From: Claudio Sacerdoti Coen Date: Fri, 8 Jul 2005 12:17:01 +0000 (+0000) Subject: Elim generalized to saturate its argument. X-Git-Tag: pre_notation~72 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=42e7448a9e2eb9c44a336f0f3e56c9249f46fcc6;p=helm.git Elim generalized to saturate its argument. --- diff --git a/helm/matita/tests/elim.ma b/helm/matita/tests/elim.ma index 1623ff030..d7dd320e2 100644 --- a/helm/matita/tests/elim.ma +++ b/helm/matita/tests/elim.ma @@ -22,6 +22,9 @@ inductive stupidtype: Set \def alias symbol "eq" (instance 0) = "leibnitz's equality". alias symbol "exists" (instance 0) = "exists". alias symbol "or" (instance 0) = "logical or". +alias num (instance 0) = "natural number". +alias id "True" = "cic:/Coq/Init/Logic/True.ind#xpointer(1/1)". +alias id "refl_equal" = "cic:/Coq/Init/Logic/eq.ind#xpointer(1/1/1)". theorem serious: \forall a:stupidtype. @@ -38,4 +41,14 @@ clear H.clear H1.clear a.right. exists.exact e2.exists.exact e1.reflexivity. clear H.clear a.left.right. exists.exact e3.reflexivity. -qed. \ No newline at end of file +qed. + +theorem t: 0=0 \to stupidtype. + intros; constructor 1. +qed. + +(* In this test "elim t" should open a new goal 0=0 and put it in the *) +(* goallist so that the THEN tactical closes it using reflexivity. *) +theorem foo: let ax \def refl_equal ? 0 in t ax = t ax. + elim t; reflexivity. +qed.