From: Enrico Tassi Date: Mon, 3 Dec 2007 23:44:35 +0000 (+0000) Subject: ok X-Git-Tag: make_still_working~5742 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=3a5b9647787e1402f6886d41824f664db290963f;p=helm.git ok --- diff --git a/helm/software/matita/dama/ordered_divisible_group.ma b/helm/software/matita/dama/ordered_divisible_group.ma index 34bd25a23..0b84d9add 100644 --- a/helm/software/matita/dama/ordered_divisible_group.ma +++ b/helm/software/matita/dama/ordered_divisible_group.ma @@ -50,21 +50,102 @@ apply (le_rewl ??? (0+(x\sup n1)) (zero_neutral ??)); apply fle_plusr; assumption; qed. -lemma ge_pow: ∀G:todgroup.∀x:G.∀n.0 < pow ? x n → 0 < x. +lemma gt_pow: ∀G:todgroup.∀x:G.∀n.0 < pow ? x n → 0 < x. intros 3; elim n; [ simplify in l; cases (lt_coreflexive ?? l);] simplify in l; cut (0+0 pogroup_; - canc_plusr_exc: ∀f,g,h:og_carr. f+h ≰ g+h → f ≰ g + plus_cancr_exc: ∀f,g,h:og_carr. f+h ≰ g+h → f ≰ g }. lemma fexc_plusr: ∀G:pogroup.∀x,y,z:G. x ≰ y → x+z ≰ y + z. -intros 5 (G x y z L); apply (canc_plusr_exc ??? (-z)); +intros 5 (G x y z L); apply (plus_cancr_exc ??? (-z)); apply (Ex≪ (x + (z + -z)) (plus_assoc ????)); apply (Ex≪ (x + (-z + z)) (plus_comm ??z)); apply (Ex≪ (x+0) (opp_inverse ??)); @@ -53,15 +53,15 @@ qed. coercion cic:/matita/ordered_group/fexc_plusr.con nocomposites. -lemma canc_plusl_exc: ∀G:pogroup.∀f,g,h:G. h+f ≰ h+g → f ≰ g. -intros 5 (G x y z L); apply (canc_plusr_exc ??? z); +lemma plus_cancl_exc: ∀G:pogroup.∀f,g,h:G. h+f ≰ h+g → f ≰ g. +intros 5 (G x y z L); apply (plus_cancr_exc ??? z); apply (exc_rewl ??? (z+x) (plus_comm ???)); apply (exc_rewr ??? (z+y) (plus_comm ???) L); qed. lemma fexc_plusl: ∀G:pogroup.∀x,y,z:G. x ≰ y → z+x ≰ z+y. -intros 5 (G x y z L); apply (canc_plusl_exc ??? (-z)); +intros 5 (G x y z L); apply (plus_cancl_exc ??? (-z)); apply (exc_rewl ???? (plus_assoc ??z x)); apply (exc_rewr ???? (plus_assoc ??z y)); apply (exc_rewl ??? (0+x) (opp_inverse ??)); @@ -85,7 +85,7 @@ apply (le_rewr ??? (y+0) (plus_comm ???)); apply (le_rewr ??? (y+(-z+z)) (opp_inverse ??)); apply (le_rewr ??? (y+(z+ -z)) (plus_comm ??z)); apply (le_rewr ??? (y+z+ -z) (plus_assoc ????)); -intro H; apply L; clear L; apply (canc_plusr_exc ??? (-z) H); +intro H; apply L; clear L; apply (plus_cancr_exc ??? (-z) H); qed. lemma fle_plusl: ∀G:pogroup. ∀f,g,h:G. f≤g → h+f≤h+g. @@ -137,7 +137,7 @@ qed. lemma exc_opp_x_zero_to_exc_zero_x: ∀G:pogroup.∀x:G.-x ≰ 0 → 0 ≰ x. -intros (G x H); apply (canc_plusr_exc ??? (-x)); +intros (G x H); apply (plus_cancr_exc ??? (-x)); apply (exc_rewr ???? (plus_comm ???)); apply (exc_rewr ???? (opp_inverse ??)); apply (exc_rewl ???? (zero_neutral ??) H); @@ -159,7 +159,7 @@ qed. lemma exc_zero_opp_x_to_exc_x_zero: ∀G:pogroup.∀x:G. 0 ≰ -x → x ≰ 0. -intros (G x H); apply (canc_plusl_exc ??? (-x)); +intros (G x H); apply (plus_cancl_exc ??? (-x)); apply (exc_rewr ???? (plus_comm ???)); apply (exc_rewl ???? (opp_inverse ??)); apply (exc_rewr ???? (zero_neutral ??) H); @@ -272,41 +272,49 @@ intros (G x y H); cases (eq_le_le ??? H); apply le_le_eq; apply lexxyy_lexy; assumption; qed. -lemma bar: ∀G:abelian_group. ∀x,y:G. 0 # x + y → 0 #x ∨ 0#y. +lemma applus_orap: ∀G:abelian_group. ∀x,y:G. 0 # x + y → 0 #x ∨ 0#y. intros; cases (ap_cotransitive ??? y a); [right; assumption] left; apply (plus_cancr_ap ??? y); apply (ap_rewl ???y (zero_neutral ??)); assumption; qed. -lemma pippo: ∀G:pogroup.∀a,b,c,d:G. a < b → c < d → a+c < b + d. +lemma ltplus: ∀G:pogroup.∀a,b,c,d:G. a < b → c < d → a+c < b + d. intros (G a b c d H1 H2); lapply (flt_plusr ??? c H1) as H3; apply (lt_transitive ???? H3); apply flt_plusl; assumption; qed. -lemma pippo2: ∀G:pogroup.∀a,b,c,d:G. a+c ≰ b + d → a ≰ b ∨ c ≰ d. +lemma excplus_orexc: ∀G:pogroup.∀a,b,c,d:G. a+c ≰ b + d → a ≰ b ∨ c ≰ d. intros (G a b c d H1 H2); cases (exc_cotransitive ??? (a + d) H1); [ - right; apply (canc_plusl_exc ??? a); assumption] -left; apply (canc_plusr_exc ??? d); assumption; + right; apply (plus_cancl_exc ??? a); assumption] +left; apply (plus_cancr_exc ??? d); assumption; qed. -lemma pippo3: ∀G:pogroup.∀a,b,c,d:G. a ≤ b → c ≤ d → a+c ≤ b + d. -intros (G a b c d H1 H2); intro H3; cases (pippo2 ????? H3); +lemma leplus: ∀G:pogroup.∀a,b,c,d:G. a ≤ b → c ≤ d → a+c ≤ b + d. +intros (G a b c d H1 H2); intro H3; cases (excplus_orexc ????? H3); [apply H1|apply H2] assumption; qed. -lemma foo: ∀G:togroup.∀x,y:G. 0 ≤ x + y → x < 0 → 0 ≤ y. +lemma leplus_lt_le: ∀G:togroup.∀x,y:G. 0 ≤ x + y → x < 0 → 0 ≤ y. intros; intro; apply H; lapply (lt_to_excede ??? l); lapply (tog_total ??? e); lapply (tog_total ??? Hletin); -lapply (pippo ????? Hletin2 Hletin1); +lapply (ltplus ????? Hletin2 Hletin1); apply (exc_rewl ??? (0+0)); [apply eq_sym; apply zero_neutral] apply lt_to_excede; assumption; qed. -lemma pippo4: ∀G:togroup.∀a,b,c,d:G. a+c < b + d → a < b ∨ c < d. +lemma ltplus_orlt: ∀G:togroup.∀a,b,c,d:G. a+c < b + d → a < b ∨ c < d. intros (G a b c d H1 H2); lapply (lt_to_excede ??? H1); -cases (pippo2 ????? Hletin); [left|right] apply tog_total; assumption; +cases (excplus_orexc ????? Hletin); [left|right] apply tog_total; assumption; +qed. + +lemma excplus: ∀G:togroup.∀a,b,c,d:G.a ≰ b → c ≰ d → a + c ≰ b + d. +intros (G a b c d L1 L2); +lapply (fexc_plusr ??? (c) L1) as L3; +elim (exc_cotransitive ??? (b+d) L3); [assumption] +lapply (plus_cancl_exc ???? t); lapply (tog_total ??? Hletin); +cases Hletin1; cases (H L2); qed.