From: Ferruccio Guidi Date: Fri, 25 Jan 2013 12:12:29 +0000 (+0000) Subject: - paths and left residuals: forth case of the equivalence proved! X-Git-Tag: make_still_working~1311 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=4945b61f415cf13ac87d0df288d9f8a9b3930b5e;p=helm.git - paths and left residuals: forth case of the equivalence proved! The proof is now complete!! --- diff --git a/matita/matita/contribs/lambda/background/preamble.ma b/matita/matita/contribs/lambda/background/preamble.ma index 01874eb72..769ffa5a3 100644 --- a/matita/matita/contribs/lambda/background/preamble.ma +++ b/matita/matita/contribs/lambda/background/preamble.ma @@ -87,6 +87,10 @@ notation > "◊" non associative with precedence 90 for @{'nil}. +lemma list_inv: ∀A. ∀l:list A. ◊ = l ∨ ∃∃a0,l0. a0 :: l0 = l. +#A * /2 width=1/ /3 width=3/ +qed-. + definition map_cons: ∀A. A → list (list A) → list (list A) ≝ λA,a. map … (cons … a). diff --git a/matita/matita/contribs/lambda/paths/labeled_st_computation.ma b/matita/matita/contribs/lambda/paths/labeled_st_computation.ma index 35ece1775..eb5e5dc64 100644 --- a/matita/matita/contribs/lambda/paths/labeled_st_computation.ma +++ b/matita/matita/contribs/lambda/paths/labeled_st_computation.ma @@ -234,11 +234,10 @@ lapply (pl_sts_fwd_is_standard … H) ] qed-. -axiom pl_sred_is_standard_pl_st: ∀p,M,M2. M ↦[p] M2 → ∀F. ⇓F = M → +lemma pl_sred_is_standard_pl_st: ∀p,M,M2. M ↦[p] M2 → ∀F. ⇓F = M → ∀s,M1.{⊤}⇑ M1 Ⓡ↦*[s] F → is_standard (s@(p::◊)) → ∃∃F2. F Ⓡ↦[p] F2 & ⇓F2 = M2. -(* #p #M #M2 #H elim H -p -M -M2 [ #B #A #F #HF #s #M1 #HM1 #Hs lapply (is_standard_fwd_is_whd … Hs) -Hs // #Hs @@ -249,12 +248,12 @@ axiom pl_sred_is_standard_pl_st: ∀p,M,M2. M ↦[p] M2 → ∀F. ⇓F = M → elim (pl_sts_fwd_abst_dx … HM1) #r1 #r2 #Hr1 #H destruct elim (pl_sts_inv_trans … HM1) -HM1 #F0 #HM1 #HT elim (pl_sts_inv_pl_sreds … HM1 ?) // #M0 #_ #H -M1 -Hr1 destruct - elim (pl_sts_inv_rc_abst_dx … HT ??) -HT [3: // |2: skip ] #b0 #T0 #HT02 #H (**) (* simplify line *) - elim (boolean_inv_abst … (sym_eq … H)) -H #A0 #_ #H #_ -b0 -M0 destruct >associative_append in Hs; #Hs lapply (is_standard_fwd_append_dx … Hs) -r1 <(map_cons_append … r2 (p::◊)) #H - lapply (is_standard_inv_compatible_rc … H) -H #H + lapply (is_standard_inv_compatible_rc … H) -H #Hp + elim (pl_sts_inv_rc_abst_dx … HT ??) -HT [3: // |2: skip ] #b0 #T0 #HT02 #H (**) (* simplify line *) + elim (boolean_inv_abst … (sym_eq … H)) -H #A0 #_ #H #_ -b0 -M0 destruct elim (IHA12 … HT02 ?) // -r2 -A0 -IHA12 #F2 #HF2 #H @(ex2_intro … ({⊥}𝛌.F2)) normalize // /2 width=1/ (**) (* auto needs some help here *) | #p #B1 #B2 #A #_ #IHB12 #F #HF #s #M1 #HM1 #Hs @@ -262,17 +261,53 @@ axiom pl_sred_is_standard_pl_st: ∀p,M,M2. M ↦[p] M2 → ∀F. ⇓F = M → elim (pl_sts_fwd_appl_dx … HM1) #r1 #r2 #r3 #Hr1 #_ #H destruct elim (pl_sts_inv_trans … HM1) -HM1 #F0 #HM1 #HT elim (pl_sts_inv_pl_sreds … HM1 ?) // #M0 #_ #H -M1 -Hr1 destruct - elim (pl_sts_fwd_dx_sn_appl_dx … HT) -HT #b0 #V0 #T0 #T1 #HV0 #_ #H -T1 - elim (boolean_inv_appl … (sym_eq … H)) -H #B0 #A0 #_ #H #_ #_ -b0 -M0 -T0 destruct >associative_append in Hs; #Hs - lapply (is_standard_fwd_append_dx … Hs) -r1 #Hs - >associative_append in Hs; #Hs - lapply (is_standard_fwd_append_dx … Hs) -r2 + lapply (is_standard_fwd_append_dx … Hs) -r1 + >associative_append #Hs + lapply (is_standard_fwd_append_dx … Hs) -Hs <(map_cons_append … r3 (p::◊)) #H - lapply (is_standard_inv_compatible_sn … H) -H #H - elim (IHB12 … HV0 ?) // -r3 -B0 -IHB12 #F2 #HF2 #H - @(ex2_intro … ({⊥}@F2.{⊥}⇕T)) normalize // /2 width=1/ (**) (* auto needs some help here *) -*) + lapply (is_standard_inv_compatible_sn … H) -H #Hp + elim (pl_sts_fwd_dx_sn_appl_dx … HT) -HT #b0 #V0 #T0 #T1 #HV0 #_ #H -T1 -r2 + elim (boolean_inv_appl … (sym_eq … H)) -H #B0 #A0 #_ #H #_ #_ -b0 -M0 -T0 destruct + elim (IHB12 … HV0 ?) // -r3 -B0 -IHB12 #G2 #HG2 #H + @(ex2_intro … ({⊥}@G2.{⊥}⇕T)) normalize // /2 width=1/ (**) (* auto needs some help here *) +| #p #B #A1 #A2 #_ #IHA12 #F #HF #s #M1 #HM1 #Hs + elim (carrier_inv_appl … HF) -HF #b #V #T #HV #HT #HF destruct + elim (pl_sts_fwd_appl_dx … HM1) #r1 #r2 #r3 #Hr1 #Hr2 #H destruct + elim (pl_sts_inv_trans … HM1) -HM1 #F0 #HM1 #HT + elim (pl_sts_inv_pl_sreds … HM1 ?) // #M0 #_ #H -M1 -Hr1 destruct + >associative_append in Hs; #Hs + lapply (is_standard_fwd_append_dx … Hs) -r1 + >associative_append #Hs + elim (list_inv … r3) + [ #H destruct + elim (in_whd_or_in_inner p) #Hp + [ lapply (is_standard_fwd_is_whd … Hs) -Hs /2 width=1/ -Hp #Hs + lapply (is_whd_inv_dx … Hs) -Hs #H + lapply (is_whd_is_inner_inv … Hr2) -Hr2 // -H #H destruct + lapply (pl_sts_inv_nil … HT ?) -HT // #H + elim (boolean_inv_appl … H) -H #B0 #A0 #_ #_ #H #_ -M0 -B0 destruct + elim (IHA12 … A0 ??) -IHA12 [3,5,6: // |2,4: skip ] (* simplify line *) + #F2 #HF2 #H + @(ex2_intro … ({b}@V.F2)) normalize // /2 width=1/ (**) (* auto needs some help here *) + | <(map_cons_append … r2 (p::◊)) in Hs; #H + lapply (is_standard_inv_compatible_dx … H ?) -H /3 width=1/ -Hp #Hp + >append_nil in HT; #HT + elim (pl_sts_inv_dx_appl_dx … HT ??) -HT [3: // |2: skip ] (* simplify line *) + #T0 #HT0 #H + elim (boolean_inv_appl … (sym_eq … H)) -H #B0 #A0 #_ #_ #H #_ -M0 -B0 destruct + elim (IHA12 … HT0 ?) // -r2 -A0 -IHA12 #F2 #HF2 #H + @(ex2_intro … ({b}@V.F2)) normalize // /2 width=1/ (**) (* auto needs some help here *) + ] + | -IHA12 -Hr2 -M0 * #q #r #H destruct + lapply (is_standard_fwd_append_dx … Hs) -r2 #Hs + lapply (is_standard_fwd_sle … Hs) -r #H + elim (sle_inv_sn … H ??) -H [3: // |2: skip ] (**) (* simplify line *) + #q0 #_ #H destruct + ] +] +qed-. + theorem pl_sreds_is_standard_pl_sts: ∀s,M1,M2. M1 ↦*[s] M2 → is_standard s → ∃∃F2. {⊤}⇑ M1 Ⓡ↦*[s] F2 & ⇓F2 = M2. #s #M1 #M2 #H @(lstar_ind_r … s M2 H) -s -M2 /2 width=3/ diff --git a/matita/matita/contribs/lambda/paths/trace.ma b/matita/matita/contribs/lambda/paths/trace.ma index d92d25b9b..3fdcef3f2 100644 --- a/matita/matita/contribs/lambda/paths/trace.ma +++ b/matita/matita/contribs/lambda/paths/trace.ma @@ -52,6 +52,11 @@ lemma is_whd_append: ∀r. is_whd r → ∀s. is_whd s → is_whd (r@s). /2 width=1 by All_append/ qed. +lemma is_whd_inv_dx: ∀s. is_whd (dx:::s) → is_whd s. +#s elim s -s // +#p #s #IHs * * #_ /3 width=1/ +qed-. + lemma is_whd_inv_append: ∀r,s. is_whd (r@s) → is_whd r ∧ is_whd s. /2 width=1 by All_inv_append/ qed-. @@ -59,6 +64,10 @@ qed-. (* Note: an "inner" computation contracts just redexes not in the whd *) definition is_inner: predicate trace ≝ All … in_inner. +lemma is_inner_append: ∀r. is_inner r → ∀s. is_inner s → is_inner (r@s). +/2 width=1 by All_append/ +qed. + lemma is_whd_is_inner_inv: ∀s. is_whd s → is_inner s → ◊ = s. * // #p #s * #H1p #_ * #H2p #_ elim (H2p ?) -H2p // qed-.