From: Andrea Asperti Date: Fri, 8 Jun 2012 11:56:12 +0000 (+0000) Subject: move_char.ma X-Git-Tag: make_still_working~1644 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=3fe92cae7c0d955c01ab5c117dc6a728c4500845;p=helm.git move_char.ma -This line, and those below, will be ignored-- A turing/move_char.ma --- diff --git a/matita/matita/lib/turing/move_char.ma b/matita/matita/lib/turing/move_char.ma new file mode 100644 index 000000000..aae21e7a9 --- /dev/null +++ b/matita/matita/lib/turing/move_char.ma @@ -0,0 +1,310 @@ +(* + ||M|| This file is part of HELM, an Hypertextual, Electronic + ||A|| Library of Mathematics, developed at the Computer Science + ||T|| Department of the University of Bologna, Italy. + ||I|| + ||T|| + ||A|| + \ / This file is distributed under the terms of the + \ / GNU General Public License Version 2 + V_____________________________________________________________*) + + +(* MOVE_CHAR RIGHT MACHINE + +Sposta il carattere binario su cui si trova la testina appena prima del primo # alla sua destra. + +Input: +(ls,cs,rs can be empty; # is a parameter) + + ls x cs # rs + ^ +Output: + ls cs x # rs + ^ +Initial state = 〈0,#〉 +Final state = 〈4,#〉 + +*) + +include "turing/basic_machines.ma". +include "turing/if_machine.ma". + +definition mcc_step ≝ λalpha:FinSet.λsep:alpha. + ifTM alpha (test_char ? (λc.¬c==sep)) + (single_finalTM … (seq … (swap_r alpha sep) (move_r ?))) (nop ?) tc_true. + +definition Rmcc_step_true ≝ + λalpha,sep,t1,t2. + ∀a,b,ls,rs. + t1 = midtape alpha (a::ls) b rs → + b ≠ sep ∧ + t2 = mk_tape alpha (a::b::ls) (option_hd ? rs) (tail ? rs). + +definition Rmcc_step_false ≝ + λalpha,sep,t1,t2. + left ? t1 ≠ [] → current alpha t1 ≠ None alpha → + current alpha t1 = Some alpha sep ∧ t2 = t1. + +lemma sem_mcc_step : + ∀alpha,sep. + mcc_step alpha sep ⊨ + [inr … (inl … (inr … start_nop)): Rmcc_step_true alpha sep, Rmcc_step_false alpha sep]. +#alpha #sep + @(acc_sem_if_app … + (sem_test_char …) (sem_seq …(sem_swap_r …) (sem_move_r …)) (sem_nop …)) + [#intape #outtape #tapea whd in ⊢ (%→%→%); + #Htapea * #tapeb * whd in ⊢ (%→%→?); + #Htapeb #Houttape #a #b #ls #rs #Hintape + >Hintape in Htapea; #Htapea cases (Htapea ? (refl …)) -Htapea + #Hbsep #Htapea % [@(\Pf (injective_notb ? false Hbsep))] + @Houttape @Htapeb // + |#intape #outtape #tapea whd in ⊢ (%→%→%); + cases (current alpha intape) + [#_ #_ #_ * #Hfalse @False_ind @Hfalse % + |#c #H #Htapea #_ #_ cases (H c (refl …)) #csep #Hintape % // + lapply (injective_notb ? true csep) -csep #csep >(\P csep) // + ] + ] +qed. + +(* the move_char (variant c) machine *) +definition move_char_r ≝ + λalpha,sep.whileTM alpha (mcc_step alpha sep) (inr … (inl … (inr … start_nop))). + +definition R_move_char_r ≝ + λalpha,sep,t1,t2. + ∀b,a,ls,rs. t1 = midtape alpha (a::ls) b rs → + (b = sep → t2 = t1) ∧ + (∀rs1,rs2.rs = rs1@sep::rs2 → + b ≠ sep → memb ? sep rs1 = false → + t2 = midtape alpha (a::reverse ? rs1@b::ls) sep rs2). + +lemma sem_move_char_r : + ∀alpha,sep. + WRealize alpha (move_char_r alpha sep) (R_move_char_r alpha sep). +#alpha #sep #inc #i #outc #Hloop +lapply (sem_while … (sem_mcc_step alpha sep) inc i outc Hloop) [%] +-Hloop * #t1 * #Hstar @(star_ind_l ??????? Hstar) +[ #tapea whd in ⊢ (% → ?); #H1 #b #a #ls #rs #Htapea + % + [ #Hb >Htapea in H1; >Hb #H1 cases (H1 ??) + [#_ #H2 >H2 % |*: % #H2 normalize in H2; destruct (H2)] + | #rs1 #rs2 #Hrs #Hb #Hrs1 + >Htapea in H1; #H1 cases (H1 ??) + [#Hfalse @False_ind @(absurd ?? Hb) normalize in Hfalse; destruct % + |*:% #H2 normalize in H2; destruct (H2) ] + ] +| #tapea #tapeb #tapec #Hstar1 #HRtrue #IH #HRfalse + lapply (IH HRfalse) -IH whd in ⊢ (%→%); #IH + #a0 #b0 #ls #rs #Htapea cases (Hstar1 … Htapea) + #Ha0 #Htapeb % + [ #Hfalse @False_ind @(absurd ?? Ha0) // + | * + [ #rs2 whd in ⊢ (???%→?); #Hrs #_ #_ (* normalize *) + >Hrs in Htapeb; #Htapeb normalize in Htapeb; + cases (IH … Htapeb) #Houtc #_ >Houtc normalize // + | #r0 #rs0 #rs2 #Hrs #_ #Hrs0 + cut (r0 ≠ sep ∧ memb … sep rs0 = false) + [ % + [ % #Hr0 >Hr0 in Hrs0; >memb_hd #Hfalse destruct + | whd in Hrs0:(??%?); cases (sep==r0) in Hrs0; normalize #Hfalse + [ destruct + | @Hfalse ] + ] + ] * + #Hr0 -Hrs0 #Hrs0 >Hrs in Htapeb; + normalize in ⊢ (%→?); #Htapeb + cases (IH … Htapeb) -IH #_ #IH + >reverse_cons >associative_append @IH // + ] + ] +qed. + +lemma terminate_move_char_r : + ∀alpha,sep.∀t,b,a,ls,rs. t = midtape alpha (a::ls) b rs → + (b = sep ∨ memb ? sep rs = true) → Terminate alpha (move_char_r alpha sep) t. +#alpha #sep #t #b #a #ls #rs #Ht #Hsep +@(terminate_while … (sem_mcc_step alpha sep)) + [% + |generalize in match Hsep; -Hsep + generalize in match Ht; -Ht + generalize in match ls; -ls + generalize in match a; -a + generalize in match b; -b + generalize in match t; -t + elim rs + [#t #b #a #ls #Ht #Hsep % #tinit + whd in ⊢ (%→?); #H @False_ind + cases (H … Ht) #Hb #_ cases Hb #eqb @eqb + cases Hsep // whd in ⊢ ((??%?)→?); #abs destruct + |#r0 #rs0 #Hind #t #b #a #ls #Ht #Hsep % #tinit + whd in ⊢ (%→?); #H + cases (H … Ht) #Hbsep #Htinit + @(Hind … Htinit) cases Hsep + [#Hb @False_ind /2/ | #Hmemb cases (orb_true_l … Hmemb) + [#eqsep %1 >(\P eqsep) // | #H %2 //] + ] +qed. + +(* NO GOOD: we must stop if current = None too!!! *) + +axiom ssem_move_char_r : + ∀alpha,sep. + Realize alpha (move_char_r alpha sep) (R_move_char_r alpha sep). + + +(******************************* move_char_l **********************************) +(* MOVE_CHAR (left) MACHINE + +Sposta il carattere binario su cui si trova la testina appena prima del primo # +alla sua sinistra. + +Input: +(ls,cs,rs can be empty; # is a parameter) + + ls # cs x rs + ^ +Output: + ls # x cs rs + ^ +Initial state = 〈0,#〉 +Final state = 〈4,#〉 + +*) + +include "turing/basic_machines.ma". +include "turing/if_machine.ma". + +definition mcl_step ≝ λalpha:FinSet.λsep:alpha. + ifTM alpha (test_char ? (λc.¬c==sep)) + (single_finalTM … (seq … (swap alpha sep) (move_l ?))) (nop ?) tc_true. + +definition Rmcl_step_true ≝ + λalpha,sep,t1,t2. + ∀a,b,ls,rs. + t1 = midtape alpha ls b (a::rs) → + b ≠ sep ∧ + t2 = mk_tape alpha (tail ? ls) (option_hd ? ls) (a::b::rs). + +definition Rmcl_step_false ≝ + λalpha,sep,t1,t2. + right ? t1 ≠ [] → current alpha t1 ≠ None alpha → + current alpha t1 = Some alpha sep ∧ t2 = t1. + +definition mcls_acc: ∀alpha:FinSet.∀sep:alpha.states ? (mcl_step alpha sep) + ≝ λalpha,sep.inr … (inl … (inr … start_nop)). + +lemma sem_mcl_step : + ∀alpha,sep. + mcl_step alpha sep ⊨ + [mcls_acc alpha sep: Rmcl_step_true alpha sep, Rmcl_step_false alpha sep]. +#alpha #sep +@(acc_sem_if_app … + (sem_test_char …) (sem_seq …(sem_swap …) (sem_move_l …)) (sem_nop …)) + [#intape #outtape #tapea whd in ⊢ (%→%→%); + #Htapea * #tapeb * whd in ⊢ (%→%→?); + #Htapeb #Houttape #a #b #ls #rs #Hintape + >Hintape in Htapea; #Htapea cases (Htapea ? (refl …)) -Htapea + #Hbsep #Htapea % [@(\Pf (injective_notb ? false Hbsep))] + @Houttape @Htapeb // + |#intape #outtape #tapea whd in ⊢ (%→%→%); + cases (current alpha intape) + [#_ #_ #_ * #Hfalse @False_ind @Hfalse % + |#c #H #Htapea #_ #_ cases (H c (refl …)) #csep #Hintape % // + lapply (injective_notb ? true csep) -csep #csep >(\P csep) // + ] + ] +qed. + +(* the move_char (variant left) machine *) +definition move_char_l ≝ + λalpha,sep.whileTM alpha (mcl_step alpha sep) (inr … (inl … (inr … start_nop))). + +definition R_move_char_l ≝ + λalpha,sep,t1,t2. + ∀b,a,ls,rs. t1 = midtape alpha ls b (a::rs) → + (b = sep → t2 = t1) ∧ + (∀ls1,ls2.ls = ls1@sep::ls2 → + b ≠ sep → memb ? sep ls1 = false → + t2 = midtape alpha ls2 sep (a::reverse ? ls1@b::rs)). + +lemma sem_move_char_l : + ∀alpha,sep. + WRealize alpha (move_char_l alpha sep) (R_move_char_l alpha sep). +#alpha #sep #inc #i #outc #Hloop +lapply (sem_while … (sem_mcl_step alpha sep) inc i outc Hloop) [%] +-Hloop * #t1 * #Hstar @(star_ind_l ??????? Hstar) +[ #tapea whd in ⊢ (% → ?); #H1 #b #a #ls #rs #Htapea + % + [ #Hb >Htapea in H1; >Hb #H1 cases (H1 ??) + [#_ #H2 >H2 % |*: % #H2 normalize in H2; destruct (H2) ] + | #rs1 #rs2 #Hrs #Hb #Hrs1 + >Htapea in H1; (* normalize in ⊢ (% → ?); *) #H1 cases (H1 ??) + [ #Hfalse normalize in Hfalse; @False_ind @(absurd ?? Hb) destruct % + |*:% normalize #H2 destruct (H2) ] + ] +| #tapea #tapeb #tapec #Hstar1 #HRtrue #IH #HRfalse + lapply (IH HRfalse) -IH whd in ⊢ (%→%); #IH + #a0 #b0 #ls #rs #Htapea cases (Hstar1 … Htapea) + #Ha0 #Htapeb % + [ #Hfalse @False_ind @(absurd ?? Ha0) // + | * + [ #ls2 whd in ⊢ (???%→?); #Hls #_ #_ + >Hls in Htapeb; #Htapeb normalize in Htapeb; + cases (IH … Htapeb) #Houtc #_ >Houtc normalize // + | #l0 #ls0 #ls2 #Hls #_ #Hls0 + cut (l0 ≠ sep ∧ memb … sep ls0 = false) + [ % + [ % #Hl0 >Hl0 in Hls0; >memb_hd #Hfalse destruct + | whd in Hls0:(??%?); cases (sep==l0) in Hls0; normalize #Hfalse + [ destruct + | @Hfalse ] + ] + ] * + #Hl0 -Hls0 #Hls0 >Hls in Htapeb; + normalize in ⊢ (%→?); #Htapeb + cases (IH … Htapeb) -IH #_ #IH + >reverse_cons >associative_append @IH // + ] + ] +qed. + +lemma terminate_move_char_l : + ∀alpha,sep.∀t,b,a,ls,rs. t = midtape alpha ls b (a::rs) → + (b = sep ∨ memb ? sep ls = true) → Terminate alpha (move_char_l alpha sep) t. +#alpha #sep #t #b #a #ls #rs #Ht #Hsep +@(terminate_while … (sem_mcl_step alpha sep)) + [% + |generalize in match Hsep; -Hsep + generalize in match Ht; -Ht + generalize in match rs; -rs + generalize in match a; -a + generalize in match b; -b + generalize in match t; -t + elim ls + [#t #b #a #rs #Ht #Hsep % #tinit + whd in ⊢ (%→?); #H @False_ind + cases (H … Ht) #Hb #_ cases Hb #eqb @eqb + cases Hsep // whd in ⊢ ((??%?)→?); #abs destruct + |#l0 #ls0 #Hind #t #b #a #rs #Ht #Hsep % #tinit + whd in ⊢ (%→?); #H + cases (H … Ht) #Hbsep #Htinit + @(Hind … Htinit) cases Hsep + [#Hb @False_ind /2/ | #Hmemb cases (orb_true_l … Hmemb) + [#eqsep %1 >(\P eqsep) // | #H %2 //] + ] +qed. + +(* NO GOOD: we must stop if current = None too!!! +lemma ssem_move_char_l : + ∀alpha,sep. + Realize alpha (move_char_l alpha sep) (R_move_char_l alpha sep). +#alpha #sep * +[ %{5} % [| % [whd in ⊢ (??%?); + @WRealize_to_Realize // @terminate_move_char_l +*) + +axiom ssem_move_char_l : + ∀alpha,sep. + Realize alpha (move_char_l alpha sep) (R_move_char_l alpha sep).