From: Claudio Sacerdoti Coen Date: Sun, 18 May 2008 17:46:38 +0000 (+0000) Subject: Dummy dependent types are no longer cleaned in inductive type arities. X-Git-Tag: make_still_working~5168 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=4ab6e0f7956b870227c6986ea800c1c6a3332565;p=helm.git Dummy dependent types are no longer cleaned in inductive type arities. --- diff --git a/helm/software/matita/library/nat/gcd.ma b/helm/software/matita/library/nat/gcd.ma index 3db29f622..3771bb6e5 100644 --- a/helm/software/matita/library/nat/gcd.ma +++ b/helm/software/matita/library/nat/gcd.ma @@ -55,7 +55,7 @@ qed. theorem divides_mod_to_divides: \forall p,m,n:nat. O < n \to p \divides (m \mod n) \to p \divides n \to p \divides m. intros.elim H1.elim H2. -apply (witness p m ((n1*(m / n))+n2)). +apply (witness p m ((n2*(m / n))+n1)). rewrite > distr_times_plus. rewrite < H3. rewrite < assoc_times. @@ -652,9 +652,9 @@ elim H2. generalize in match H1. rewrite > H3. intro. -cut (O < n2) - [elim (gcd_times_SO_to_gcd_SO n n n2 ? ? H4) - [cut (gcd n (n*n2) = n) +cut (O < n1) + [elim (gcd_times_SO_to_gcd_SO n n n1 ? ? H4) + [cut (gcd n (n*n1) = n) [apply (lt_to_not_eq (S O) n) [assumption|rewrite < H4.assumption] |apply gcd_n_times_nm.assumption @@ -662,7 +662,7 @@ cut (O < n2) |apply (trans_lt ? (S O))[apply le_n|assumption] |assumption ] - |elim (le_to_or_lt_eq O n2 (le_O_n n2)); + |elim (le_to_or_lt_eq O n1 (le_O_n n1)); [assumption |apply False_ind. apply (le_to_not_lt n (S O)) @@ -670,7 +670,7 @@ cut (O < n2) apply divides_to_le [rewrite > H4.apply lt_O_S |apply divides_d_gcd - [apply (witness ? ? n2).reflexivity + [apply (witness ? ? n1).reflexivity |apply divides_n_n ] ] @@ -784,7 +784,7 @@ cut (n \divides p \lor n \ndivides p) rewrite < (assoc_times q). rewrite < (sym_times n). rewrite < distr_times_minus. - apply (witness ? ? (n2*a1-q*a)).reflexivity + apply (witness ? ? (n1*a1-q*a)).reflexivity ](* end second case *) |rewrite < (prime_to_gcd_SO n p) [apply eq_minus_gcd|assumption|assumption @@ -926,7 +926,7 @@ rewrite > H4 in H2. elim (divides_times_to_divides ? ? ? H H2) [apply False_ind.apply H1.assumption |elim H5. - apply (witness ? ? n1). + apply (witness ? ? n2). rewrite > sym_times in ⊢ (? ? ? (? % ?)). rewrite > assoc_times. rewrite < H6.assumption