From: Enrico Tassi Date: Thu, 6 Jul 2006 09:04:23 +0000 (+0000) Subject: megatheorem (even if unused) X-Git-Tag: 0.4.95@7852~1240 X-Git-Url: http://matita.cs.unibo.it/gitweb/?a=commitdiff_plain;h=54e826fbfcf8f68ca078a3147cd3e09ea33a5463;p=helm.git megatheorem (even if unused) --- diff --git a/matita/library/paramodulation/paramodulation.ma b/matita/library/paramodulation/paramodulation.ma index aaaf36312..17cd3199a 100644 --- a/matita/library/paramodulation/paramodulation.ma +++ b/matita/library/paramodulation/paramodulation.ma @@ -15,8 +15,156 @@ set "baseuri" "cic:/matita/paramodulation/". include "nat/nat.ma". +include "datatypes/bool.ma". -definition make_eqs_smart \def +inductive List (U:Type) : nat \to Type \def + | Nil : List U O + | Cons : \forall n.U \to List U n \to List U (S n). + +(* +definition mk_T \def \lambda U:Type.\lambda n:nat.List U n \to Prop. + +definition app_T' \def + \lambda n:nat. + \lambda U:Type. + \lambda a:U. + \lambda t:mk_T U (S n). + \lambda l:List U n.t (Cons U n a l). + +let rec mk_Arrow' (n:nat) (U:Type) on n \def + match n return \lambda x.\forall t:mk_T U x.Prop with + [ O ⇒ + \lambda t:mk_T U O.t (Nil U) + | (S m) ⇒ + \lambda t:mk_T U (S m).\forall a.mk_Arrow' m U (app_T' m U a t)]. + +theorem leaf': + \forall U:Type. + \forall n:nat. + \forall actual_params:List U n. + \forall pred:mk_T U n. + \forall H:mk_Arrow' n U pred. + pred actual_params. + intros 3. + elim actual_params; + [ exact H. + | simplify in H1. + unfold app_T' in H1. + lapply (H1 t). + apply H. + assumption + ] +qed. +*) + +definition mk_Tside \def \lambda U:Type.\lambda n:nat.List U n \to U. + +definition app_T \def + \lambda n:nat. + \lambda U:Type. + \lambda a:U. + \lambda side:mk_Tside U (S n). + \lambda args:List U n.side (Cons U n a args). + +let rec mk_Arrow (n:nat) (U:Type) (eq:\forall T:Type.T\to T\to Prop) on n \def + match n return \lambda x.\forall l:mk_Tside U x.\forall r:mk_Tside U x.Prop with + [ O ⇒ + \lambda l:mk_Tside U O.\lambda r:mk_Tside U O.eq U (l (Nil U)) (r (Nil U)) + | (S m) ⇒ + \lambda l:mk_Tside U (S m).\lambda r:mk_Tside U (S m).\forall a. + mk_Arrow m U eq (app_T m U a l) (app_T m U a r)]. + +definition sym \def + \lambda eq:\forall T:Type.T\to T\to Prop. + \lambda U:Type. + \lambda l,r:U. + \lambda b:bool. + match b with + [ true ⇒ eq U r l + | false ⇒ eq U l r]. + +let rec mk_TsideArr (n:nat) (U:Type) on n \def + match n with + [ O ⇒ U + | (S m) ⇒ U \to mk_TsideArr m U]. + +let rec mk_Statement + (n:nat) (U:Type) (eq:\forall T:Type.T\to T\to Prop) (b:bool) + (context:U \to U) on n +\def + match n return \lambda x.\forall l:mk_TsideArr x U.\forall r:mk_TsideArr x U.Prop with + [ O ⇒ + \lambda predl:mk_TsideArr O U. + \lambda predr:mk_TsideArr O U. + sym eq U (context predl) (context predr) b + | (S m) ⇒ + \lambda predl:mk_TsideArr (S m) U.\lambda predr:mk_TsideArr (S m) U. + \forall a:U. + mk_Statement m U eq b context (predl a) (predr a)]. + +theorem eq_f_to_mk_Statement: + \forall eq:\forall T:Type.T\to T\to Prop. + \forall sym_eq: \forall T:Type.\forall l,r:T.eq T l r \to eq T r l. + \forall eq_f : + \forall U,U1:Type. + \forall f:U \to U1.\forall x,y:U. eq U x y \to eq U1 (f x) (f y). + \forall b:bool. + \forall U:Type. + \forall context: U \to U. + \forall n:nat. + \forall predl:mk_TsideArr n U. + \forall predr:mk_TsideArr n U. + \forall H:mk_Statement n U eq false (\lambda x.x) predl predr. + mk_Statement n U eq b context predl predr. + intros 7. + elim n; + [ simplify in H2. + elim b; + [ simplify. + apply H1. + apply H. + assumption. + | simplify. + apply H1. + assumption. + ] + | generalize in match H2. + clear H2. + elim b; + [ simplify. + intro. + apply H2. + simplify in H3. + apply H3. + | simplify. + intro. + apply H2. + simplify in H3. + apply H3. + ] + ] +qed. + +variant rewrite : + \forall eq:\forall T:Type.T\to T\to Prop. + \forall sym_eq: \forall T:Type.\forall l,r:T.eq T l r \to eq T r l. + \forall eq_f : + \forall U,U1:Type. + \forall f:U \to U1.\forall x,y:U. eq U x y \to eq U1 (f x) (f y). + \forall b:bool. + \forall U:Type. + \forall context: U \to U. + \forall n:nat. + \forall predl:mk_TsideArr n U. + \forall predr:mk_TsideArr n U. + \forall H:mk_Statement n U eq false (\lambda x.x) predl predr. + mk_Statement n U eq b context predl predr +\def + eq_f_to_mk_Statement. + +(* + +definition make_eqs_smart' \def \lambda Univ:Type. \lambda length:nat. \lambda initial:Univ. @@ -28,18 +176,18 @@ definition make_eqs_smart \def in aux initial length. -theorem transl_smart : +theorem transl_smart' : \forall Univ:Type.\forall n:nat.\forall initial:Univ. - make_eqs_smart Univ n initial. + make_eqs_smart' Univ n initial. intros. - unfold make_eqs_smart. + unfold make_eqs_smart'. elim n [ simplify.intros.assumption | simplify.intros.rewrite < H1.assumption ] qed. -theorem prova: +theorem prova': \forall Univ:Type. \forall a,b:Univ. \forall plus: Univ \to Univ \to Univ. @@ -47,6 +195,7 @@ theorem prova: \forall H1:plus b a = plus b b. plus a b = plus b b. intros. - apply (transl_smart ? (S O) ? ? (H a b) ? H1). + apply (transl_smart' ? (S O) ? ? (H a b) ? H1). qed. +*) \ No newline at end of file