From: Andrea Asperti Date: Mon, 21 Jan 2013 12:50:06 +0000 (+0000) Subject: universal X-Git-Tag: make_still_working~1321 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=3a9c3c16e7c7e3a35640a0afa53f044a4f87ed65;p=helm.git universal --- diff --git a/matita/matita/lib/turing/multi_universal/unistep_aux.ma b/matita/matita/lib/turing/multi_universal/unistep_aux.ma index f5767e2cf..ed15669e0 100644 --- a/matita/matita/lib/turing/multi_universal/unistep_aux.ma +++ b/matita/matita/lib/turing/multi_universal/unistep_aux.ma @@ -486,13 +486,14 @@ lemma low_char_current : ∀t. = low_char (current FinBool t). * // qed. -definition low_tapes ≝ λM:normalTM.λc:nconfig (no_states M).Vector_of_list ? +definition low_tapes: ∀M:normalTM.∀c:nconfig (no_states M).Vector ? 3 ≝ +λM:normalTM.λc:nconfig (no_states M).Vector_of_list ? [tape_map ?? bit (ctape ?? c); midtape ? [ ] bar ((bits_of_state ? (nhalt M) (cstate ?? c))@[low_char (current ? (ctape ?? c))]); midtape ? [ ] bar (tail ? (table_TM ? (graph_enum ?? (ntrans M)) (nhalt M))) ]. - + lemma obj_low_tapes: ∀M,c. nth obj ? (low_tapes M c) (niltape ?) = tape_map ?? bit (ctape ?? c). // qed. @@ -539,14 +540,15 @@ lemma map_move_mono: ∀t,cout,m. @map_action qed. -definition R_unistep_high ≝ λM:normalTM.λc:nconfig (no_states M).λt1,t2. +definition R_unistep_high ≝ λM:normalTM.λt1,t2. +∀c:nconfig (no_states M). t1 = low_tapes M c → t2 = low_tapes M (step ? M c). -lemma R_unistep_equiv : ∀M,c,t1,t2. +lemma R_unistep_equiv : ∀M,t1,t2. R_unistep (no_states M) (graph_enum ?? (ntrans M)) (nhalt M) t1 t2 → - R_unistep_high M c t1 t2. -#M #c #t1 #t2 #H #Ht1 + R_unistep_high M t1 t2. +#M #t1 #t2 #H whd whd in match (nconfig ?); #c #Ht1 lapply (initial_bar ? (nhalt M) (graph_enum ?? (ntrans M)) (nTM_nog ?)) #Htable (* tup = current tuple *) cut (∃t.t = 〈〈cstate … c,current ? (ctape … c)〉, @@ -588,7 +590,7 @@ lapply(H (bits_of_state ? (nhalt M) (cstate ?? c)) lapply(H (bits_of_state … (nhalt M) qout) (low_char … cout) (low_mv … m) tup ? Hingraph) [>Htup whd in ⊢ (??%?); @eq_f >associative_append %] -H -#Ht2 >Ht2 @(eq_vec ? 3 … (niltape ?)) #i #Hi +#Ht2 @(eq_vec ? 3 ?? (niltape ?) ?) >Ht2 #i #Hi cases (le_to_or_lt_eq … (le_S_S_to_le … Hi)) -Hi #Hi [cases (le_to_or_lt_eq … (le_S_S_to_le … Hi)) -Hi #Hi [cases (le_to_or_lt_eq … (le_S_S_to_le … Hi)) -Hi #Hi @@ -608,7 +610,7 @@ cases (le_to_or_lt_eq … (le_S_S_to_le … Hi)) -Hi #Hi >Ht1 >prg_low_tapes // ] qed. - + \ No newline at end of file diff --git a/matita/matita/lib/turing/multi_universal/universal.ma b/matita/matita/lib/turing/multi_universal/universal.ma new file mode 100644 index 000000000..56af5405d --- /dev/null +++ b/matita/matita/lib/turing/multi_universal/universal.ma @@ -0,0 +1,353 @@ +(* + ||M|| This file is part of HELM, an Hypertextual, Electronic + ||A|| Library of Mathematics, developed at the Computer Science + ||T|| Department of the University of Bologna, Italy. + ||I|| + ||T|| + ||A|| + \ / This file is distributed under the terms of the + \ / GNU General Public License Version 2 + V_____________________________________________________________*) + + +include "turing/multi_universal/unistep_aux.ma". + +axiom sem_unistep: ∀M,cf. unistep ⊨ R_unistep_high M cf. + +definition loop_uni ≝ + ifTM ?? (inject_TM ? (test_char ? (λc.c == bit false)) 2 cfg) + (single_finalTM ?? unistep) + (nop …) tc_true. + +definition lu_acc : states ?? loop_uni ≝ (inr … (inl … (inr … start_nop))). + +lemma sem_loop_uni: ∀M,cf. + loop_uni ⊨ [lu_acc: R_unistep_high M cf, λt1,t2.t1=t2]. +#M #cf +@(acc_sem_if_app ???????????? + (sem_test_char_multi ? (λc.c == bit false) 2 cfg (le_S ?? (le_n 1))) + (sem_unistep M cf) + (sem_nop …)) +[#t1 #t2 #t3 * #_ #Ht3 >Ht3 // |#t1 #t2 #t3 * #_ #Ht3 whd in ⊢ (%→?); //] +qed. + +definition universalTM ≝ whileTM ?? loop_uni lu_acc. + +definition low_R ≝ λM,R.λt1,t2:Vector (tape FSUnialpha) 3. + ∀cin. t1 = low_tapes M cin → + ∃cout. R (ctape … cin) (ctape … cout) ∧ + halt ? M (cstate … cout) = true ∧ t2 = low_tapes M cout. + +theorem sem_universal: ∀M:normalTM. ∀startc. + universalTM ⊫ (low_R M (R_TM FinBool M startc)). +#M #cin #intape #i #outc #Hloop +lapply (sem_while … (sem_loop_uni intape i outc Hloop) + [@daemon] -Hloop +* #ta * #Hstar generalize in match q; -q +@(star_ind_l ??????? Hstar) + [#tb #q0 whd in ⊢ (%→?); #Htb #tape1 #Htb1 + cases (Htb … Htb1) -Htb #Hhalt #Htb + Htb1 @ex_intro + [|%{tape1} % + [ % + [ whd @(ex_intro … 1) @(ex_intro … (mk_config … q0 tape1)) + % [|%] whd in ⊢ (??%?); >Hhalt % + | @Hhalt ] + | % ] + ] + |#tb #tc #td whd in ⊢ (%→?); #Htc #Hstar1 #IH + #q #Htd #tape1 #Htb + lapply (IH (\fst (trans ? M 〈q,current ? tape1〉)) Htd) -IH + #IH cases (Htc … Htb); -Htc #Hhaltq + whd in match (step FinBool ??); >(eq_pair_fst_snd ?? (trans ???)) + #Htc change with (mk_config ????) in Htc:(???(??%)); + cases (IH ? Htc) #q1 * #tape2 * * #HRTM #Hhaltq1 #Houtc + @(ex_intro … q1) @(ex_intro … tape2) % + [% + [cases HRTM #k * #outc1 * #Hloop #Houtc1 + @(ex_intro … (S k)) @(ex_intro … outc1) % + [>loopM_unfold >loop_S_false [2://] whd in match (step FinBool ??); + >(eq_pair_fst_snd ?? (trans ???)) @Hloop + |@Houtc1 + ] + |@Hhaltq1] + |@Houtc + ] + ] +*) +qed. + +qed. + +theorem sem_universal2: ∀M:normalTM. ∀R. + M ⊫ R → universalTM ⊫ (low_R M (start ? M) R). +#M #R #HMR lapply (sem_universal … M (start ? M)) @WRealize_to_WRealize +#t1 #t2 whd in ⊢ (%→%); #H #tape1 #Htape1 cases (H ? Htape1) +#q * #tape2 * * #HRTM #Hhalt #Ht2 @(ex_intro … q) @(ex_intro … tape2) +% [% [@(R_TM_to_R … HRTM) @HMR | //] | //] +qed. + +axiom terminate_UTM: ∀M:normalTM.∀t. + M ↓ t → universalTM ↓ (low_config M (mk_config ?? (start ? M) t)). + + + + + + + + +lemma current_embedding: ∀c. + high_c (〈match c with [None ⇒ null | Some b ⇒ bit b],false〉) = c. + * normalize // qed. + +lemma tape_embedding: ∀ls,c,rs. + high_tape + (map ?? (λb.〈bit b,false〉) ls) + (〈match c with [None ⇒ null | Some b ⇒ bit b],false〉) + (map ?? (λb.〈bit b,false〉) rs) = mk_tape ? ls c rs. +#ls #c #rs >high_tape_eq >bool_embedding >bool_embedding +>current_embedding % +qed. + +definition high_move ≝ λc,mv. + match c with + [ bit b ⇒ Some ? 〈b,move_of_unialpha mv〉 + | _ ⇒ None ? + ]. + +definition map_move ≝ + λc,mv.match c with [ null ⇒ None ? | _ ⇒ Some ? 〈c,false,move_of_unialpha mv〉 ]. + +definition low_step_R_true ≝ λt1,t2. + ∀M:normalTM. + ∀c: nconfig (no_states M). + t1 = low_config M c → + halt ? M (cstate … c) = false ∧ + t2 = low_config M (step ? M c). + +definition low_tape_aux : ∀M:normalTM.tape FinBool → tape STape ≝ +λM:normalTM.λt. + let current_low ≝ match current … t with + [ None ⇒ None ? | Some b ⇒ Some ? 〈bit b,false〉] in + let low_left ≝ map … (λb.〈bit b,false〉) (left … t) in + let low_right ≝ map … (λb.〈bit b,false〉) (right … t) in + mk_tape STape low_left current_low low_right. + +lemma left_of_low_tape: ∀M,t. + left ? (low_tape_aux M t) = map … (λb.〈bit b,false〉) (left … t). +#M * // +qed. + +lemma right_of_low_tape: ∀M,t. + right ? (low_tape_aux M t) = map … (λb.〈bit b,false〉) (right … t). +#M * // +qed. + +definition low_move ≝ λaction:option (bool × move). + match action with + [None ⇒ None ? + |Some act ⇒ Some ? (〈〈bit (\fst act),false〉,\snd act〉)]. + +(* simulation lemma *) +lemma low_tape_move : ∀M,action,t. + tape_move STape (low_tape_aux M t) (low_move action) = + low_tape_aux M (tape_move FinBool t action). +#M * // (* None *) +* #b #mv #t cases mv cases t // + [#ls #c #rs cases ls //|#ls #c #rs cases rs //] +qed. + +lemma left_of_lift: ∀ls,c,rs. left ? (lift_tape ls c rs) = ls. +#ls * #c #b #rs cases c // cases ls // cases rs // +qed. + +lemma right_of_lift: ∀ls,c,rs. legal_tape ls c rs → + right ? (lift_tape ls c rs) = rs. +#ls * #c #b #rs * #_ cases c // cases ls cases rs // #a #tll #b #tlr +#H @False_ind cases H [* [#H1 /2/ |#H1 destruct] |#H1 destruct] +qed. + + +lemma current_of_lift: ∀ls,c,b,rs. legal_tape ls 〈c,b〉 rs → + current STape (lift_tape ls 〈c,b〉 rs) = + match c with [null ⇒ None ? | _ ⇒ Some ? 〈c,b〉]. +#ls #c #b #rs cases c // whd in ⊢ (%→?); * #_ +* [* [#Hnull @False_ind /2/ | #Hls >Hls whd in ⊢ (??%%); cases rs //] + |#Hrs >Hrs whd in ⊢ (??%%); cases ls //] +qed. + +lemma current_of_lift_None: ∀ls,c,b,rs. legal_tape ls 〈c,b〉 rs → + current STape (lift_tape ls 〈c,b〉 rs) = None ? → + c = null. +#ls #c #b #rs #Hlegal >(current_of_lift … Hlegal) cases c normalize + [#b #H destruct |// |3,4,5:#H destruct ] +qed. + +lemma current_of_lift_Some: ∀ls,c,c1,rs. legal_tape ls c rs → + current STape (lift_tape ls c rs) = Some ? c1 → + c = c1. +#ls * #c #cb #b #rs #Hlegal >(current_of_lift … Hlegal) cases c normalize + [#b1 #H destruct // |#H destruct |3,4,5:#H destruct //] +qed. + +lemma current_of_low_None: ∀M,t. current FinBool t = None ? → + current STape (low_tape_aux M t) = None ?. +#M #t cases t // #l #b #r whd in ⊢ ((??%?)→?); #H destruct +qed. + +lemma current_of_low_Some: ∀M,t,b. current FinBool t = Some ? b → + current STape (low_tape_aux M t) = Some ? 〈bit b,false〉. +#M #t cases t + [#b whd in ⊢ ((??%?)→?); #H destruct + |#b #l #b1 whd in ⊢ ((??%?)→?); #H destruct + |#b #l #b1 whd in ⊢ ((??%?)→?); #H destruct + |#c #c1 #l #r whd in ⊢ ((??%?)→?); #H destruct % + ] +qed. + +lemma current_of_low:∀M,tape,ls,c,rs. legal_tape ls c rs → + lift_tape ls c rs = low_tape_aux M tape → + c = 〈match current … tape with + [ None ⇒ null | Some b ⇒ bit b], false〉. +#M #tape #ls * #c #cb #rs #Hlegal #Hlift +cut (current ? (lift_tape ls 〈c,cb〉 rs) = current ? (low_tape_aux M tape)) + [@eq_f @Hlift] -Hlift #Hlift +cut (current … tape = None ? ∨ ∃b.current … tape = Some ? b) + [cases (current … tape) [%1 // | #b1 %2 /2/ ]] * + [#Hcurrent >Hcurrent normalize + >(current_of_low_None …Hcurrent) in Hlift; #Hlift + >(current_of_lift_None … Hlegal Hlift) + @eq_f cases Hlegal * * #Hmarks #_ #_ #_ @(Hmarks 〈c,cb〉) @memb_hd + |* #b #Hcurrent >Hcurrent normalize + >(current_of_low_Some …Hcurrent) in Hlift; #Hlift + @(current_of_lift_Some … Hlegal Hlift) + ] +qed. + +(* +lemma current_of_low:∀M,tape,ls,c,rs. legal_tape ls c rs → + lift_tape ls c rs = low_tape_aux M tape → + c = 〈match current … tape with + [ None ⇒ null | Some b ⇒ bit b], false〉. +#M #tape #ls * #c #cb #rs * * #_ #H cases (orb_true_l … H) + [cases c [2,3,4,5: whd in ⊢ ((??%?)→?); #Hfalse destruct] + #b #_ #_ cases tape + [whd in ⊢ ((??%%)→?); #H destruct + |#a #l whd in ⊢ ((??%%)→?); #H destruct + |#a #l whd in ⊢ ((??%%)→?); #H destruct + |#a #l #r whd in ⊢ ((??%%)→?); #H destruct // + ] + |cases c + [#b whd in ⊢ ((??%?)→?); #Hfalse destruct + |3,4,5:whd in ⊢ ((??%?)→?); #Hfalse destruct] + #_ * [* [#Habs @False_ind /2/ + |#Hls >Hls whd in ⊢ ((??%%)→?); *) + + +(* sufficent conditions to have a low_level_config *) +lemma is_low_config: ∀ls,c,rs,M,s,tape,qhd,q_tl,table. +legal_tape ls c rs → +table = flatten ? (tuples_list (no_states M) (nhalt M) (graph_enum ?? (ntrans M))) → +lift_tape ls c rs = low_tape_aux M tape → +〈qhd,false〉::q_tl = m_bits_of_state (no_states M) (nhalt M) s → +midtape STape (〈grid,false〉::ls) + 〈qhd,false〉 + (q_tl@c::〈grid,false〉::table@〈grid,false〉::rs) = + low_config M (mk_config ?? s tape). +#ls #c #rs #M #s #tape #qhd #q_tl #table #Hlegal #Htable +#Hlift #Hstate whd in match (low_config ??); Hlift // + | cut (∀A.∀a,b:A.∀l1,l2. a::l1 = b::l2 → a=b) + [#A #a #b #l1 #l2 #H destruct (H) %] #Hcut + @(Hcut …Hstate) + |@eq_f <(current_of_low … Hlegal Hlift) @eq_f @eq_f Hlift @right_of_low_tape + ] +qed. + +lemma unistep_true_to_low_step: ∀t1,t2. + R_uni_step_true t1 t2 → low_step_R_true t1 t2. +#t1 #t2 (* whd in ⊢ (%→%); *) #Huni_step * #n #posn #t #h * #qin #tape #eqt1 +cases (low_config_eq … eqt1) +#low_left * #low_right * #table * #q_low_hd * #q_low_tl * #current_low +***** #Hlow_left #Hlow_right #Htable #Hq_low #Hcurrent_low #Ht1 +letin trg ≝ (t 〈qin,current ? tape〉) +letin qout_low ≝ (m_bits_of_state n h (\fst trg)) +letin qout_low_hd ≝ (hd ? qout_low 〈bit true,false〉) +letin qout_low_tl ≝ (tail ? qout_low) +letin low_act ≝ (low_action (\snd (t 〈qin,current ? tape〉))) +letin low_cout ≝ (\fst low_act) +letin low_m ≝ (\snd low_act) +lapply (Huni_step n table q_low_hd (\fst qout_low_hd) + current_low low_cout low_left low_right q_low_tl qout_low_tl low_m … Ht1) + [@daemon + |>Htable + @(trans_to_match n h t 〈qin,current ? tape〉 … (refl …)) + >Hq_low >Hcurrent_low whd in match (mk_tuple ?????); + >(eq_pair_fst_snd … (t …)) whd in ⊢ (??%?); + >(eq_pair_fst_snd … (low_action …)) % + |// + |@daemon + ] +-Ht1 #Huni_step lapply (Huni_step ? (refl …)) -Huni_step * +#q_low_head_false * #ls1 * #rs1 * #c2 * * +#Ht2 #Hlift #Hlegal % + [whd in ⊢ (??%?); >q_low_head_false in Hq_low; + whd in ⊢ ((???%)→?); generalize in match (h qin); + #x #H destruct (H) % + |>Ht2 whd in match (step FinBool ??); + whd in match (trans ???); + >(eq_pair_fst_snd … (t ?)) + @is_low_config // >Hlift + Hlow_left >Hlow_right >Hcurrent_low whd in ⊢ (??%%); + cases (current …tape) [%] #b whd in ⊢ (??%%); % + |whd in match low_cout; whd in match low_m; whd in match low_act; + generalize in match (\snd (t ?)); * [%] * #b #mv + whd in ⊢ (??(?(???%)?)%); cases mv % + ] + ] +qed. + +definition low_step_R_false ≝ λt1,t2. + ∀M:normalTM. + ∀c: nconfig (no_states M). + t1 = low_config M c → halt ? M (cstate … c) = true ∧ t1 = t2. + +lemma unistep_false_to_low_step: ∀t1,t2. + R_uni_step_false t1 t2 → low_step_R_false t1 t2. +#t1 #t2 (* whd in ⊢ (%→%); *) #Huni_step * #n #posn #t #h * #qin #tape #eqt1 +cases (low_config_eq … eqt1) #low_left * #low_right * #table * #q_low_hd * #q_low_tl * #current_low +***** #_ #_ #_ #Hqin #_ #Ht1 whd in match (halt ???); +cases (Huni_step (h qin) ?) [/2/] >Ht1 whd in ⊢ (??%?); @eq_f +normalize in Hqin; destruct (Hqin) % +qed. + +definition low_R ≝ λM,qstart,R,t1,t2. + ∀tape1. t1 = low_config M (mk_config ?? qstart tape1) → + ∃q,tape2.R tape1 tape2 ∧ + halt ? M q = true ∧ t2 = low_config M (mk_config ?? q tape2). + +lemma sem_uni_step1: + uni_step ⊨ [us_acc: low_step_R_true, low_step_R_false]. +qed. + +definition universalTM ≝ whileTM ? uni_step us_acc. + +theorem sem_universal: ∀M:normalTM. ∀qstart. + universalTM ⊫ (low_R M qstart (R_TM FinBool M qstart)). +qed. + +theorem sem_universal2: ∀M:normalTM. ∀R. + M ⊫ R → universalTM ⊫ (low_R M (start ? M) R). +#M #R #HMR lapply (sem_universal … M (start ? M)) @WRealize_to_WRealize +#t1 #t2 whd in ⊢ (%→%); #H #tape1 #Htape1 cases (H ? Htape1) +#q * #tape2 * * #HRTM #Hhalt #Ht2 @(ex_intro … q) @(ex_intro … tape2) +% [% [@(R_TM_to_R … HRTM) @HMR | //] | //] +qed. + +axiom terminate_UTM: ∀M:normalTM.∀t. + M ↓ t → universalTM ↓ (low_config M (mk_config ?? (start ? M) t)). +