From: Enrico Tassi Date: Thu, 18 Dec 2008 13:56:15 +0000 (+0000) Subject: ... X-Git-Tag: make_still_working~4373 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=52bc8021b8be8fec9c3ae65d6b42c0d92d9c3c74;p=helm.git ... --- diff --git a/helm/software/matita/library/datatypes/categories.ma b/helm/software/matita/library/datatypes/categories.ma index 6dac9b044..3a8a6c759 100644 --- a/helm/software/matita/library/datatypes/categories.ma +++ b/helm/software/matita/library/datatypes/categories.ma @@ -88,13 +88,6 @@ notation ".= r" with precedence 50 for @{'trans $r}. interpretation "trans1" 'trans r = (trans1 _____ r). interpretation "trans" 'trans r = (trans _____ r). -(* -record unary_morphism0 (A,B: setoid) : Type0 ≝ - { fun_0:1> A → B; - prop_0: ∀a,a'. eq ? a a' → eq ? (fun_0 a) (fun_0 a') - }. -*) - record unary_morphism (A,B: setoid1) : Type0 ≝ { fun_1:1> A → B; prop_1: ∀a,a'. eq1 ? a a' → eq1 ? (fun_1 a) (fun_1 a') @@ -117,7 +110,6 @@ notation "† c" with precedence 90 for @{'prop1 $c }. notation "l ‡ r" with precedence 90 for @{'prop $l $r }. notation "#" with precedence 90 for @{'refl}. interpretation "prop_1" 'prop1 c = (prop_1 _____ c). -(* interpretation "prop_0" 'prop1 c = (prop_0 _____ c). *) interpretation "prop1" 'prop l r = (prop1 ________ l r). interpretation "prop" 'prop l r = (prop ________ l r). interpretation "refl1" 'refl = (refl1 ___). diff --git a/helm/software/matita/library/logic/cprop_connectives.ma b/helm/software/matita/library/logic/cprop_connectives.ma index c0bbdda18..facda2848 100644 --- a/helm/software/matita/library/logic/cprop_connectives.ma +++ b/helm/software/matita/library/logic/cprop_connectives.ma @@ -62,9 +62,17 @@ record Iff (A,B:CProp) : CProp ≝ { if: A → B; fi: B → A }. - + +record Iff1 (A,B:CProp) : CProp ≝ + { if1: A → B; + fi1: B → A + }. + interpretation "logical iff" 'iff x y = (Iff x y). +notation "hvbox(a break ⇔ b)" right associative with precedence 25 for @{'iff1 $a $b}. +interpretation "logical iff type1" 'iff1 x y = (Iff1 x y). + inductive exT (A:Type) (P:A→CProp) : CProp ≝ ex_introT: ∀w:A. P w → exT A P.