈ ? (join_comm ????)); apply eq_reflexive;] -apply feq_plusr; apply (eq_trans ?? ? ? (plus_assoc ????)); +apply feq_plusr; apply (Eq≈ ? (plus_assoc ????)); apply feq_plusr; apply plus_assoc; qed. @@ -150,11 +150,11 @@ apply (le_rewl ??? (μx+ μy+ μz+- μ(y∨z)+ -μ(z∧x∧y))); [ apply (le_rewl ??? (μx+ μy+ μz+- μ(y∨z)+ (- ( μ(z∧x)+ μy+- μ((z∧x)∨y))))); [ apply feq_plusl; apply feq_opp; apply eq_sym; apply modularm] apply (le_rewl ??? (μx+ μy+ μz+- μ(y∨z)+ (- μ(z∧x)+ -μy+-- μ((z∧x)∨y)))); [ - apply feq_plusl; apply (eq_trans ?? (- (μ(z∧x)+ μy) + -- μ((z∧x)∨y))); [ + apply feq_plusl; apply (Eq≈ (- (μ(z∧x)+ μy) + -- μ((z∧x)∨y))); [ apply feq_plusr; apply eq_sym; apply eq_opp_plus_plus_opp_opp;] apply eq_sym; apply eq_opp_plus_plus_opp_opp;] apply (le_rewl ??? (μx+ μy+ μz+- μ(y∨z)+(- μ(z∧x)+- μy+ μ(y∨(z∧x))))); [ - repeat apply feq_plusl; apply eq_sym; apply (eq_trans ?? (μ((z∧x)∨y)) ? (eq_opp_opp_x_x ??)); + repeat apply feq_plusl; apply eq_sym; apply (Eq≈ (μ((z∧x)∨y)) (eq_opp_opp_x_x ??)); apply join_comm;] apply (le_rewl ??? (μx+ μy+ μz+- μ(y∨z)+(- μ(z∧x)+- μy)+ μ(y∨(z∧x)))); [ apply eq_sym; apply plus_assoc;] @@ -164,11 +164,11 @@ apply (le_rewl ??? (μx+ μy+ μz+- μ(y∨z)+- μy + - μ(z∧x)+ μ(y∨ repeat apply feq_plusr; apply eq_sym; apply plus_assoc;] apply (le_rewl ??? (μx+ μy+ μz+- μy + - μ(y∨z)+- μ(z∧x)+ μ(y∨(z∧x)))); [ repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_assoc ????)); - apply (eq_trans ?? ( μx+ μy+ μz+(- μy+- μ(y∨z))) ? (eq_sym ??? (plus_assoc ????))); + apply (Eq≈ ( μx+ μy+ μz+(- μy+- μ(y∨z))) (eq_sym ??? (plus_assoc ????))); apply feq_plusl; apply plus_comm;] apply (le_rewl ??? (μx+ μy+ -μy+ μz + - μ(y∨z)+- μ(z∧x)+ μ(y∨(z∧x)))); [ repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_assoc ????)); - apply (eq_trans ?? (μx+ μy+( -μy+ μz)) ? (eq_sym ??? (plus_assoc ????))); + apply (Eq≈ (μx+ μy+( -μy+ μz)) (eq_sym ??? (plus_assoc ????))); apply feq_plusl; apply plus_comm;] apply (le_rewl ??? (μx+ 0 + μz + - μ(y∨z)+- μ(z∧x)+ μ(y∨(z∧x)))); [ repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_assoc ????)); @@ -200,11 +200,11 @@ apply (le_rewr ??? (μx+ μy+ μz+- μ(y∧z)+ -μ(z∨x∨y))); [ apply (le_rewr ??? (μx+ μy+ μz+- μ(y∧z)+ (- ( μ(z∨x)+ μy+- μ((z∨x)∧y))))); [ apply feq_plusl; apply feq_opp; apply eq_sym; apply modularj] apply (le_rewr ??? (μx+ μy+ μz+- μ(y∧z)+ (- μ(z∨x)+ -μy+-- μ((z∨x)∧y)))); [ - apply feq_plusl; apply (eq_trans ?? (- (μ(z∨x)+ μy) + -- μ((z∨x)∧y))); [ + apply feq_plusl; apply (Eq≈ (- (μ(z∨x)+ μy) + -- μ((z∨x)∧y))); [ apply feq_plusr; apply eq_sym; apply eq_opp_plus_plus_opp_opp;] apply eq_sym; apply eq_opp_plus_plus_opp_opp;] apply (le_rewr ??? (μx+ μy+ μz+- μ(y∧z)+(- μ(z∨x)+- μy+ μ(y∧(z∨x))))); [ - repeat apply feq_plusl; apply eq_sym; apply (eq_trans ?? (μ((z∨x)∧y)) ? (eq_opp_opp_x_x ??)); + repeat apply feq_plusl; apply eq_sym; apply (Eq≈ (μ((z∨x)∧y)) (eq_opp_opp_x_x ??)); apply meet_comm;] apply (le_rewr ??? (μx+ μy+ μz+- μ(y∧z)+(- μ(z∨x)+- μy)+ μ(y∧(z∨x)))); [ apply eq_sym; apply plus_assoc;] @@ -214,11 +214,11 @@ apply (le_rewr ??? (μx+ μy+ μz+- μ(y∧z)+- μy + - μ(z∨x)+ μ(y∧ repeat apply feq_plusr; apply eq_sym; apply plus_assoc;] apply (le_rewr ??? (μx+ μy+ μz+- μy + - μ(y∧z)+- μ(z∨x)+ μ(y∧(z∨x)))); [ repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_assoc ????)); - apply (eq_trans ?? ( μx+ μy+ μz+(- μy+- μ(y∧z))) ? (eq_sym ??? (plus_assoc ????))); + apply (Eq≈ ( μx+ μy+ μz+(- μy+- μ(y∧z))) (eq_sym ??? (plus_assoc ????))); apply feq_plusl; apply plus_comm;] apply (le_rewr ??? (μx+ μy+ -μy+ μz + - μ(y∧z)+- μ(z∨x)+ μ(y∧(z∨x)))); [ - repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_assoc ????)); - apply (eq_trans ?? (μx+ μy+( -μy+ μz)) ? (eq_sym ??? (plus_assoc ????))); + repeat apply feq_plusr; apply (Eq≈ ?? (plus_assoc ????)); + apply (Eq≈ (μx+ μy+( -μy+ μz)) (eq_sym ??? (plus_assoc ????))); apply feq_plusl; apply plus_comm;] apply (le_rewr ??? (μx+ 0 + μz + - μ(y∧z)+- μ(z∨x)+ μ(y∧(z∨x)))); [ repeat apply feq_plusr; apply (eq_trans ?? ? ?? (plus_assoc ????));