From: Enrico Tassi Date: Tue, 10 Jun 2008 11:23:59 +0000 (+0000) Subject: lebesgue proved X-Git-Tag: make_still_working~5045 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=5070f476ff80ee53fe444d284f9e7587a37022f4;p=helm.git lebesgue proved --- diff --git a/helm/software/matita/contribs/dama/dama/cprop_connectives.ma b/helm/software/matita/contribs/dama/dama/cprop_connectives.ma index 91a2335c7..21c10a4e1 100644 --- a/helm/software/matita/contribs/dama/dama/cprop_connectives.ma +++ b/helm/software/matita/contribs/dama/dama/cprop_connectives.ma @@ -25,11 +25,51 @@ inductive And (A,B:CProp) : CProp ≝ interpretation "constructive and" 'and x y = (And x y). +inductive And3 (A,B,C:CProp) : CProp ≝ + | Conj3 : A → B → C → And3 A B C. + +notation < "a ∧ b ∧ c" left associative with precedence 60 for @{'and3 $a $b $c}. + +interpretation "constructive ternary and" 'and3 x y z = (Conj3 x y z). + +inductive And4 (A,B,C:CProp) : CProp ≝ + | Conj4 : A → B → C → And4 A B C. + +notation < "a ∧ b ∧ c ∧ d" left associative with precedence 60 for @{'and3 $a $b $c $d}. + +interpretation "constructive quaternary and" 'and4 x y z t = (Conj4 x y z t). + inductive exT (A:Type) (P:A→CProp) : CProp ≝ ex_introT: ∀w:A. P w → exT A P. interpretation "CProp exists" 'exists \eta.x = (exT _ x). +inductive exT23 (A:Type) (P:A→CProp) (Q:A→CProp) (R:A→A→CProp) : CProp ≝ + ex_introT23: ∀w,p:A. P w → Q p → R w p → exT23 A P Q R. + +notation < "'fst' \nbsp x" non associative with precedence 50 for @{'pi1 $x}. +notation < "'snd' \nbsp x" non associative with precedence 50 for @{'pi2 $x}. +notation > "'fst' x" non associative with precedence 50 for @{'pi1 $x}. +notation > "'snd' x" non associative with precedence 50 for @{'pi2 $x}. +notation < "'fst' \nbsp x \nbsp y" non associative with precedence 50 for @{'pi12 $x $y}. +notation < "'snd' \nbsp x \nbsp y" non associative with precedence 50 for @{'pi22 $x $y}. + +definition pi1exT ≝ λA,P.λx:exT A P.match x with [ex_introT x _ ⇒ x]. + +interpretation "exT fst" 'pi1 x = (pi1exT _ _ x). +interpretation "exT fst 2" 'pi12 x y = (pi1exT _ _ x y). + +definition pi1exT23 ≝ + λA,P,Q,R.λx:exT23 A P Q R.match x with [ex_introT23 x _ _ _ _ ⇒ x]. +definition pi2exT23 ≝ + λA,P,Q,R.λx:exT23 A P Q R.match x with [ex_introT23 _ x _ _ _ ⇒ x]. + +interpretation "exT2 fst" 'pi1 x = (pi1exT23 _ _ _ _ x). +interpretation "exT2 snd" 'pi2 x = (pi2exT23 _ _ _ _ x). +interpretation "exT2 fst 2" 'pi12 x y = (pi1exT23 _ _ _ _ x y). +interpretation "exT2 snd 2" 'pi22 x y = (pi2exT23 _ _ _ _ x y). + + definition Not : CProp → Prop ≝ λx:CProp.x → False. interpretation "constructive not" 'not x = (Not x). diff --git a/helm/software/matita/contribs/dama/dama/lebesgue.ma b/helm/software/matita/contribs/dama/dama/lebesgue.ma index 1b34801d2..bab1e26fa 100644 --- a/helm/software/matita/contribs/dama/dama/lebesgue.ma +++ b/helm/software/matita/contribs/dama/dama/lebesgue.ma @@ -16,20 +16,30 @@ include "sandwich.ma". include "property_exhaustivity.ma". -lemma foo: +lemma order_converges_bigger_lowsegment: ∀C:ordered_set. ∀a:sequence C.∀l,u:C.∀H:∀i:nat.a i ∈ [l,u]. ∀x:C.∀p:a order_converges x. - ∀j.l ≤ (match p with [ex_introT xi _ ⇒ xi] j). -intros; cases p; simplify; cases H1; clear H1; cases H2; clear H2; -cases (H3 j); cases H1; clear H3 H1; clear H4 H6; cases H5; clear H5; -cases H2; clear H2; intro; cases (H5 ? H2); -cases (H (w2+j)); apply (H8 H6); + ∀j.l ≤ (fst p) j. +intros; cases p; clear p; simplify; cases H1; clear H1; cases H2; clear H2; +cases (H3 j); clear H3; cases H2; cases H7; clear H2 H7; +intro H2; cases (H8 ? H2); +cases (H (w1+j)); apply (H12 H7); +qed. + +lemma order_converges_smaller_upsegment: + ∀C:ordered_set. + ∀a:sequence C.∀l,u:C.∀H:∀i:nat.a i ∈ [l,u]. + ∀x:C.∀p:a order_converges x. + ∀j.(snd p) j ≤ u. +intros; cases p; clear p; simplify; cases H1; clear H1; cases H2; clear H2; +cases (H3 j); clear H3; cases H2; cases H7; clear H2 H7; +intro H2; cases (H10 ? H2); +cases (H (w1+j)); apply (H11 H7); qed. - (* Theorem 3.10 *) -theorem lebesgue: +theorem lebesgue_oc: ∀C:ordered_uniform_space. (∀l,u:C.order_continuity {[l,u]}) → ∀a:sequence C.∀l,u:C.∀H:∀i:nat.a i ∈ [l,u]. @@ -41,15 +51,41 @@ theorem lebesgue: (segment_ordered_uniform_space C l u)) (λn.sig_in C (λx.x∈[l,u]) (a n) (H n)) (sig_in ?? x h). -intros; cases H2 (xi H4); cases H4 (yi H5); cases H5; clear H4 H5; -cases H3; cases H5; cases H4; clear H3 H4 H5 H2; +intros; +generalize in match (order_converges_bigger_lowsegment ???? H1 ? H2); +generalize in match (order_converges_smaller_upsegment ???? H1 ? H2); +cases H2 (xi yi Hx Hy Hxy); clear H2; simplify in ⊢ (% → % → ?); intros; +cut (∀i.xi i ∈ [l,u]) as Hxi; [2: + intros; split; [2:apply H3] cases (Hxy i) (H5 _); cases H5 (H7 _); + apply (le_transitive ???? (H7 0)); simplify; + cases (H1 i); assumption;] clear H3; +cut (∀i.yi i ∈ [l,u]) as Hyi; [2: + intros; split; [apply H2] cases (Hxy i) (_ H5); cases H5 (H7 _); + apply (le_transitive ????? (H7 0)); simplify; + cases (H1 i); assumption;] clear H2; split; -[2: intro h; - cases (H l u (λn:nat.sig_in ?? (a n) (H1 n)) (sig_in ?? x h)); - +[1: cases Hx; cases H3; cases Hy; cases H7; split; + [1: apply (le_transitive ???? (H8 0)); cases (Hyi 0); assumption + |2: apply (le_transitive ????? (H4 0)); cases (Hxi 0); assumption] +|2: intros 3 (h); + letin X ≝ (sig_in ?? x h); + letin Xi ≝ (λn.sig_in ?? (xi n) (Hxi n)); + letin Yi ≝ (λn.sig_in ?? (yi n) (Hyi n)); + letin Ai ≝ (λn:nat.sig_in ?? (a n) (H1 n)); + apply (sandwich {[l,u]} X Xi Yi Ai); try assumption; + [1: intro j; cases (Hxy j); cases H3; cases H4; split; + [apply (H5 0);|apply (H7 0)] + |2: cases (H l u Xi X) (Ux Uy); apply Ux; cases Hx; split; [apply H3;] + cases H4; split; [apply H5] intros (y Hy);cases (H6 (fst y) Hy); + exists [apply w] apply H7; + |3: cases (H l u Yi X) (Ux Uy); apply Uy; cases Hy; split; [apply H3;] + cases H4; split; [apply H5] intros (y Hy);cases (H6 (fst y) Hy); + exists [apply w] apply H7;]] +qed. + (* Theorem 3.9 *) -theorem lebesgue: +theorem lebesgue_se: ∀C:ordered_uniform_space.property_sigma C → (∀l,u:C.exhaustive {[l,u]}) → ∀a:sequence C.∀l,u:C.∀H:∀i:nat.a i ∈ [l,u]. @@ -61,22 +97,34 @@ theorem lebesgue: (segment_ordered_uniform_space C l u)) (λn.sig_in C (λx.x∈[l,u]) (a n) (H n)) (sig_in ?? x h). -intros; cases H3 (xi H4); cases H4 (yi H5); cases H5; cases H6; cases H8; -cases H9; cases H10; cases H11; clear H3 H4 H5 H6 H8 H9 H10 H11 H15 H16; -lapply (uparrow_upperlocated ? xi x)as Ux;[2: split; assumption] -lapply (downarrow_lowerlocated ? yi x)as Uy;[2: split; assumption] -cases (restrict_uniform_convergence ? H ?? (H1 l u) (λn:nat.sig_in ?? (a n) (H2 n)) x); -[ split; assumption] -split; simplify; - [1: intro; cases (H7 n); cases H3; - - - lapply (sandwich ? x xi yi a ); - [2: intro; cases (H7 i); cases H3; cases H4; split[apply (H5 0)|apply (H8 0)] - |3: intros 2; - cases (restrict_uniform_convergence ? H ?? (H1 l u) ? x); - [1: - -lapply (restrict_uniform_convergence ? H ?? (H1 l u) - (λn:nat.sig_in ?? (a n) (H2 n)) x); - [2:split; assumption] \ No newline at end of file +intros (C S); +generalize in match (order_converges_bigger_lowsegment ???? H1 ? H2); +generalize in match (order_converges_smaller_upsegment ???? H1 ? H2); +cases H2 (xi yi Hx Hy Hxy); clear H2; simplify in ⊢ (% → % → ?); intros; +cut (∀i.xi i ∈ [l,u]) as Hxi; [2: + intros; split; [2:apply H3] cases (Hxy i) (H5 _); cases H5 (H7 _); + apply (le_transitive ???? (H7 0)); simplify; + cases (H1 i); assumption;] clear H3; +cut (∀i.yi i ∈ [l,u]) as Hyi; [2: + intros; split; [apply H2] cases (Hxy i) (_ H5); cases H5 (H7 _); + apply (le_transitive ????? (H7 0)); simplify; + cases (H1 i); assumption;] clear H2; +split; +[1: cases Hx; cases H3; cases Hy; cases H7; split; + [1: apply (le_transitive ???? (H8 0)); cases (Hyi 0); assumption + |2: apply (le_transitive ????? (H4 0)); cases (Hxi 0); assumption] +|2: intros 3; + lapply (uparrow_upperlocated ? xi x Hx)as Ux; + lapply (downarrow_lowerlocated ? yi x Hy)as Uy; + letin X ≝ (sig_in ?? x h); + letin Xi ≝ (λn.sig_in ?? (xi n) (Hxi n)); + letin Yi ≝ (λn.sig_in ?? (yi n) (Hyi n)); + letin Ai ≝ (λn:nat.sig_in ?? (a n) (H1 n)); + apply (sandwich {[l,u]} X Xi Yi Ai); try assumption; + [1: intro j; cases (Hxy j); cases H3; cases H4; split; + [apply (H5 0);|apply (H7 0)] + |2: cases (restrict_uniform_convergence_uparrow ? S ?? (H l u) Xi x Hx); + apply (H4 h); + |3: cases (restrict_uniform_convergence_downarrow ? S ?? (H l u) Yi x Hy); + apply (H4 h);]] +qed. diff --git a/helm/software/matita/contribs/dama/dama/property_exhaustivity.ma b/helm/software/matita/contribs/dama/dama/property_exhaustivity.ma index b9bb51e3b..cf3a5b057 100644 --- a/helm/software/matita/contribs/dama/dama/property_exhaustivity.ma +++ b/helm/software/matita/contribs/dama/dama/property_exhaustivity.ma @@ -39,6 +39,14 @@ intros; cases H (Ha Hx); split [apply Ha] cases Hx; split; [apply H1] intros; cases (H2 (fst y) H3); exists [apply w] assumption; qed. + +lemma segment_preserves_downarrow: + ∀C:ordered_set.∀l,u:C.∀a:sequence {[l,u]}.∀x,h. + (λn.fst (a n)) ↓ x → a ↓ (sig_in ?? x h). +intros; cases H (Ha Hx); split [apply Ha] cases Hx; +split; [apply H1] intros; +cases (H2 (fst y) H3); exists [apply w] assumption; +qed. (* Fact 2.18 *) lemma segment_cauchy: @@ -53,7 +61,7 @@ intro; cases b; intros; simplify; split; intros; assumption; qed. (* Lemma 3.8 *) -lemma restrict_uniform_convergence: +lemma restrict_uniform_convergence_uparrow: ∀C:ordered_uniform_space.property_sigma C → ∀l,u:C.exhaustive {[l,u]} → ∀a:sequence {[l,u]}.∀x:C. (λn.fst (a n)) ↑ x → @@ -71,7 +79,28 @@ intros; cases H2 (Ha Hx); clear H2; cases Hx; split; [2:split; assumption]; cases Ha2; clear Ha2; cases (H1 a a); lapply (H6 H4 Ha1) as HaC; lapply (segment_cauchy ? l u ? HaC) as Ha; - lapply (sigma_cauchy ? H ? x ? Ha); [split; assumption] + lapply (sigma_cauchy ? H ? x ? Ha); [left; split; assumption] apply restric_uniform_convergence; assumption;] qed. - \ No newline at end of file + +lemma restrict_uniform_convergence_downarrow: + ∀C:ordered_uniform_space.property_sigma C → + ∀l,u:C.exhaustive {[l,u]} → + ∀a:sequence {[l,u]}.∀x:C. (λn.fst (a n)) ↓ x → + x∈[l,u] ∧ ∀h:x ∈ [l,u].a uniform_converges (sig_in ?? x h). +intros; cases H2 (Ha Hx); clear H2; cases Hx; split; +[1: split; + [2: apply (infimum_is_lower_bound C ?? Hx l); + apply (segment_lowerbound ? l u); + |1: apply (le_transitive ?? (fst (a 0))); [apply H2;] + apply (segment_upperbound ? l u);] +|2: intros; + lapply (downarrow_lowerlocated ? a (sig_in ?? x h)) as Ha1; + [2: apply segment_preserves_downarrow;split; assumption;] + lapply (segment_preserves_infimum ?l u a (sig_in ??? h)) as Ha2; + [2:split; assumption]; cases Ha2; clear Ha2; + cases (H1 a a); lapply (H7 H4 Ha1) as HaC; + lapply (segment_cauchy ? l u ? HaC) as Ha; + lapply (sigma_cauchy ? H ? x ? Ha); [right; split; assumption] + apply restric_uniform_convergence; assumption;] +qed. \ No newline at end of file diff --git a/helm/software/matita/contribs/dama/dama/property_sigma.ma b/helm/software/matita/contribs/dama/dama/property_sigma.ma index f6a315c82..757c18a07 100644 --- a/helm/software/matita/contribs/dama/dama/property_sigma.ma +++ b/helm/software/matita/contribs/dama/dama/property_sigma.ma @@ -22,7 +22,7 @@ definition property_sigma ≝ ∀U.us_unifbase ? U → ∃V:sequence (C square → Prop). (∀i.us_unifbase ? (V i)) ∧ - ∀a:sequence C.∀x:C.a ↑ x → + ∀a:sequence C.∀x:C.(a ↑ x ∨ a ↓ x) → (∀n.∀i,j.n ≤ i → n ≤ j → V n 〈a i,a j〉) → U 〈a 0,x〉. definition max ≝ @@ -58,7 +58,6 @@ lemma max_le_r: ∀n,m,z.max n m ≤ z → m ≤ z. intros; rewrite > sym_max in H; apply (max_le_l ??? H); qed. - definition hide ≝ λT:Type.λx:T.x. notation < "\blacksquare" non associative with precedence 50 for @{'hide}. @@ -73,9 +72,8 @@ coercion cic:/matita/dama/property_sigma/eject.con. (* Lemma 3.6 *) lemma sigma_cauchy: ∀C:ordered_uniform_space.property_sigma C → - ∀a:sequence C.∀l:C.a ↑ l → a is_cauchy → a uniform_converges l. -intros 8; cases H1; cases H5; clear H5; -cases (H ? H3); cases H5; clear H5; + ∀a:sequence C.∀l:C.(a ↑ l ∨ a ↓ l) → a is_cauchy → a uniform_converges l. +intros 8; cases (H ? H3) (w H5); cases H5 (H8 H9); clear H5; letin m ≝ (hide ? (let rec aux (i:nat) : nat ≝ match i with [ O ⇒ match H2 (w i) ? with [ ex_introT k _ ⇒ k ] @@ -86,15 +84,15 @@ letin m ≝ (hide ? (let rec aux (i:nat) : nat ≝ [1,2:apply H8; |3: intros 3; cases (H2 (w n) (H8 n)); simplify in ⊢ (? (? % ?) ?→?); simplify in ⊢ (?→? (? % ?) ?→?); - intros; lapply (H10 i j) as H14; - [2: apply (max_le_l ??? H11);|3:apply (max_le_l ??? H12);] - cases (le_to_or_lt_eq ?? H13); [2: destruct H15; destruct H5; assumption] - generalize in match H11; generalize in match H12; + intros; lapply (H5 i j) as H14; + [2: apply (max_le_l ??? H6);|3:apply (max_le_l ??? H7);] + cases (le_to_or_lt_eq ?? H10); [2: destruct H11; destruct H4; assumption] + generalize in match H6; generalize in match H7; cases (aux n1); simplify in ⊢ (? (? ? %) ?→? (? ? %) ?→?); intros; - apply H16; [3: apply le_S_S_to_le; assumption] + apply H12; [3: apply le_S_S_to_le; assumption] apply lt_to_le; apply (max_le_r w1); assumption; - |4: intros; clear H11; rewrite > H5 in H10; - rewrite < (le_n_O_to_eq ? H14); apply H10; assumption;] + |4: intros; clear H6; rewrite > H4 in H5; + rewrite < (le_n_O_to_eq ? H11); apply H5; assumption;] cut (((m : nat→nat) : sequence nat_ordered_set) is_strictly_increasing) as Hm; [2: intro n; change with (S (m n) ≤ m (S n)); unfold m; whd in ⊢ (? ? %); apply (le_max ? (S (m n)));] @@ -103,24 +101,28 @@ cut (((m : nat→nat) : sequence nat_ordered_set) is_increasing) as Hm1; [2: lapply (Hm n) as L1; change in L1 with (m n < m (S n)); lapply (trans_lt ??? L L1) as L3; apply (not_le_Sn_n ? L3);] clearbody m; -lapply (selection ?? Hm a l H1) as H10; +cut ((λx:nat.a (m x))↑ l ∨ (λx:nat.a (m x)) ↓ l) as H10; [2: + cases H1; + [ left; apply (selection_uparrow ?? Hm a l H4); + | right; apply (selection_downarrow ?? Hm a l H4);]] lapply (H9 ?? H10) as H11; [ exists [apply (m 0:nat)] intros; - apply (ous_convex ?? H3 ? H11 (H6 (m 0))); - simplify; repeat split; [intro X; cases (os_coreflexive ?? X)|2,3:apply H6;] - change with (a (m O) ≤ a i); - apply (trans_increasing ?? H4); intro; whd in H12; - apply (not_le_Sn_n i); apply (transitive_le ??? H12 H5)] + cases H1; + [cases H5; cases H7; apply (ous_convex ?? H3 ? H11 (H12 (m O))); + |cases H5; cases H7; cases (us_phi4 ?? H3 〈(a (m O)),l〉); + lapply (H14 H11) as H11'; apply (ous_convex ?? H3 〈l,(a (m O))〉 H11' (H12 (m O)));] + simplify; repeat split; [1,6:intro X; cases (os_coreflexive ?? X)|*: try apply H12;] + [1:change with (a (m O) ≤ a i); + apply (trans_increasing ?? H6); intro; apply (le_to_not_lt ?? H4 H14); + |2:change with (a i ≤ a (m O)); + apply (trans_decreasing ?? H6); intro; apply (le_to_not_lt ?? H4 H16);]] clear H10; intros (p q r); change with (w p 〈a (m q),a (m r)〉); generalize in match (refl_eq nat (m p)); -(* -intro E; cases p in E : (? ? ? ?); -*) generalize in match (m p) in ⊢ (? ? ? % → %); intro X; cases X (w1 H15); clear X; intros (H16); simplify in H16:(? ? ? %); destruct H16; apply H15; [3: apply le_n] [1: lapply (trans_increasing ?? Hm1 p q) as T; [apply not_lt_to_le; apply T;] - apply (le_to_not_lt p q H5); + apply (le_to_not_lt p q H4); |2: lapply (trans_increasing ?? Hm1 p r) as T; [apply not_lt_to_le; apply T;] - apply (le_to_not_lt p r H10);] + apply (le_to_not_lt p r H5);] qed. diff --git a/helm/software/matita/contribs/dama/dama/supremum.ma b/helm/software/matita/contribs/dama/dama/supremum.ma index 50b1ebeda..1e6c95b8d 100644 --- a/helm/software/matita/contribs/dama/dama/supremum.ma +++ b/helm/software/matita/contribs/dama/dama/supremum.ma @@ -79,6 +79,14 @@ intros 7 (C s u Hu v Hv H); cases Hu (_ H1); clear Hu; cases (H1 ? H) (w Hw); apply Hv; assumption; qed. +lemma infimum_is_lower_bound: + ∀C:ordered_set.∀a:sequence C.∀u:C. + u is_infimum a → ∀v.v is_lower_bound a → v ≤ u. +intros 7 (C s u Hu v Hv H); cases Hu (_ H1); clear Hu; +cases (H1 ? H) (w Hw); apply Hv; assumption; +qed. + + (* Lemma 2.6 *) definition strictly_increasing ≝ λC:ordered_set.λa:sequence C.∀n:nat.a (S n) ≰ a n. @@ -98,17 +106,22 @@ notation > "s 'is_strictly_decreasing'" non associative with precedence 50 for @{'strictly_decreasing $s}. interpretation "Ordered set strict decreasing" 'strictly_decreasing s = (strictly_decreasing _ s). - -notation "a \uparrow u" non associative with precedence 50 for @{'sup_inc $a $u}. -interpretation "Ordered set supremum of increasing" 'sup_inc s u = - (cic:/matita/dama/cprop_connectives/And.ind#xpointer(1/1) - (increasing _ s) - (supremum _ s u)). -notation "a \downarrow u" non associative with precedence 50 for @{'inf_dec $a $u}. -interpretation "Ordered set supremum of increasing" 'inf_dec s u = - (cic:/matita/dama/cprop_connectives/And.ind#xpointer(1/1) - (decreasing _ s) - (infimum _ s u)). + +definition uparrow ≝ + λC:ordered_set.λs:sequence C.λu:C. + s is_increasing ∧ u is_supremum s. + +definition downarrow ≝ + λC:ordered_set.λs:sequence C.λu:C. + s is_decreasing ∧ u is_infimum s. + +notation < "a \uparrow \nbsp u" non associative with precedence 50 for @{'sup_inc $a $u}. +notation > "a \uparrow u" non associative with precedence 50 for @{'sup_inc $a $u}. +interpretation "Ordered set uparrow" 'sup_inc s u = (uparrow _ s u). + +notation < "a \downarrow \nbsp u" non associative with precedence 50 for @{'inf_dec $a $u}. +notation > "a \downarrow u" non associative with precedence 50 for @{'inf_dec $a $u}. +interpretation "Ordered set downarrow" 'inf_dec s u = (downarrow _ s u). include "nat/plus.ma". include "nat_ordered_set.ma". @@ -126,6 +139,17 @@ cases (le_to_or_lt_eq ?? (not_lt_to_le (S n1) n H1)); clear H1; intro; whd in H1; apply (not_le_Sn_n n); apply (transitive_le ??? H2 H1);] qed. +lemma trans_decreasing: + ∀C:ordered_set.∀a:sequence C.a is_decreasing → ∀n,m:nat_ordered_set. n ≤ m → a m ≤ a n. +intros 5 (C a Hs n m); elim m; [ + rewrite > (le_n_O_to_eq n (not_lt_to_le O n H)); + intro X; cases (os_coreflexive ?? X);] +cases (le_to_or_lt_eq ?? (not_lt_to_le (S n1) n H1)); clear H1; +[2: rewrite > H2; intro; cases (os_coreflexive ?? H1); +|1: apply (le_transitive ???? (Hs ?) (H ?)); + intro; whd in H1; apply (not_le_Sn_n n); apply (transitive_le ??? H2 H1);] +qed. + lemma trans_increasing_exc: ∀C:ordered_set.∀a:sequence C.a is_increasing → ∀n,m:nat_ordered_set. m ≰ n → a n ≤ a m. intros 5 (C a Hs n m); elim m; [cases (not_le_Sn_O n H);] @@ -138,6 +162,18 @@ intro; apply H; cases (Hs n1); assumption;] qed. +lemma trans_decreasing_exc: + ∀C:ordered_set.∀a:sequence C.a is_decreasing → ∀n,m:nat_ordered_set. m ≰ n → a m ≤ a n . +intros 5 (C a Hs n m); elim m; [cases (not_le_Sn_O n H);] +intro; apply H; +[1: change in n1 with (os_carr nat_ordered_set); (* canonical structures *) + change with (n "'fst' x" non associative with precedence 50 for @{'pi1 $x}. -notation > "'snd' x" non associative with precedence 50 for @{'pi2 $x}. interpretation "sigma pi1" 'pi1 x = (pi1 _ _ x). interpretation "Type exists" 'exists \eta.x = @@ -232,6 +274,18 @@ intros; split; cases H; clear H; |2: clear H; intro y0; apply (H3 (fst y0));]] qed. +lemma segment_preserves_infimum: + ∀O:ordered_set.∀l,u:O.∀a:sequence {[l,u]}.∀x:{[l,u]}. + (λn.fst (a n)) is_decreasing ∧ + (fst x) is_infimum (λn.fst (a n)) → a ↓ x. +intros; split; cases H; clear H; +[1: apply H1; +|2: cases H2; split; clear H2; + [1: apply H; + |2: clear H; intro y0; apply (H3 (fst y0));]] +qed. + + (* Definition 2.10 *) coinductive pair (A,B:Type) : Type ≝ prod : ∀a:A.∀b:B.pair A B. definition first : ∀A.∀P.pair A P → A ≝ λA,P,s.match s with [prod x _ ⇒ x]. @@ -312,5 +366,3 @@ cases H3 (H4 H5); clear H3; cases (os_cotransitive ??? u Hxy) (W W); [1: cases (H5 ? W) (w Hw); left; exists [apply w] assumption; |2: right; exists [apply u]; split; [apply W|apply H4]] qed. - -