From: acondolu Date: Mon, 4 Jun 2018 23:31:39 +0000 (+0200) Subject: Thoughts on sigma-separation and a good sufficient condition X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=455ac21aa68fe367865c41c1883ae594c0c04b78;p=fireball-separation.git Thoughts on sigma-separation and a good sufficient condition --- diff --git a/ac_notes.tex b/ac_notes.tex index 498812e..d8ff891 100644 --- a/ac_notes.tex +++ b/ac_notes.tex @@ -13,12 +13,12 @@ \maketitle -\newcommand{\Prgm}[2]{[#1\Comma #2]} +\renewcommand{\Lam}[2]{\lambda#1.\, \{\!\!\{#2\}\!\!\}} \subparagraph{Syntax} \[\begin{array}{lll} - \tm, \tmtwo & \ddef & \var \mid \tm\,\tmtwo \mid \Lam\var \Prgm{\tm}{\vec\tm} \\ - n & \ddef & \Lam\var \Prgm{n}{\vec n} \mid \var\,\vec n \\ + \tm, \tmtwo & \ddef & \var \mid \tm\,\tmtwo \mid \Lam\var{\tm\Comma\vec\tm} \\ + n & \ddef & \Lam\var{n\Comma\vec n} \mid \var\,\vec n \\ \\ C & \ddef & \Box \mid C\,\tm \mid \tm\,C \\ P & \ddef & \vec\tm \Comma \Box \Comma \vec\tm \mid \vec\tm \Comma C[\Lam\var P] \Comma \vec\tm \\ @@ -26,9 +26,9 @@ \subparagraph{Reduction} \[\begin{array}{lll} - P[C[(\Lam\var \Prgm\tm{\vec\tm})\,\tmtwo]] & \Red{}{\var\in \Prgm\tm{\vec\tm}} & + P[C[(\Lam\var{\tm\Comma\vec\tm})\,\tmtwo]] & \Red{}{\var\in \tm,\vec\tm} & P[C[\tm\Subst\var\tmtwo]\Comma \vec\tm\Subst\var\tmtwo]\\ - P[C[(\Lam\var \Prgm\tm{\vec\tm})\,\tmtwo]] & \Red{}{\var\not\in\Prgm\tm{\vec\tm}} & + P[C[(\Lam\var{\tm\Comma\vec\tm})\,\tmtwo]] & \Red{}{\var\not\in\tm,\vec\tm} & P[C[\tm] \Comma \vec\tm\Comma\tmtwo]\\ \end{array}\] @@ -38,6 +38,77 @@ \item Ogni strategia e' perpetua! \end{itemize} +\clearpage +\[ E ::= \Box \mid E\, t \mid t\, E \mid \Lam\var{\vec t\Comma E \Comma \vec t} \] + +\begin{definition}[Unlockable variable] + A variable $\var$ is unlockable in a context $E$ if: + \begin{itemize} + \item it is not bound in $E$, or + \item $E[\cdot] = E'[\vartwo\, \vec\tm \, (\Lam{\cdots\var\cdots}{\vec\tmtwo \Comma E'[\cdot]\Comma\vec\tmthree})]$ + and $\vartwo$ is unlockable in $E'$. + \end{itemize} +\end{definition} + +\begin{lemma}[Elimination of unlockable variables] + For every set of terms $\tm_1, \ldots, \tm_n$ + there exist terms $\tm'_1, \ldots, \tm'_n$ + without unlockable variables and + such that $\tm_i$ is unseparable from $\tm'_i$. +\end{lemma} + +{\color{red} + Non esattamente! + I termini hanno gli stessi path, e le variabili unlockable + del secondo sono iin path virtuali nel primo + + Piu' esattamente, hai portato il garbage che vuoi far divergere + al top level. +} + +\begin{definition} + Transformation removing an unlockable variable bound at position $\pi$: + \[\tau_{n::\pi}[\alpha] := \lambda x_1..x_n\,x.\, \alpha\,\vec x\,(\tau_\pi[x])\] +\end{definition} + +{\color{red} +Warning! It creates unlockable variables, but in positions whose paths were +previously virtual} + +\begin{lemma} + For every semi-$\sigma$-separable $\tm$ and $\tmtwo$, + there exist $\sigma$ s.t $\tm\sigma = \ldots \Comma C[i] \Comma \ldots$ + and $i \not\preceq \tmtwo\sigma$ (and therefore, $\tm\sigma$ and $\tmtwo\sigma$ + are semi-$\sigma$-separable by ???). +\end{lemma} + +\begin{theorem} + $\tm$ and $\tmtwo$ are semi-$\sigma$-separable if \ldots +\end{theorem} + +\clearpage +\newcommand{\HeadOf}[1]{\operatorname{hd}(#1)} +\newcommand{\ArityOf}[1]{\operatorname{len}(#1)} +\begin{itemize} + \item \textbf{A sufficient condition for separability:} + \item \textbf{Goal.} semi-$\sigma$-separating $\tm$ from $\tmtwo$ (both inerts with pacmans/$\Omega$). + \item Let $U \defeq \{\tmtwo' \mid \tmtwo'\preceq\tmtwo \land \HeadOf{\tmtwo'}=\HeadOf{\tm} + \land \ArityOf{\tmtwo'} \leq \ArityOf{\tm}\} = \{u_1, \ldots, u_N\}$. + \item \textbf{Theorem.} The problem is separable if there exist $\pi_1\ldots\pi_N$ + $\eta$-difference paths between + $\tm$ and $\tmtwo_1\ldots\tmtwo_N$ that are pairwise compatible on $\tm$ (note: also between themselves). + \item \textbf{Definition ($\eta$-difference path).} + \item \textbf{Definition ($\sqsubset$).} Initial fragments of paths + \item \textbf{Definition (Compatible paths).} ``$\pi_j$ is compatible with $\pi_i$ on $\tm$'' iff: + \[\forall\pi_i'\sqsubseteq\pi_i\text{ s.t. }\HeadOf{\pi_i'[t]} = \HeadOf{t} + \text{, then }\pi_j[\pi_i'[t]] \neq \Omega.\] + \item Resta da dimostrare che esista un modo di pre-processare i termini nostri + e ottenere degli inerti scelti. +\end{itemize} + + + + \clearpage \section*{Syntactic Condition}