From: Enrico Tassi Date: Wed, 21 Jan 2009 17:52:33 +0000 (+0000) Subject: some minor fixes X-Git-Tag: make_still_working~4237 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=3e094922bf3fec6975fdbe6feceb509eaafe0563;p=helm.git some minor fixes --- diff --git a/helm/software/matita/contribs/formal_topology/overlap/basic_pairs_to_o-basic_pairs.ma b/helm/software/matita/contribs/formal_topology/overlap/basic_pairs_to_o-basic_pairs.ma index 2aec4f7e8..d8813fdc1 100644 --- a/helm/software/matita/contribs/formal_topology/overlap/basic_pairs_to_o-basic_pairs.ma +++ b/helm/software/matita/contribs/formal_topology/overlap/basic_pairs_to_o-basic_pairs.ma @@ -20,9 +20,9 @@ include "relations_to_o-algebra.ma". definition o_basic_pair_of_basic_pair: basic_pair → Obasic_pair. intro b; constructor 1; - [ apply (map_objs2 ?? SUBSETS' (concr b)); - | apply (map_objs2 ?? SUBSETS' (form b)); - | apply (map_arrows2 ?? SUBSETS' (concr b) (form b) (rel b)); ] + [ apply (map_objs2 ?? POW (concr b)); + | apply (map_objs2 ?? POW (form b)); + | apply (map_arrows2 ?? POW (concr b) (form b) (rel b)); ] qed. definition o_relation_pair_of_relation_pair: @@ -30,12 +30,12 @@ definition o_relation_pair_of_relation_pair: Orelation_pair (o_basic_pair_of_basic_pair BP1) (o_basic_pair_of_basic_pair BP2). intros; constructor 1; - [ apply (map_arrows2 ?? SUBSETS' (concr BP1) (concr BP2) (r \sub \c)); - | apply (map_arrows2 ?? SUBSETS' (form BP1) (form BP2) (r \sub \f)); - | apply (.= (respects_comp2 ?? SUBSETS' (concr BP1) (concr BP2) (form BP2) r\sub\c (⊩\sub BP2) )^-1); - cut (⊩ \sub BP2∘r \sub \c = r\sub\f ∘ ⊩ \sub BP1) as H; + [ apply (map_arrows2 ?? POW (concr BP1) (concr BP2) (r \sub \c)); + | apply (map_arrows2 ?? POW (form BP1) (form BP2) (r \sub \f)); + | apply (.= (respects_comp2 ?? POW (concr BP1) (concr BP2) (form BP2) r\sub\c (⊩\sub BP2) )^-1); + cut ( ⊩ \sub BP2 ∘ r \sub \c =_12 r\sub\f ∘ ⊩ \sub BP1) as H; [ apply (.= †H); - apply (respects_comp2 ?? SUBSETS' (concr BP1) (form BP1) (form BP2) (⊩\sub BP1) r\sub\f); + apply (respects_comp2 ?? POW (concr BP1) (form BP1) (form BP2) (⊩\sub BP1) r\sub\f); | apply commute;]] qed. @@ -52,9 +52,9 @@ definition BP_to_OBP: carr3 (arrows3 CAT2 (category2_of_category1 BP) OBP). | change in match or_f_star_ with (λq,w,x.fun12 ?? (or_f_star q w) x);] simplify; apply (prop12); - apply (.= (respects_comp2 ?? SUBSETS' (concr S) (concr T) (form T) (a\sub\c) (⊩\sub T))^-1); + apply (.= (respects_comp2 ?? POW (concr S) (concr T) (form T) (a\sub\c) (⊩\sub T))^-1); apply sym2; - apply (.= (respects_comp2 ?? SUBSETS' (concr S) (concr T) (form T) (b\sub\c) (⊩\sub T))^-1); + apply (.= (respects_comp2 ?? POW (concr S) (concr T) (form T) (b\sub\c) (⊩\sub T))^-1); apply sym2; apply prop12; apply Eab; @@ -67,7 +67,7 @@ definition BP_to_OBP: carr3 (arrows3 CAT2 (category2_of_category1 BP) OBP). simplify; apply prop12; apply prop22;[2,4,6,8: apply rule #;] - apply (respects_id2 ?? SUBSETS' (concr o)); + apply (respects_id2 ?? POW (concr o)); | simplify; intros; whd; split; [ change in match or_f_minus_star_ with (λq,w,x.fun12 ?? (or_f_minus_star q w) x); | change in match or_f_minus_ with (λq,w,x.fun12 ?? (or_f_minus q w) x); @@ -76,33 +76,33 @@ definition BP_to_OBP: carr3 (arrows3 CAT2 (category2_of_category1 BP) OBP). simplify; apply prop12; apply prop22;[2,4,6,8: apply rule #;] - apply (respects_comp2 ?? SUBSETS' (concr o1) (concr o2) (concr o3) f1\sub\c f2\sub\c);] + apply (respects_comp2 ?? POW (concr o1) (concr o2) (concr o3) f1\sub\c f2\sub\c);] qed. theorem BP_to_OBP_faithful: ∀S,T.∀f,g:arrows2 (category2_of_category1 BP) S T. map_arrows2 ?? BP_to_OBP ?? f = map_arrows2 ?? BP_to_OBP ?? g → f=g. intros; change with ( (⊩) ∘ f \sub \c = (⊩) ∘ g \sub \c); - apply (SUBSETS_faithful); - apply (.= respects_comp2 ?? SUBSETS' (concr S) (concr T) (form T) f \sub \c (⊩ \sub T)); + apply (POW_faithful); + apply (.= respects_comp2 ?? POW (concr S) (concr T) (form T) f \sub \c (⊩ \sub T)); apply sym2; - apply (.= respects_comp2 ?? SUBSETS' (concr S) (concr T) (form T) g \sub \c (⊩ \sub T)); + apply (.= respects_comp2 ?? POW (concr S) (concr T) (form T) g \sub \c (⊩ \sub T)); apply sym2; apply e; qed. theorem BP_to_OBP_full: ∀S,T.∀f. exT22 ? (λg. map_arrows2 ?? BP_to_OBP S T g = f). intros; - cases (SUBSETS_full (concr S) (concr T) (Oconcr_rel ?? f)) (gc Hgc); - cases (SUBSETS_full (form S) (form T) (Oform_rel ?? f)) (gf Hgf); + cases (POW_full (concr S) (concr T) (Oconcr_rel ?? f)) (gc Hgc); + cases (POW_full (form S) (form T) (Oform_rel ?? f)) (gf Hgf); exists[ constructor 1; [apply gc|apply gf] - apply (SUBSETS_faithful); - apply (let xxxx ≝SUBSETS' in .= respects_comp2 ?? SUBSETS' (concr S) (concr T) (form T) gc (rel T)); + apply (POW_faithful); + apply (let xxxx ≝POW in .= respects_comp2 ?? POW (concr S) (concr T) (form T) gc (rel T)); apply rule (.= Hgc‡#); apply (.= Ocommute ?? f); apply (.= #‡Hgf^-1); - apply (let xxxx ≝SUBSETS' in (respects_comp2 ?? SUBSETS' (concr S) (form S) (form T) (rel S) gf)^-1)] + apply (let xxxx ≝POW in (respects_comp2 ?? POW (concr S) (form S) (form T) (rel S) gf)^-1)] split; [ change in match or_f_minus_star_ with (λq,w,x.fun12 ?? (or_f_minus_star q w) x); | change in match or_f_minus_ with (λq,w,x.fun12 ?? (or_f_minus q w) x); diff --git a/helm/software/matita/contribs/formal_topology/overlap/categories.ma b/helm/software/matita/contribs/formal_topology/overlap/categories.ma index af58968fc..17c5f498f 100644 --- a/helm/software/matita/contribs/formal_topology/overlap/categories.ma +++ b/helm/software/matita/contribs/formal_topology/overlap/categories.ma @@ -100,6 +100,31 @@ interpretation "setoid3 eq" 'eq x y = (eq_rel3 _ (eq3 _) x y). interpretation "setoid2 eq" 'eq x y = (eq_rel2 _ (eq2 _) x y). interpretation "setoid1 eq" 'eq x y = (eq_rel1 _ (eq1 _) x y). interpretation "setoid eq" 'eq x y = (eq_rel _ (eq _) x y). + +notation < "hvbox(a break = \sub 1 b)" non associative with precedence 45 +for @{ 'eq1 $a $b }. + +notation < "hvbox(a break = \sub 2 b)" non associative with precedence 45 +for @{ 'eq2 $a $b }. + +notation < "hvbox(a break = \sub 3 b)" non associative with precedence 45 +for @{ 'eq3 $a $b }. + +notation > "hvbox(a break =_12 b)" non associative with precedence 45 +for @{ eq_rel2 (carr2 (setoid2_of_setoid1 ?)) (eq2 (setoid2_of_setoid1 ?)) $a $b }. +notation > "hvbox(a break =_0 b)" non associative with precedence 45 +for @{ eq_rel ? (eq ?) $a $b }. +notation > "hvbox(a break =_1 b)" non associative with precedence 45 +for @{ eq_rel1 ? (eq1 ?) $a $b }. +notation > "hvbox(a break =_2 b)" non associative with precedence 45 +for @{ eq_rel2 ? (eq2 ?) $a $b }. +notation > "hvbox(a break =_3 b)" non associative with precedence 45 +for @{ eq_rel3 ? (eq3 ?) $a $b }. + +interpretation "setoid3 eq explicit" 'eq3 x y = (eq_rel3 _ (eq3 _) x y). +interpretation "setoid2 eq explicit" 'eq2 x y = (eq_rel2 _ (eq2 _) x y). +interpretation "setoid1 eq explicit" 'eq1 x y = (eq_rel1 _ (eq1 _) x y). + interpretation "setoid3 symmetry" 'invert r = (sym3 ____ r). interpretation "setoid2 symmetry" 'invert r = (sym2 ____ r). interpretation "setoid1 symmetry" 'invert r = (sym1 ____ r). diff --git a/helm/software/matita/contribs/formal_topology/overlap/o-algebra.ma b/helm/software/matita/contribs/formal_topology/overlap/o-algebra.ma index b278adfc0..99ea22e91 100644 --- a/helm/software/matita/contribs/formal_topology/overlap/o-algebra.ma +++ b/helm/software/matita/contribs/formal_topology/overlap/o-algebra.ma @@ -65,8 +65,8 @@ record OAlgebra : Type2 := { oa_overlap_sym: ∀a,b:oa_P.oa_overlap a b → oa_overlap b a; oa_meet_inf: ∀I:SET.∀p_i:I ⇒ oa_P.∀p:oa_P. - oa_leq p (oa_meet I p_i) = ∀i:I.oa_leq p (p_i i); - oa_join_sup: ∀I:SET.∀p_i:I ⇒ oa_P.∀p:oa_P.oa_leq (oa_join I p_i) p = ∀i:I.oa_leq (p_i i) p; + oa_leq p (oa_meet I p_i) = (∀i:I.oa_leq p (p_i i)); + oa_join_sup: ∀I:SET.∀p_i:I ⇒ oa_P.∀p:oa_P.oa_leq (oa_join I p_i) p = (∀i:I.oa_leq (p_i i) p); oa_zero_bot: ∀p:oa_P.oa_leq oa_zero p; oa_one_top: ∀p:oa_P.oa_leq p oa_one; oa_overlap_preserves_meet_: @@ -74,7 +74,7 @@ record OAlgebra : Type2 := { (oa_meet ? { x ∈ BOOL | match x with [ true ⇒ p | false ⇒ q ] | IF_THEN_ELSE_p oa_P p q }); oa_join_split: ∀I:SET.∀p.∀q:I ⇒ oa_P. - oa_overlap p (oa_join I q) = ∃i:I.oa_overlap p (q i); + oa_overlap p (oa_join I q) = (∃i:I.oa_overlap p (q i)); (*oa_base : setoid; 1) enum non e' il nome giusto perche' non e' suriettiva 2) manca (vedere altro capitolo) la "suriettivita'" come immagine di insiemi di oa_base @@ -187,10 +187,11 @@ constructor 1; | constructor 1; (* tenere solo una uguaglianza e usare la proposizione 9.9 per le altre (unicita' degli aggiunti e del simmetrico) *) - [ apply (λp,q. And42 (eq2 ? (or_f_minus_star_ ?? p) (or_f_minus_star_ ?? q)) - (eq2 ? (or_f_minus_ ?? p) (or_f_minus_ ?? q)) - (eq2 ? (or_f_ ?? p) (or_f_ ?? q)) - (eq2 ? (or_f_star_ ?? p) (or_f_star_ ?? q))); + [ apply (λp,q. And42 + (or_f_minus_star_ ?? p = or_f_minus_star_ ?? q) + (or_f_minus_ ?? p = or_f_minus_ ?? q) + (or_f_ ?? p = or_f_ ?? q) + (or_f_star_ ?? p = or_f_star_ ?? q)); | whd; simplify; intros; repeat split; intros; apply refl2; | whd; simplify; intros; cases a; clear a; split; intro a; apply sym1; generalize in match a;assumption; diff --git a/helm/software/matita/contribs/formal_topology/overlap/o-basic_pairs.ma b/helm/software/matita/contribs/formal_topology/overlap/o-basic_pairs.ma index b6d6e1b3d..58725373c 100644 --- a/helm/software/matita/contribs/formal_topology/overlap/o-basic_pairs.ma +++ b/helm/software/matita/contribs/formal_topology/overlap/o-basic_pairs.ma @@ -22,8 +22,8 @@ record Obasic_pair: Type2 ≝ }. (* FIX *) -interpretation "basic pair relation indexed" 'Vdash2 x y c = (Orel c x y). -interpretation "basic pair relation (non applied)" 'Vdash c = (Orel c). +interpretation "o-basic pair relation indexed" 'Vdash2 x y c = (Orel c x y). +interpretation "o-basic pair relation (non applied)" 'Vdash c = (Orel c). alias symbol "eq" = "setoid1 eq". alias symbol "compose" = "category1 composition". @@ -38,8 +38,8 @@ record Orelation_pair (BP1,BP2: Obasic_pair): Type2 ≝ }. (* FIX *) -interpretation "concrete relation" 'concr_rel r = (Oconcr_rel __ r). -interpretation "formal relation" 'form_rel r = (Oform_rel __ r). +interpretation "o-concrete relation" 'concr_rel r = (Oconcr_rel __ r). +interpretation "o-formal relation" 'form_rel r = (Oform_rel __ r). definition Orelation_pair_equality: ∀o1,o2. equivalence_relation2 (Orelation_pair o1 o2). diff --git a/helm/software/matita/contribs/formal_topology/overlap/relations_to_o-algebra.ma b/helm/software/matita/contribs/formal_topology/overlap/relations_to_o-algebra.ma index b3939f90b..af3015eb3 100644 --- a/helm/software/matita/contribs/formal_topology/overlap/relations_to_o-algebra.ma +++ b/helm/software/matita/contribs/formal_topology/overlap/relations_to_o-algebra.ma @@ -15,7 +15,7 @@ include "relations.ma". include "o-algebra.ma". -definition SUBSETS: objs1 SET → OAlgebra. +definition POW': objs1 SET → OAlgebra. intro A; constructor 1; [ apply (Ω \sup A); | apply subseteq; @@ -42,16 +42,16 @@ definition SUBSETS: objs1 SET → OAlgebra. | intros; split; intro; [ cases f; cases x1; exists [apply w1] exists [apply w] assumption; | cases e; cases x; exists; [apply w1] [ assumption | exists; [apply w] assumption]] - | intros; intros 2; cases (f (singleton ? a) ?); + | intros; intros 2; cases (f {(a)} ?); [ exists; [apply a] [assumption | change with (a = a); apply refl1;] | change in x1 with (a = w); change with (mem A a q); apply (. (x1‡#)); assumption]] qed. -definition powerset_of_SUBSETS: ∀A.oa_P (SUBSETS A) → Ω \sup A ≝ λA,x.x. -coercion powerset_of_SUBSETS. +definition powerset_of_POW': ∀A.oa_P (POW' A) → Ω \sup A ≝ λA,x.x. +coercion powerset_of_POW'. -definition orelation_of_relation: ∀o1,o2:REL. arrows1 ? o1 o2 → arrows2 OA (SUBSETS o1) (SUBSETS o2). +definition orelation_of_relation: ∀o1,o2:REL. arrows1 ? o1 o2 → arrows2 OA (POW' o1) (POW' o2). intros; constructor 1; [ constructor 1; @@ -112,7 +112,7 @@ lemma orelation_of_relation_preserves_equality: qed. lemma orelation_of_relation_preserves_identity: - ∀o1:REL. eq2 ? (orelation_of_relation ?? (id1 ? o1)) (id2 OA (SUBSETS o1)). + ∀o1:REL. eq2 ? (orelation_of_relation ?? (id1 ? o1)) (id2 OA (POW' o1)). intros; split; intro; split; whd; intro; [ change with ((∀x. x ♮(id1 REL o1) a1→x∈a) → a1 ∈ a); intros; apply (f a1); change with (a1 = a1); apply refl1; @@ -141,7 +141,7 @@ alias symbol "compose" = "category1 composition". lemma orelation_of_relation_preserves_composition: ∀o1,o2,o3:REL.∀F: arrows1 ? o1 o2.∀G: arrows1 ? o2 o3. orelation_of_relation ?? (G ∘ F) = - comp2 OA (SUBSETS o1) (SUBSETS o2) (SUBSETS o3) + comp2 OA (POW' o1) (POW' o2) (POW' o3) ?? (*(orelation_of_relation ?? F) (orelation_of_relation ?? G)*). [ apply (orelation_of_relation ?? F); | apply (orelation_of_relation ?? G); ] intros; split; intro; split; whd; intro; whd in ⊢ (% → %); intros; @@ -161,9 +161,9 @@ lemma orelation_of_relation_preserves_composition: | cases f1; clear f1; cases x; clear x; apply (f w); assumption;] qed. -definition SUBSETS': carr3 (arrows3 CAT2 (category2_of_category1 REL) OA). +definition POW: carr3 (arrows3 CAT2 (category2_of_category1 REL) OA). constructor 1; - [ apply SUBSETS; + [ apply POW'; | intros; constructor 1; [ apply (orelation_of_relation S T); | intros; apply (orelation_of_relation_preserves_equality S T a a' e); ] @@ -171,22 +171,24 @@ definition SUBSETS': carr3 (arrows3 CAT2 (category2_of_category1 REL) OA). | apply orelation_of_relation_preserves_composition; ] qed. -theorem SUBSETS_faithful: +theorem POW_faithful: ∀S,T.∀f,g:arrows2 (category2_of_category1 REL) S T. - map_arrows2 ?? SUBSETS' ?? f = map_arrows2 ?? SUBSETS' ?? g → f=g. - intros; unfold SUBSETS' in e; simplify in e; cases e; + map_arrows2 ?? POW ?? f = map_arrows2 ?? POW ?? g → f=g. + intros; unfold POW in e; simplify in e; cases e; unfold orelation_of_relation in e3; simplify in e3; clear e e1 e2 e4; - intros 2; lapply (e3 (singleton ? x)); cases Hletin; + intros 2; cases (e3 {(x)}); split; intro; [ lapply (s y); | lapply (s1 y); ] [2,4: exists; [1,3:apply x] split; [1,3: assumption |*: change with (x=x); apply rule #] - |*: cases Hletin1; cases x1; change in f3 with (eq1 ? x w); apply (. f3‡#); assumption;] + |*: cases Hletin; cases x1; change in f3 with (x =_1 w); apply (. f3‡#); assumption;] qed. +interpretation "lifting singl" 'singl x = + (fun11 _ (objs2 (POW _)) (singleton _) x). -theorem SUBSETS_full: ∀S,T.∀f. exT22 ? (λg. map_arrows2 ?? SUBSETS' S T g = f). +theorem POW_full: ∀S,T.∀f. exT22 ? (λg. map_arrows2 ?? POW S T g = f). intros; exists; [ constructor 1; constructor 1; - [ apply (λx:carr S.λy:carr T. y ∈ f (singleton S x)); + [ apply (λx:carr S.λy:carr T. y ∈ f {(x)}); | intros; unfold FunClass_1_OF_carr2; lapply (.= e1‡#); [4: apply mem; |6: apply Hletin;|1,2,3,5: skip] lapply (#‡prop11 ?? f ?? (†e)); [6: apply Hletin; |*:skip ]] diff --git a/helm/software/matita/contribs/formal_topology/overlap/subsets.ma b/helm/software/matita/contribs/formal_topology/overlap/subsets.ma index e6d187216..4152f4852 100644 --- a/helm/software/matita/contribs/formal_topology/overlap/subsets.ma +++ b/helm/software/matita/contribs/formal_topology/overlap/subsets.ma @@ -129,7 +129,7 @@ interpretation "union" 'union U V = (fun21 ___ (union _) U V). (* qua non riesco a mettere set *) definition singleton: ∀A:setoid. unary_morphism1 A (Ω \sup A). intros; constructor 1; - [ apply (λa:A.{b | eq ? a b}); unfold setoid1_of_setoid; simplify; + [ apply (λa:A.{b | a =_0 b}); unfold setoid1_of_setoid; simplify; intros; simplify; split; intro; apply (.= e1);