From: Claudio Sacerdoti Coen Date: Sun, 5 Nov 2006 16:31:53 +0000 (+0000) Subject: Almost every hand-inserted coercion removed since a bug in the coercion X-Git-Tag: 0.4.95@7852~819 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=3dc6e3197a630bfd5fcd608fef3434c5448c94a1;p=helm.git Almost every hand-inserted coercion removed since a bug in the coercion machinery has been fixed. --- diff --git a/matita/dama/integration_algebras.ma b/matita/dama/integration_algebras.ma index 1ebfad834..fa43e944a 100644 --- a/matita/dama/integration_algebras.ma +++ b/matita/dama/integration_algebras.ma @@ -33,15 +33,13 @@ record vector_space (K:field): Type \def interpretation "Vector space external product" 'times a b = (cic:/matita/integration_algebras/emult.con _ _ a b). -record is_semi_norm (R:real) (V: vector_space R) - (semi_norm:Type_OF_vector_space ? V→R) : Prop -\def +record is_semi_norm (R:real) (V: vector_space R) (semi_norm:V→R) : Prop \def { sn_positive: ∀x:V. 0 ≤ semi_norm x; sn_omogeneous: ∀a:R.∀x:V. semi_norm (a*x) = (abs ? a) * semi_norm x; sn_triangle_inequality: ∀x,y:V. semi_norm (x + y) ≤ semi_norm x + semi_norm y }. -record is_norm (R:real) (V:vector_space R) (norm:Type_OF_vector_space ? V → R) +record is_norm (R:real) (V:vector_space R) (norm:V → R) : Prop \def { n_semi_norm:> is_semi_norm ? ? norm; n_properness: ∀x:V. norm x = 0 → x = 0 @@ -104,7 +102,7 @@ record archimedean_riesz_space (K:ordered_field_ch0) : Type \def ars_archimedean_property: is_archimedean_riesz_space ? ars_riesz_space }. -record is_integral (K) (R:archimedean_riesz_space K) (I:Type_OF_archimedean_riesz_space ? R→K) : Prop +record is_integral (K) (R:archimedean_riesz_space K) (I:R→K) : Prop \def { i_positive: ∀f:R. le ? R 0 f → of_le K 0 (I f); i_linear1: ∀f,g:R. I (f + g) = I f + I g; @@ -122,9 +120,9 @@ definition is_weak_unit ≝ record integration_riesz_space (R:real) : Type \def { irs_archimedean_riesz_space:> archimedean_riesz_space R; - irs_unit: Type_OF_archimedean_riesz_space ? irs_archimedean_riesz_space; + irs_unit: irs_archimedean_riesz_space; irs_weak_unit: is_weak_unit ? ? irs_unit; - integral: Type_OF_archimedean_riesz_space ? irs_archimedean_riesz_space → R; + integral: irs_archimedean_riesz_space → R; irs_integral_properties: is_integral R irs_archimedean_riesz_space integral; irs_limit1: ∀f:irs_archimedean_riesz_space. @@ -163,7 +161,7 @@ interpretation "Algebra product" 'times a b = (cic:/matita/integration_algebras/a_mult.con _ _ _ a b). definition ring_of_algebra ≝ - λK.λV:vector_space K.λone:Type_OF_vector_space ? V.λA:algebra ? V one. + λK.λV:vector_space K.λone:V.λA:algebra ? V one. mk_ring V (a_mult ? ? ? A) one (a_ring ? ? ? ? (a_algebra_properties ? ? ? A)). @@ -180,8 +178,7 @@ record is_f_algebra (K) (S:archimedean_riesz_space K) (one: S) meet ? S f g = 0 → meet ? S (a_mult ? ? ? A h f) g = 0 }. -record f_algebra (K:ordered_field_ch0) (R:archimedean_riesz_space K) - (one:Type_OF_archimedean_riesz_space ? R) : +record f_algebra (K:ordered_field_ch0) (R:archimedean_riesz_space K) (one:R) : Type \def { fa_algebra:> algebra ? R one; fa_f_algebra_properties: is_f_algebra ? ? ? fa_algebra